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It has long been argued that U(N) gauge theories reduce
to effectively classical systems in the t’ Hooft large N limit.

N = 4 Yang Mills theories are U(N) gauge theoeries.
These theories are conformally invariant; they define a line
of fixed points labeled by a continuous coupling constant λ.
In 1997 Maldacena identified the corresponding large N
classical systems.

While the classical equations identified by Maldacena are
unfamliar (and appear complicated) at finite λ, they simplify
dramatically at large λ. In this limit they reduce to the
equations of Einstein (IIB super) gravity on spacetimes that
asymptote to AdS5 × S5.
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The gravitational description of field theory dynamics is
unfamiliar partly because it applies only at very strong
coupling.

Even at strong coupling, however, we have some
qualitative expectations of local QFTs. For instance they
are expected to equilibriate at every finite temperature.

What is the gravitational description of this thermal state?
Answer (Witten): an asymptotically AdS black brane.

This answer is universal in the following sense. Every 2
derivative theory of gravity interacting with other fields of
spin ≤ 2 admits a consistent truncation to Einstein’s
equations with a negative cosmological constant. Black
brane solutions lie in this universal sector.
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In appropriately chosen units, Einstein’s equations with a
negative cosmological constant in d + 1 dimensions are

RMN −
R
2

gMN =
d(d − 1)

2
gMN : : M,N = 1 . . . d + 1

The black brane at temperature T and velocity uµ are a d
parameter set of exact solutions of these equations

ds2 =
dr2

r2f (r)
+ r2Pµνdxµdxν − r2f (r)uµuνdxµdxν

f (r) = 1 −

(

4πT
d r

)d

; Pµν = gµν + uµuν

These solutions have a horizon at r = 4πT
d . The thermal

nature of these solutions follows from well known
properties of event horizons.
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Einstein’s equations allow us to study deviations from
thermal equilibrium. Natural first question: what is the
spectrum of linearized fluctuations about thermal
equilibrium?.
If we impose the requirement of regularity of the future
horizon, the anwer is given by gravitational ‘quasinormal
modes’. Discrete infinity of such modes labeled by
integers. For the nth mode ω = ωn(k). Frequency complex
corresponding to decay.

It follows from conformal invariance that ωn(0) =
f (n)
T .

f (n) 6= 0 except for the 4 Goldstone modes corresponding
to variations of T and uµ. Infact Policastro Starinets and
Son demonstrated that the dispersion relation for these
Goldstone modes at small k takes the form predicted by
fluid dynamics -(shear and sound waves) provided η

s = 1
4π
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So we now have a first hint that black branes mimic the
behaviour of thermal QFTs for dynamical, not just static
purposes.

Can we take this further? It is well known that the effective
dynamical description of field theories in local thermal
equilibrium are the equations of fluid dynamics.

Fluid dynamics is a derivative expansion: it works provided
all variations are slow (compared to a dynamical relaxation
time) but does not require amplitude variations to be small.

Thus the AdS/CFT correspondence appears to implythat
the equations of asymptotically AdS gravity reduce to
(relativistic generalizations of) the Navier Stokes equations
at the full nonlinear level in an appropriate long distance
expansion. Is this exciting suggestion true?
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It is useful to isolate the trivial from the nontrivial parts of
this suggestion. The equations of uncharged fluid
dynamics take the form ∂µTµν = 0. These equation follows
simply from symmetries that are true on both sides of the
duality, and are trivially automatic on both sides.

However ∂µTµν = 0 are d equations for d(d+1)
2 − 1

variables. They constitute a well defined dynamical system
only if you are able to express Tµν as a function of d
variables. This ‘constitutive relationship’ is the nontrivial
assertion of fluid dynamics.

How could this work in gravity? Suggestion: lets use the
collective coordinate method (or Goldstone philosophy) on
the d parameter set of exact black brane solutions.
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We look for solutions that ‘locally’ approximate black
branes but with space varying velocities and temperatures.
More precisely we search for bulk solution tubewise
approximated by black branes. But along which tubes?

Naive guess: lines of constant xµ in Schwarschild (Graham
Fefferman) coordinates, i.e. metric approximately

ds2 =
dr2

r2f (r)
+ r2Pµν(x)dxµ(x)dxν(x)− r2f (r)uµuνdxµdxν

f (r) = 1 −

(

4πT (x)
d r

)d

; Pµν = gµν(x) + uµ(x)uν(x)

Does not seem useful. Appears to be a bad starting point
for perturbation theory. Also has several interpretative
difficulties.

Shiraz Minwalla



Thermal Equilibrium in Gravity
Nonlinear Fluid Dynamics from Gravity

Generalizations and Lessons
A ‘Theory’ of Fluid Dynamics?

Penrose diagram

Finklestein

Boundary

Singularity

Tube

Eddington

Graham Fefferman
Tube

Future 
Horizon

Point
Bifurcation

Shiraz Minwalla



Thermal Equilibrium in Gravity
Nonlinear Fluid Dynamics from Gravity

Generalizations and Lessons
A ‘Theory’ of Fluid Dynamics?

Causality suggests the use of tubes centered around
ingoing null geodesics. In particular we try

ds2 = g(0)
MNdxMdxN = −2uµ(x)dxµdr + r2Pµν(x)dxµdxν

− r2f (r ,T (x))uµ(x)uν(x)dxµdxν

Metric generally regular but not solution to Einstein’s
equations. However solves equations for constant
uµ,T , gµν . Consequntly appropriate starting point for a
perturbative soln of equations in the parameter ǫ(x).
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That is we set

gMN = g(0)
MN(ǫx) + ǫg(1)

MN(ǫx) + ǫ2g(2)
MN(ǫx) . . .

and attempt to solve for g(n)
MN order by order in ǫ.

Perturbation expansion surprisingly simple to implement.
Nonlinear partial differential equation → d(d+1)

2 ordinary
differential equations, in the variable r at each order and
each boundary point.
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It turns out that all equations can be solved analytically
(and rather simply). Upon solving the equations we find
that the perturbative procedure spelt out above can be
implimented at nth order only when an integrability
condition of the form ∂µTµν

n−1(u
µ(x),T (x)) where

Tµν
n−1(u

µ(x),T (x)) is a specific function of temperature and
velocities and their spacetime derivatives to (n − 1)th order.
This function is determined directly from Einstein’s
equations by the perturbative procedure.

For every uµ(x) and T (x) that satisfies this Fluid
Dynamical equation we have a solution to Einstein’s
equations. The map from fluid dynamics to gravity is locally
invertable assuming regularity of the future event horizon.

Shiraz Minwalla



Thermal Equilibrium in Gravity
Nonlinear Fluid Dynamics from Gravity

Generalizations and Lessons
A ‘Theory’ of Fluid Dynamics?

Explicit Results at second order

We have explicitly implemented our perturbation theory to
second order.

ds2 = −2uµdxµ (dr + r Aνdxν) + r2gµνdxµdxν

−

[

ωµ
λωλν +

1
d − 2

Dλω
λ
(µuν) −

1
d − 2

Dλσ
λ
(µuν)

+
R

(d − 1)(d − 2)
uµuν

]

dxµdxν

+
1

(br)d (r
2 −

1
2
ωαβω

αβ)uµuνdxµdxν

+ 2(br)2F (br)
[

1
b
σµν + F (br)σµλσλν

]

dxµdxν . . .
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− 2(br)2σαβσ
αβ

d − 1
PµνK1(br)−

uµuν

(br)d−2

σαβσ
αβ

(d − 1)
K2(br)

+
2 L(br)
(br)d−2

[

Pλ
µDασ

α
λuν + Pλ

νDασλ
αuµ

]

dxµdxν

− 2(br)2H1(br)
[

uλDλσµν + σµ
λσλν −

σαβσ
αβ

d − 1
Pµν

+Cµανβuαuβ
]

dxµdxν

+ 2(br)2H2(br)
[

uλDλσµν + ωµ
λσλν − σµ

λωλν

]

dxµdxν
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Explicit results at second order

Where

F (br) ≡
∫

∞

br

yd−1 − 1
y(yd − 1)

dy ; L(br) ≡
∫

∞

br
ξd−1dξ

∫

∞

ξ

dy
y − 1

y3(yd − 1)

H2(br) ≡
∫

∞

br

dξ
ξ(ξd − 1)

∫ ξ

1
yd−3dy

[

1 + (d − 1)yF (y) + 2y2F ′(y)
]

K1(br) ≡
∫

∞

br

dξ
ξ2

∫

∞

ξ

dy y2F ′(y)2 ; H1(br) ≡
∫

∞

br

yd−2 − 1
y(yd − 1)

dy

K2(br) ≡
∫

∞

br

dξ
ξ2

[

1 − ξ(ξ − 1)F ′(ξ)− 2(d − 1)ξd−1

+
(

2(d − 1)ξd − (d − 2)
)

∫

∞

ξ

dy y2F ′(y)2
]
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Second order boundary stress tensor

The dual stress tensor corresponding to this metric is given by
(4πT = b−1d)

Tµν = p (gµν + duµuν)

− 2η
[

σµν − τπuλDλσµν − τω

(

σµ
λωλν − ωµ

λσλν

)]

+ ξσ

[

σµ
λσλν −

σαβσ
αβ

d − 1
Pµν

]

+ ξCCµανβuαuβ

p =
1

16πGd+1bd ; η =
s

4π
=

1
16πGd+1bd−1

τπ = (1 − H1(1))b ; τω = H1(1)b ; ξσ = ξC = 2ηb
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Note that gravity reduces to fluid dynamics with particular
(holographically determined) values for dissipative
parameters. As we have seen the schematic form of the
fluid stress tensor is

Tµν = aT d(gµν + duµuν) + bT d−1σµν + T d−2
5

∑

i=1

ciS
i
µν

a is a thermodynamic parameter. b is related to the
viscosity: we find η/s = 1/(4π). ci coefficients of the five
traceless symmetric Weyl covariant two derivative tensors
are second order transport coefficients. Value disagree
with the predictions of the Israel Stewart formalism.
Recall that results universal. Should yield correct order of
magnitude estimate of transport coefficients in any strongly
coupled CFT.
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Our solutions are singular at r = 0. Quite remarkably it is
possible (under certain conditions) to demonstrate that
these solutions have event horizons and to explicitly
determine the event horizon manifold order by order in the
derivative expansion. This horizon shields the r = 0
singularity from the boundary.

Our control over the event horizon, together with the
classic area increase theorem of general relativity, can be
used to derive an ‘entropy current’ for our fluid flows that is
local and has positive divergence.
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Entropy Current at second order

Explicitly this entropy current is given to second order by

4 Gd+1 bd − 1 Jµ
S = [ 1 + b2 (A1 σ

αβ σαβ + A2 ω
αβ ωαβ + A3 R ) ] uµ

+ b2 [B1 Dλ σ
µλ + B2 Dλ ω

µλ ]

where

A1 =
2
d2 (d + 2)−

K1(1)d + K2(1)
d

, A2 = −
1

2d
, B2 =

1
d − 2

B1 = −2A3 =
2

d(d − 2)
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Charged Fluid Dynamics

The story described above was developed over three years
ago. It has since been generalized in many directions. The
two most interesting generalizations both require the
addition of a Maxwell field (in addition to the graviton) to
the bulk.

The addition of a bulk Maxwell field endows the boundary
theory with a conserved global charge. Equilibrium states
in such a system are labeled by a charge density together
with the energy density and velocity; in the bulk these
equilibrium configurations are given by charged
AdS-Reisnner Nordstorm black branes.
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Following the general procedure described in this talk, it
has been established that the AdS Einstein -Maxwell
equations reduce, in an appropriate long wavelength limit,
to the equations of charged relativistic hydrodynamics.

The procedure yields expressions for the stress tensor and
charge currents as a function of local temperatures,
velocities and chemical potentials.

We find a surprise here even at first order in the derivative
expansion. In addition to the usual diffusive currents, in
d = 4 we find a term in the charge current proportional to
ǫµνρσω

νρuσ. This is important because this term was
ignored by Landau and Lifshitz and perhaps all authors
subsequently.

Shiraz Minwalla



Thermal Equilibrium in Gravity
Nonlinear Fluid Dynamics from Gravity

Generalizations and Lessons
A ‘Theory’ of Fluid Dynamics?

Superfluidity

Another generalization is to the study of superfluid
hydrodynamics. Superfluidity arises in systems with a
conserved global charge when the equilibrium state
includes a condensate of an operator of nonzero global
charge.

The bulk dual description of the equilibrium state of a
superfluid is a charged black brane emmersed in charged
scalar ‘hair’. Such hairy black brane solutions exist in
certain AdS models, and have been intensively studied.
Once again repeating the procedure above on these
solutions results in the equations of Landau-Tiza
superfluidity, with one new term that was missed by
previous studies, and a new structure for parity odd fluids.
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As we have described above, computations within gravity
have revealed that the ‘standard’ equations of
hydrodynamics are incomplete in certain situations (some
allowed terms have been missed).

It is clear from this observation that a complete and
systematic ‘theory of hydrodynamics’ is at present lacking.

We will list three general principles that constrain the
equations of fluid dynamics and whose analysis may
eventually lead to a complete ‘theory’ of fluid dynamics.
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The Entropy positivity constraint

Fluid constitutive relations must be consistent with
existence of an entropy current whose divergence is
positive in every fluid flow in every consitent background,
including in curved space.

This principle turns out to be surprisingly constraining. At
first order in ordinary relativistic charged fluid dynamics it
sets two of the five symmetry allowed constitutive
parameters to zero. At second order in uncharged fluid
dynamics it kills 5 out of the 15 parameters . At first order
in parity invariant superfluid dynamics it kills 26 of the 47
parameters.
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The Correlator symmetry constraint

The equations of fluid dynamics may be used to compute n
point (retarded) correlation functions at long distances.

One may prove on general field theoretic grounds that (for
instance) the retarded two point function must obey the
symmetry constraint

Gab(ω, k) = (−1)ηa+ηbGba(ω,−k)

These conditions are automatic in perfect fluid dynamics
but impose constraints on higher order constitutive
relations. We are currently investigating how powerful
these constraints are.
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The zero mode thermodynamical constraint

Long distance correlators computed out of fluid dynamics
must also be consistent with thermodynamics. For instance

< J0(0)J0(0) >= ∂µq

Such relations are often automatic from thermodynamical
identities. Some relations of the above sort, however,
impose constraints on constitutive parameters. For
instance the equation written above implies the Einstein
relation

Key question: What are the full set of constraints one must
impose. What is the relation between these (and possibly
other) sets of constraints.
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Consequences for gravity

The second and third constraints listed above are
kinematical in AdS/CFT. However the first constraint is
more interesting, and has only been proved for 2 derivative
Einstein gravity in the bulk.

It is possible that the kinematical constraints completely
imply the first set of constraints. This would suggest that
the area increase theorem of gravity can be generalized to
an entropy increase theorem for arbitrary higher derivative
gravity, on purely kinematical grounds.

Another possibility, however, is that the constraints from
entropy positivity are cannot be derived from kinematical
considerations. Their validity could conceivably constrain
higher derivative corrections to Einstein’s equations.
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Within the fluid gravity correspondence, it is possible to
show that there exist nontrivial gravitational configurations
in which the entropy production vanishes in Einstein gravity

It is possible that requirement that entropy remain either
constant, or increase in such configurations will yield
nontrivial constraints on possible higher derivative
corrections to Einstein’s equation.

This suggests the exciting - though perhaps unlikely -
possibility of an infinite number of completely new purely
low energy constraints on structure of higher derivative
corrections to Einstein gravity whose origin lies in the
thermodyanical nature of gravity in configurations with a
horizon.
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Conclusions

Asymptotically AdSd+1 gravity reduces, in the long
wavelength limit, to the equations d + 1 dimensional Navier
Stokes equations with gravitationally determined
dissipative parameters.

The gravitationaly determined fluid dynamical system has
no free parameters, and so enjoys a degree of universality.
Values of these parameters are interesting and sometimes
surprising.

This map allows us to reword open problems in fluid
dynamicsas problems in gravity. Potential for new insights?

It would be very interesting to extend this connection past
the large N (or classical) limit.
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