Introduction to Particle Physics

Sreerup Raychaudhuri
TIFR

Lecture 1

Fundamental Concepts

- Any object which behaves as a point mass or charge. i.e. shows no evidence of substructure, is called a particle. Any object which shows no evidence of substructure in all known experiments is called an elementary particle.
- This is clearly dependent on the space resolution of the experiment(s) -

$$
\text { de Broglie relation: } \lambda=\frac{h}{p}
$$

High resolution \Rightarrow small $\lambda \Rightarrow$ large $p \Rightarrow$ large E

- Some 'particles' display substructure at high energies, e.g. atoms, nuclei, protons \& neutrons,...
- Some particles 'never' display substructure, e.g. electrons, photons, neutrinos,...
- The study of elementary particles and their interactions is called Particle Physics, or High Energy Physics.
- The main tools of Particle Physics are:
- special relativity, because the momenta p are large
- quantum mechanics, because the objects are small

Together, they give us
relativistic quantum field theory (RQFT)
which is the language in which we express all of particle physics.

Thanks to Feynman, we can express the results of RQFT in terms of diagrams which are easy to understand physically. Thus, we can get away, up to a certain point, without learning RQFT.

What can elementary particles do?

- Scattering processes
cross-section σ

- Decay processes decay width Γ

What makes such processes happen?
Four fundamental interactions:

- gravitation
- electromagnetism
- strong (nuclear) interaction $F \propto g_{s}^{2}$
- weak (nuclear) interaction $\quad F \propto G_{F}$

At high energies, electromagnetism and weak interactions unify to form the electroweak interaction.

Decay processes can be used to determine the nature of the interaction.

A decaying state evolves with time as $e^{-\Gamma t / \hbar}$
i.e. the (mean) lifetime is $\tau=\frac{\hbar}{\Gamma}$

From quantum mechanics, it can be shown that $\Gamma \propto g^{2}$ where

$$
g^{2}= \begin{cases}G_{N} & \text { for gravitation } \\ \frac{e^{2}}{4 \pi \varepsilon_{0}} & \text { for electromagnetism } \\ g_{s}^{2} & \text { for strong interactions } \\ G_{F} & \text { for weak interactions }\end{cases}
$$

Thus, the lifetime of a process satisfies

$$
\tau \propto \frac{\hbar}{g^{2}}
$$

i.e. the stronger the interaction, the shorter the lifetime.

Interaction	$\boldsymbol{\tau}$	$\boldsymbol{\ell}=\boldsymbol{c} \boldsymbol{\tau}$
Strong interaction	$\sim 10^{-23} \mathrm{~s}$	$\sim 10^{-13} \mathrm{~cm}$
Electromagnetic interaction	$\sim 10^{-16} \mathrm{~s}$	$\sim 10^{-6} \mathrm{~cm}$
Weak interactions	$\sim 10^{-9} \mathrm{~s}$	$\sim 10 \quad \mathrm{~cm}$
Gravitational interaction	$\sim 10^{+22} \mathrm{~s}$	$\sim 10^{+34} \mathrm{~cm}$

Only weakly-decaying particles will leave observable tracks

Classification of particles according to interactions:

Some well-known particles:

CHARGED LEPTONS: electron $\left(e^{-}\right)$, muon $\left(\mu^{-}\right)$, tau $\left(\tau^{-}\right)$
NEUTRINOS: electron-neutrino $\left(\nu_{e}\right)$, muon neutrino $\left(v_{\mu}\right)$, tau neutrino $\left(\nu_{\tau}\right)$
MESONS: pions $\left(\pi^{+}, \pi^{0}\right)$, kaons $\left(K^{+}, K^{0}\right)$, rho $\left(\rho^{+}, \rho^{0}\right)$, eta $\left(\eta^{0}\right)$, etc. BARYONS: proton $\left(p^{+}\right)$, neutron $\left(n^{0}\right)$, Delta $\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)$, Lambda $\left(\Lambda^{0}\right)$, Sigma $\left(\Sigma^{+}, \Sigma^{0}\right)$, cascade $\left(\Xi^{+}, \Xi^{0}\right)$, Omega-minus $\left(\Omega^{-}\right)$
GAUGE BOSONS: photon (γ), W-boson $\left(W^{+}\right)$, Z-boson $\left(Z^{0}\right)$, gluons (g)

Some well-known particles:

CHARGED LEPTONS: electron $\left(e^{-}\right)$, muon $\left(\mu^{-}\right)$, tau $\left(\tau^{-}\right)$
NEUTRINOS: electron-neutrino $\left(\nu_{e}\right)$, muon neutrino $\left(v_{\mu}\right)$, tau neutrino $\left(\nu_{\tau}\right)$
MESONS: pions $\left(\pi^{+}, \pi^{0}\right)$, kaons $\left(K^{+}, K^{0}\right)$, rho $\left(\rho^{+}, \rho^{0}\right)$, eta $\left(\eta^{0}\right)$, etc.
BARYONS: proton $\left(p^{+}\right)$, neutron $\left(n^{0}\right)$, Delta $\left(\Delta^{++}, \Delta^{+}, \Delta^{0}\right)$, Lambda ($\left.\Lambda^{0}\right)$,
Sigma $\left(\Sigma^{+}, \Sigma^{0}\right)$, cascade $\left(\Xi^{+}, \Xi^{0}\right)$, Omega-minus $\left(\Omega^{-}\right)$
GAUGE BOSONS: photon (γ), W-boson $\left(W^{+}\right)$, Z-boson $\left(Z^{0}\right)$, gluons (g)

Each has its own antiparticle:

ANTI-LEPTONS: positron $\left(e^{+}\right)$, anti-muon $\left(\mu^{+}\right)$, anti-tau $\left(\tau^{+}\right)$
NEUTRINOS: electron-antineutrino $\left(\bar{v}_{e}\right)$, muon antineutrino $\left(\bar{v}_{\mu}\right)$, tau antineutrino $\left(\bar{v}_{\tau}\right)$
ANTI-MESONS: pions $\left(\pi^{-}, \pi^{0}\right)$, Kaons $\left(K^{-}, \bar{K}^{0}\right)$, rho $\left(\rho^{-}, \rho^{0}\right)$, eta $\left(\eta^{0}\right)$, etc.
ANTI-BARYONS: antiproton $\left(p^{-}\right)$, antineutron $\left(\bar{n}^{0}\right)$, Delta $\left(\Delta^{--}, \Delta^{-}, \Delta^{0}\right)$, Lambda ($\left.\Lambda^{0}\right)$, $\operatorname{Sigma}\left(\Sigma^{-}, \Sigma^{0}\right)$, Cascade $\left(\Xi^{-}, \bar{\Xi}^{0}\right)$, Omega-plus $\left(\Omega^{+}\right)$
GAUGE BOSONS: photon (γ), W-boson $\left(W^{-}\right)$, Z-boson $\left(Z^{0}\right)$, gluons (g)

Nöther's Theorem and conserved quantum numbers

Consider a system with a Lagrangian $L=L\left(q_{1}, q_{2}, \ldots, q_{n}, \dot{q}_{1}, \dot{q}_{2}, \ldots, \dot{q}_{n}\right)$ such that under a transformation $q_{i} \rightarrow q_{i}+\varepsilon \eta_{i}$, for all i, the Lagrangian remains unchanged. We call this a symmetry of the system.
It follows that, treating ε as a parameter: $\frac{\partial L}{\partial \varepsilon}=0$ or, more explicitly,

$$
\sum_{i=1}^{n}\left(\frac{\partial L}{\partial q_{i}} \eta_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \dot{\eta}_{i}\right)=0
$$

Substituting the Euler-Lagrange equations

$$
\frac{\partial L}{\partial q_{i}}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)
$$

we get

$$
\sum_{i=1}^{n}\left[\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) \eta_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \frac{d \eta_{i}}{d t}\right]=0 \quad \text { or, } \quad \sum_{i=1}^{n} \frac{d}{d t}\left[\frac{\partial L}{\partial \dot{q}_{i}} \eta_{i}\right]=0
$$

or,

$$
\frac{d}{d t}\left(\sum_{i=1}^{n} \frac{\partial L}{\partial \dot{q}_{i}} \eta_{i}\right)=0
$$

i.e. we have a conserved quantity

$$
Q=\sum_{i=1}^{n} \frac{\partial L}{\partial \dot{q}_{i}} \eta_{i}
$$

Thus we have proved Nöther's Theorem: to every symmetry of a Lagrangian system there corresponds a conserved quantity. The conserved quantity Q is called the Nöther charge.

Typical conserved quantities and the corresponding symmetries:

	Symmetry under	Conserved quantity	Symbol	S	E	W
1.	Space translation	Linear momentum	\vec{p}	V	V	V
2.	Time translation	Energy	E	V	V	V
3.	Spatial rotations	Angular mom, spin	\vec{J}	V	V	V
4.	Gauge transfns.	Electric charge	q	V	V	V
5.	Space Inversion	Parity	P	V	V	\times
6.	Charge conjugation	C-parity	C	V	V	\times
7.	Time inversion	T-parity	$T=C P$	V	V	\times
8.	$\mathrm{U}(1)$ phase change	Baryon number	B	V	V	\times
9.	$\mathrm{U}(1)$ phase change	Lepton numbers	L_{e}, L_{μ}, L_{τ}	V	V	\times
10. $\mathrm{SU}(2)$ 'rotation'	Isospin	\vec{I}	V	V	\times	
11. $\mathrm{U}(1)$ phase changes	Strangeness, Charm,	S, C,	V	V	\times	
		Beauty, Truth	\mathcal{B}, \mathcal{T}			

A scattering or decay process can only take place if all these conservation laws are obeyed.

Example 1: $\Delta^{+} \rightarrow p^{+}+\pi^{0}$

Quantum No	Δ^{+}	p^{+}	π^{0}	Conclusion
mass $M\left(\mathrm{MeV} / c^{2}\right)$	1232	938	135	V
charge Q	+1	+1	0	V
spin J	$1 / 2$	$1 / 2$	1	V
baryon no B	+1	+1	0	V
Isospin I_{3}	$1 / 2$	$1 / 2$	0	V
all others	0	0	0	V

permitted through all interactions

Example 2: $\Sigma^{+} \rightarrow p^{+}+\pi^{0}$

Quantum No	Σ^{+}	p^{+}	π^{0}	Conclusion
mass $M\left(\mathrm{MeV} / c^{2}\right)$	1190	938	135	V
charge Q	+1	+1	0	V
spin J	$1 / 2$	$1 / 2$	1	V
baryon no B	+1	+1	0	V
isospin I_{3}	$1 / 2$	$1 / 2$	0	V
strangeness S	+1	0	0	\times
all others	0	0	0	V

Example 3: $\quad n^{0} \rightarrow p^{+}+e^{-}+\bar{v}_{e}$

Quantum No	n^{0}	p^{+}	e^{-}	\bar{v}_{e}	Conclusion
mass $M\left(\mathrm{MeV} / c^{2}\right)$	939.5	938.2	0.5	0	V
charge Q	0	+1	-1	0	V
spin J	$1 / 2$	$1 / 2$	$1 / 2$	$1 / 2$	V
baryon no B	+1	+1	0	0	V
lepton no L_{e}	0	0	+1	-1	V
isospin I_{3}	$-1 / 2$	$1 / 2$	0	0	\times
all others	0	0	0	0	V

Example 4: $p^{+} \rightarrow \pi^{0}+e^{+}+v_{e}$

Quantum No	p^{+}	π^{0}	e^{+}	v_{e}	Conclusion
mass $M\left(\mathrm{MeV} / c^{2}\right)$	938.2	135	0.5	0	V
charge Q	+1	0	+1	0	V
spin J	$1 / 2$	0	$1 / 2$	$1 / 2$	\times
baryon no B	+1	0	0	0	\times
lepton no L_{e}	0	0	-1	+1	V
isospin I_{3}	$1 / 2$	0	0	0	\times
all others	0	0	0	0	V

not permitted

July 2008

PARTICLE PHYSICS BOOKLET

Every alternate year the PDG brings out a fresh version of this handbook

Contains all the basic information about all the known particles, with all the updates

Also contains short reviews of basic topics...

Extracted from the Review of Parficle Physics C. Amsler, et al., Physics Letters B 667, 1 (2008)

See hip://pdg.lbl.gov/ for Particle Listings and complete reviews, plus a directory of online HBP information

Avalable from LBNL and CERN

Every particle physicist should possess a copy!

Natural units:

we shall use relativity + quantum mechanics: convenient to set

$$
c=1 \quad \text { and } \quad \hbar=1
$$

Dimensions:
$\left.\begin{array}{l}{[c]=L T^{-1} \Rightarrow \mathrm{~L}=\mathrm{T}} \\ E=\hbar \omega \Rightarrow[E]=\left[T^{-1}\right] \\ E=m c^{2} \Rightarrow[E]=M\end{array}\right\} \quad \mathrm{L}=\mathrm{T}=\mathrm{M}^{-1}=[E]^{-1}$
conventional to write everything in units of energy (GeV)

$$
\begin{array}{ll}
1 \mathrm{GeV}^{-1}=0.1973 \mathrm{fm} & \left(1 \text { femtometre }=10^{-15} \mathrm{~m}\right) \\
1 \mathrm{GeV}^{-2}=0.3894 \mathrm{mb} & \left(1 \text { millibarn }=10^{-27} \mathrm{~cm}^{2}\right) \\
1 \mathrm{GeV}^{-1}=0.6582 \times 10^{-22} \mathrm{~s} &
\end{array}
$$

Two-body decay:

conservation of four-momentum:

$$
p_{0}=p_{1}+p_{2}
$$

Hence, in the rest frame of P_{0}, we have

$$
\begin{aligned}
& p_{0}=\left(M_{0}, \overrightarrow{0}\right) & p_{1}=\left(E_{1}, \vec{k}\right) & p_{2}=\left(E_{2},-\vec{k}\right) \\
\text { i.e. } & M_{0}=E_{1}+E_{2} & E_{1}=\sqrt{\vec{k}^{2}+M_{1}^{2}} & E_{2}=\sqrt{\vec{k}^{2}+M_{2}^{2}}
\end{aligned}
$$

Solving these three equations:

$$
|\vec{k}|=\frac{\sqrt{\lambda\left(M_{0}^{2}, M_{1}^{2}, M_{2}^{2}\right)}}{2 M_{0}}, E_{1}=\frac{M_{0}^{2}+M_{1}^{2}-M_{2}^{2}}{2 M_{0}}, \quad E_{2}=\frac{M_{0}^{2}-M_{1}^{2}+M_{2}^{2}}{2 M_{0}}
$$

Only unknowns are the angles...

The distribution of angles will depend on the dynamics of the decay
e.g. if the decaying particle has a spin aligned in some direction, the daughter particles may emerge parallel/perpendicular to that direction

Classic story:

nuclear beta decay: originally thought to be $n^{0} \rightarrow p^{+}+e^{-}$
but in this case, $E_{e}=\frac{M_{n}^{2}+M_{e}^{2}-M_{p}^{2}}{2 M_{n}}=1.3 \mathrm{MeV}$

The beta decay spectrum of tritium $\left({ }_{1}^{3} \mathrm{H} \rightarrow{ }_{2}^{3} \mathrm{He}\right.$). (Source: G. M. Lewis, London: Wykeham, 1970), p. 30.)

Such a distribution is only possible if an invisible particle is also being emitted and it is actually a three-body decay... also demanded by the conservation of spin...

$$
n^{0} \rightarrow p^{+}+e^{-}+\bar{v}_{e}
$$

neutrino hypothesis (Pauli 1930)

Three-body decay:

conservation of four-momentum:

$$
p_{0}=p_{1}+p_{2}+p_{3}
$$

Hence, in the rest frame of P_{0}, we have
$p_{0}=\left(M_{0}, \overrightarrow{0}\right) \quad p_{1}=\left(E_{1}, \vec{p}_{1}\right) \quad p_{2}=\left(E_{2}, \vec{p}_{2}\right) \quad p_{2}=\left(E_{2}, \vec{p}_{3}\right)$
with

$$
E_{1}=\sqrt{\vec{p}_{1}^{2}+M_{1}^{2}} \quad E_{2}=\sqrt{\vec{p}_{2}^{2}+M_{2}^{2}} \quad E_{3}=\sqrt{\vec{p}_{3}^{2}+M_{3}^{2}}
$$

i.e. we have 4 equations $E_{1}+E_{2}+E_{2}=M_{0}$

$$
\text { and } \vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}=\overrightarrow{0}
$$

for 9 unknowns $\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}$
The system has 5 degrees of freedom, which can be chosen in different ways.

Most useful convention:
consider the decay as a two-stage process:

$$
\begin{aligned}
& P_{0} \rightarrow P_{1}+X \\
& X \rightarrow P_{2}+P_{3}
\end{aligned}
$$

Each is a 2-body decay
X is a virtual particle
i.e. M_{X} is variable

Hence, in the rest frame of P_{0}, we have

$$
\begin{array}{lll}
p_{0}=\left(M_{0}, \overrightarrow{0}\right) & p_{1}=\left(E_{1}, \vec{k}\right) & p_{X}=\left(E_{X},-\vec{k}\right) \\
& E_{1}=\sqrt{\vec{k}^{2}+M_{1}^{2}} & E_{X}=\sqrt{\vec{k}^{2}+M_{\mathrm{X}}^{2}}
\end{array}
$$

and one can calculate

$$
|\vec{k}|=\frac{\sqrt{\lambda\left(M_{0}^{2}, M_{1}^{2}, M_{X}^{2}\right)}}{2 M_{0}}, \quad E_{1}=\frac{M_{0}^{2}+M_{1}^{2}-M_{X}^{2}}{2 M_{0}}, \quad E_{X}=\frac{M_{0}^{2}-M_{1}^{2}+M_{X}^{2}}{2 M_{0}}
$$

All of these vary because of the variation of M_{X} Two other variables $\theta, \varphi \Rightarrow$ direction of \vec{k} in the rest frame of P_{0}

We can now construct the full momentum \vec{p}_{1} in the rest frame of P_{0}

$$
\begin{aligned}
& p_{1 x}=|\vec{k}| \sin \theta \cos \varphi \\
& p_{1 y}=|\vec{k}| \sin \theta \sin \varphi \\
& p_{1 z}=|\vec{k}| \cos \theta
\end{aligned}
$$

which vary with $M_{\mathrm{X}}, \theta, \varphi$. As usual $0 \leq \theta \leq \pi$ and $0 \leq \varphi \leq 2 \pi$.
We also have $M_{\mathrm{X}} \leq M_{0}-M_{1}$ with the equality corresponding to $|\vec{k}|=0$.

Again, in the rest frame of X, we have
$p_{X}=\left(M_{X}, \overrightarrow{0}\right)$

$$
p_{2}=\left(E_{2}, \stackrel{\rightharpoonup}{\ell}\right)
$$

$$
p_{3}=\left(E_{3},-\vec{\ell}\right)
$$

$$
E_{2}=\sqrt{\vec{\ell}^{2}+M_{2}^{2}} \quad E_{X}=\sqrt{\vec{\ell}^{2}+M_{3}^{2}}
$$

and one can calculate

$$
|\vec{\ell}|=\frac{\sqrt{\lambda\left(M_{X}^{2}, M_{2}^{2}, M_{3}^{2}\right)}}{2 M_{X}}, \quad E_{2}=\frac{M_{X}^{2}+M_{2}^{2}-M_{3}^{2}}{2 M_{X}}, \quad E_{X}=\frac{M_{X}^{2}-M_{2}^{2}+M_{3}^{2}}{2 M_{X}}
$$

Two other variables $\theta^{\prime}, \varphi^{\prime} \Rightarrow$ direction of $\vec{\ell}$ in the rest frame of X
We can now construct the full momentum \vec{p}_{2} in the rest frame of X

$$
p_{2 x}=|\vec{\ell}| \sin \theta^{\prime} \cos \varphi^{\prime} \quad p_{2 y}=|\vec{\ell}| \sin \theta^{\prime} \sin \varphi^{\prime} \quad p_{2 z}=|\vec{\ell}| \cos \theta^{\prime}
$$

which vary with $M_{\mathrm{X}}, \theta^{\prime}, \varphi^{\prime}$. As usual $0 \leq \theta^{\prime} \leq \pi$ and $0 \leq \varphi^{\prime} \leq 2 \pi$.
We also have $M_{\mathrm{X}} \geq M_{2}+M_{3}$ with the equality corresponding to $|\vec{\ell}|=0$.

Thus, $\quad M_{2}+M_{3} \leq M_{\mathrm{X}} \leq M_{0}-M_{1}$ is the full range of M_{X}.
Note that X is boosted in the rest frame of P_{0} by the factor

$$
\beta_{X}=\frac{p_{X}}{E_{X}}=\frac{|\stackrel{\rightharpoonup}{k}|}{E_{X}}=\frac{\sqrt{\lambda\left(M_{0}^{2}, M_{1}^{2}, M_{X}^{2}\right)}}{M_{0}^{2}-M_{1}^{2}+M_{X}^{2}}
$$

and the direction of the boost is along $-\vec{p}_{1}$, which we have already constructed.

Thus, to get the momentum \vec{p}_{2} in the rest frame of P_{0}, we require to boost back by the factor β_{X}, i.e. boost by β_{X} in the direction of $+\vec{p}_{1}$.
The formula for this general Lorentz boost is

$$
\vec{p}_{2} \rightarrow \vec{p}_{2}+\gamma_{X} \vec{\beta}_{X} E_{2}-\left(\gamma_{X}-1\right) \frac{\vec{\beta}_{X} \cdot \vec{p}}{\beta_{X}^{2}} \vec{\beta}_{X}
$$

Finally, we can simply construct

$$
\vec{p}_{3}=-\vec{p}_{1}-\vec{p}_{2}
$$

Unknowns are the energy of P_{1} and two pairs of angles...

The distribution of angles will depend on the dynamics of the decay
e.g. if the decaying particle has a spin aligned in some direction, the daughter particles may emerge parallel/perpendicular to that direction

Back to the neutrino story:
The three-body decay

$$
n^{0} \rightarrow p^{+}+e^{-}+\bar{v}_{e}
$$

can be written

$$
\begin{aligned}
n^{0} & \rightarrow p^{+}+X \\
X & \rightarrow e^{-}+\bar{v}_{e}
\end{aligned}
$$

Now, we can write

$$
E_{e}=\frac{M_{X}^{2}-M_{e}^{2}+M_{v}^{2}}{2 M_{X}}=\frac{1}{2} M_{X}\left(1-\frac{M_{e}^{2}-M_{v}^{2}}{M_{X}^{2}}\right)
$$

where

$$
M_{e}+M_{v} \leq M_{X} \leq M_{n}-M_{p}
$$

i.e.

$$
0.5 \mathrm{MeV}+M_{v} \leq M_{X} \leq 1.3 \mathrm{MeV}
$$

Thus, the maximum value of the beta particle energy will be

$$
\left.E_{e}\right|_{\max }=\frac{1}{2}\left(M_{n}-M_{p}\right)\left[1-\frac{M_{e}^{2}-M_{v}^{2}}{\left(M_{n}-M_{p}\right)^{2}}\right]=\left[1.3-0.1\left(\frac{M_{v}}{M_{e}}\right)^{2}\right] \mathrm{MeV}
$$

The neutrino mass can be calculated from the endpoint of the β spectrum.

All beta decay experiments are consistent with $M_{v_{e}}<2.2 \mathrm{eV}$

Scattering processes: $2 \rightarrow 3$

Treat P_{a} and P_{b} together as a composite particle, i.e. $\mathrm{P}_{0} \equiv \mathrm{P}_{a}$ and P_{b}

$$
\begin{aligned}
& p_{0}=p_{a}+p_{b} \\
& M_{0}=\sqrt{\left(p_{a}+p_{b}\right)^{2}}=E_{c m}
\end{aligned}
$$

Treat it as a 3-body decay

In a fixed target experiment

$$
p_{a}=(k, \vec{k}) \quad p_{b}=(M, \overrightarrow{0})
$$

we have

$$
M_{0}=E_{c m}=\sqrt{2 M k}
$$

i.e. available energy grows only as \sqrt{k}

In a colliding beam experiment

$$
p_{a}=(k, \stackrel{\rightharpoonup}{k}) \quad p_{b}=(k,-\vec{k})
$$

we have

$$
M_{0}=E_{c m}=2 k
$$

i.e. available energy grows as k
\Rightarrow high energy machines are of this type

