

Is its real? - - - - - / / / / / / - · · · - - 1 / / - - 1 - ~ \ \ | //~~ \ \ \ / / / \ \ / / \ \ \ \ - \ \ \ //----/////---//////--- / | \ \ - --- \ | / / - - \ \ / / - \ \ \ \ \ - -- / / · · / / / · · · · / · · · · / / / / / · · /////----1 | | \ - - / - - / | \ \ - / / \ \ \ | | / /-> \ \ \ | / ----- | | \ \ --// | / -- \ \ / / \ \ 111----/ · - - · · · · · | | | · - - - · / / | | · - / / | - / / / / / / - / / 1

-Is its real? 🕚 We don't know! 1/////---// - \ \ / / / ____ /---1 ----- 1 1 ---- 1 1 ---->\|//->\\//-\\\\--/// /////----//////--| | | \ \ \ / / \ \ \ \ | | / / / \ 1----- | | \ --// | | --> 1 ---/1 | | . - - - . / . _ _ / / / 1 1 1 1 ---- 1 -///

-Is its real? We don't know! Main issue with current data: Only one frequency 11-/ 1// 1//---11/--

Ground vs Balloon vs Space

Atmosphere is bright \rightarrow adds noise Atmosphere is opaque

Water vapor and atmospheric transmission

Instrumental effects

Violation of rotational symmetry \rightarrow T to B leakage Rotation of polarization angle \rightarrow E to B leakage

Background Fig from ESA

TRAILIN.

Background Fig from ESA

Background Fig from ESA

Planck LFI: 30, 44, 70 GHz HFI: 100, 143, 217, 353 GHz

Background Fig from ESA

Planck LFI: 30, 44, 70 GH HFI: 100, 143, 215, 355 GHz Good news: Many changes = Effective removal of synchrotron and cust foregrounds

Background Fig from ESA

Planck

LFI: 30, 44, 70 GH
HFI: 100, 143, 215, 355 GHz

Good news: Many changels = Eff. (on removal of synchrotron and one foregrounds)

Bad news: Instruction of ffeet, worse compared to BICEP

Planck

2010)

Bicep2 arXiv:1403.4302

Planck Rosset et al. 2010

SPIDER

arXiv:1106.3087 6 BICEP2 telescopes on a balloon in the stratosphere (36 km) 2x 90 GHz+2x150 GHz+2x280GHz 2x(288+512+512) detectors ~ 2014 December Half-wave plate?

http://bolo.berkeley.edu/polarbear/

Single Frequency 150 GHz
Polarbear2 upgrade 2014 +95 GHz, new detectors
Simons array +2 telescopes ~ 2015

SPTpol

Background from Stephen Hoover's talk

arXiv:1210.4970

SPTpol $\Delta r \sim 0.03$ in 3 years (end of 2015) 90 GHz and 150 GHz SPT-3G 2016+ $\Delta r \sim 0.03$

Balloon borne: EBEX : flew in 2013 no results yet, fly again? 90,150,250 GHz

Balloon borne: EBEX : flew in 2013 no results yet, fly again? 90,150,250 GHz Ground based: Atacama B-mode search (ABS) at 145 GHz status: testing technology in particular rotating half-wave plate modulation of polarization

Balloon borne: EBEX : flew in 2013 no results yet, fly again? 90,150,250 GHz Ground based: Atacama B-mode search (ABS) at 145 GHz status: testing technology in particular rotating half-wave plate modulation of polarization GroundBIRD - 2014 Japanese ground based experiment rotate whole telescope at 20rpm

Balloon borne: EBEX : flew in 2013 no results yet, fly again? 90.150.250 GHz Ground based: Atacama B-mode search (ABS) at 145 GHz status: testing technology in particular rotating half-wave plate modulation of polarization GroundBIRD - 2014 Japanese ground based experiment rotate whole telescope at 20rpm Satellites: Litebird - Japanese satellite mission - low resolution 6 frequency channels (60-280 GHz) - $r \sim 10^{-3}$

Balloon borne: EBEX : flew in 2013 no results yet, fly again? 90.150.250 GHz Ground based: Atacama B-mode search (ABS) at 145 GHz status: testing technology in particular rotating half-wave plate modulation of polarization GroundBIRD - 2014 Japanese ground based experiment rotate whole telescope at 20rpm Satellites: Litebird - Japanese satellite mission - low resolution 6 frequency channels (60-280 GHz) - $r \sim 10^{-3}$ CoRE - European mission - $r \sim 10^{-4}$ - high resolution 6-7 frequency channels - status unknown

The future: New concepts

QUBIC arXiv:1010.0645

QUBIC design

I horn open

QUBIC

QUBIC design

Goddard Space Flight Center

Primordial Inflation Polarization Explorer

Sensitivity

- 5120 TES bolometers in four 32 x 40 arrays
- 1.5 K Optics with no warm window
- Background-limited performance

Systematics

- Front-End VPM polarization modulator
- Twin cryogenic telescopes

Foregrounds

- \bullet 1500, 1100, 850, and 500 μm
- Single frequency band per flight

Sky Coverage

- Balloon payload, conventional flight
- 8 flights, North and South hemisphere

Goal: Detect Primordial B-Modes with r < 0.01

Goddard Space Flight Center

Catadioptric Telescope Design

Frequency (GHz)	200	270	350	600
Wavelength (mm)	1500	1100	850	500
FWHM (arc-min)	21	15	14	14

Two mirror-image telescopes (IQV and IUV) cooled to 1.5 K with superfluid LHe

Goddard Space Flight Center

Result: Sensitivity + Sky Coverage

Detect primordial signal Begin to map power spectrum

Detect signal on largest scales using conventional ballooning

Limits r < 0.03 (one flight) r < 0.007 (8 flights)

Goddard Space Flight Center

Systematic Error Mitigation

All optical elements 1.5 K or colder VPM measures I,Q,V every 0.5 sec Dual telescopes, each with 2 arrays

Parameter	Effect	RMS (nK)	Notes
Calibration	∆T→B	0	VPM
Beam Shape	∆T→B	0	VPM
Instrumental Polarization	∆T→B	0	VPM
Differential Pointing	∆T→B	0	VPM
Cross-Polar Response	E→B	< 1	VPM
Polarization Angle	E→B	< 3	Measure
Differential Pointing	E→B	< 3	Telescope Alignment
Differential Beam Shape	E→B	< 2	Worst Case e ~ 0.1
Stray Light	T→B	< 1	Cold Optics

Maximize sensitivity, minimize systematics

CLASS: Cosmology Large Angular Scale Surveyor

Goddard Space Flight Center

Frequency Coverage/Foreground Removal

Pixie will also measure the spectrum (Kogut et al. 2011)

Pixie: Fourier transform spectrmeter (Kogut et al. 2011)

Pixie: Fourier transform spectrmeter (Kogut et al. 2011)

It is possible to measure the tensor spectral index n_T and test the inflationary consistency relation $r = -8n_T$ *Dodelson arXiv:1403.6310, Caligiuri and Kosowsky arXiv:1403.5324*

Beyond future: The Big Bang Observer

Crowder& cornish 2005 arXiv:gr-qc/0506015

Going from 7 e-folds to 17 e-folds of inflation

Going from 7 to 17 e-folds of inflation

