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I. SUMMARY

The public health threat arising from the worldwide spread of COVID-19 led the Govern-

ment of India to announce a nation-wide‘lockdown’ starting 25 March 2020, an extreme social

distancing measure aimed at reducing contact rates in the population and slowing down the

transmission of the virus. In this work, we present the outcomes of our city-scale simulation

experiments that suggest how the disease may evolve once restrictions are lifted. The idea

of modelling a large metropolis is appropriate since the spread in Maharashtra, NCR, Tamil

Nadu, etc. is mostly in well connected large cities.

We study the impact of case isolation, home quarantine, social distancing of the elderly,

school and college closures, closure of offices, odd-even strategies, etc., as components of

various post-lockdown restrictions that might remain in force for some time after the complete
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lockdown is lifted. More specifically, the post-lockdown scenarios studied, beginning with

the most restrictive, are lockdown for an unlimited period, lockdown until 03 May 2020,

lockdown until 19 April 2020, with various other restrictions either (1) until 31 May 2020,

or (2) until 03 May 2020, or (3) with only case isolation but no other restriction starting from

20 April 2020. In all post-lockdown scenarios, we assume that case isolation will continue

to be active with 90% compliance.

Our city-scale study suggests that the infection is likely to have a second wave and the

public health threat remains, unless steps are taken to aggressively trace, localise, isolate the

cases, and prevent influx of new infections. The new levels and the peaking times for health

care demand depend on the levels of infection spreads in each city at the time of relaxation of

restrictions. The lockdown has bought us the crucial time needed to do the tracking, isolation,

containment and resource mobilisation.

Our estimates in this draft are based on an agent-based city-scale simulator, taking a city’s

demographics and interaction spaces into consideration. We use the cities of Bengaluru and

Mumbai as examples, but the study could be extended to other cities as well. The agent-

based simulator includes households, schools/colleges, workplaces, commute-distance based

transport spaces, community spaces, and factors for high density localities. The detailed

modelling of such interaction spaces enables a targeted study of the impact of component in-

terventions and their combinations on the epidemic spread, e.g., schools and colleges closure,

social distancing of the elderly, odd-even strategies, within-city transportation restrictions,

containment zones within the city, etc.

Our framework could potentially be used to inform testing strategies, but at this time we

have not incorporated them in our study. There is also a potential for mapping vulnerable

zones. We have also not accounted for spontaneous changes in behaviour in the population.

While we have assumed Bengaluru’s and Mumbai’s demographics, the case progression in

hospitals, though age-stratified and adapted to our demographics, is based on available litera-

ture which is still evolving. Availability of more specific case histories from our hospitals will

help us get better estimates of the necessary resources for tackling the epidemic. Instantiations

of the city-scale simulator for multiple cities where the epidemic is prevalent should help us

get better national estimates on the necessary resources for tackling the epidemic.

We emphasise that this report has been prepared to help researchers and public health

officials understand the effectiveness of social distancing interventions related to COVID-19.

The report should not be used for medical diagnostic, prognostic or treatment purposes or

for guidance on personal travel plans.
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II. UNLOCKING THE LOCKDOWN

In view of the rising numbers of COVID-19 cases and fatalities in India, the initial 21-

day ‘lockdown’ period which was to end on 14 April 2020 has been extended until 03 May

2020. The website of the Ministry of Health and Family Welfare reported 12289 active cases,

2014 cured/discharged, 488 deaths, and 1 migration, as on 17:00 hrs IST, 18 April 2020. A

few states had already announced an extension of the lockdown prior to the nationwide

extension. Some relaxations are likely after 20 April 2020 based on how the disease spreads

in the coming days.

The discussion on how to bring about an end to the lockdown needs a systematic study

of the impact of various combinations of non-pharmaceutical interventions. We provide an

agent-based city-scale simulator of an epidemic spread that could be used to inform the

discussion on the easing of restrictions. We hasten to add that our study only looks at public

health outcomes of interventions and their relaxations, and does not consider economic or

ethical issues.

The simulator helps evaluate scenarios of phased emergence from the lockdown, such as

the following. In all cases, we assume that case isolation (with 90% compliance) remains in

force post the final emergence from lockdown.

• A return to normal activity, but with case isolation, on 20 April 2020 as a baseline for

comparison.

• During 20 April 2020 to 03 May 2020, assume case isolation, home quarantine of

households with cases, closures of schools and colleges, and social distancing of those

65 years of age or older, with 90% of the household complying. Thereafter, if case

isolation continues to apply, how does a return to normal activity from 04 May 2020

(with schools and colleges reopening to complete the term) compare with continued

closure of schools and colleges until the end of May 2020?

• In addition to the aforementioned restrictions from 20 April 2020 to 03 May 2020, add

an ‘odd-even’ intervention strategy in which only one half of the workforce travels to

work. Return to normal activity from 04 May 2020, but with case isolation.

• Lockdown until 03 May 2020, and return to normal activity on 04 May 2020, but with

case isolation.

• Continue the lockdown for an indefinite period.

Specific details on the interventions are given in Table I.
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TABLE I: Interventions.

Label Policy Description

CI Case isolation at home Symptomatic individuals stay at home for 7 days, non-household contacts

reduced by 75% during this period, household contacts remain unchanged.

70% of the household comply.

HQ Voluntary home quarantine Once a symptomatic individual has been identified, all members of the

household remain at home for 14 days. Household contact rates double,

contact with community reduce by 75%. 50% of household comply.

SDO Social distancing of those

aged 65 and over

Workplace contacts reduce by 50%, household contacts increase by 25%,

other contacts reduce by 75%. 75% of households comply.

LD Lockdown Closure of schools and colleges. Only essential workplaces active. For a

compliant household, household contact rate doubles, community contact

rate reduces by 75%, workspace contact rate reduces by 75%. For a non-

compliant household, household contact rate increases by 25%, workspace

contact rate reduces by 75%, and no change to community contact rate.

90% of the household comply with the lockdown.

LD26-CI Lockdown for 26 days Lockdown for 26 days and then normal activity, but with CI. 90% of the

household comply with the lockdown.

LD40-CI Lockdown for 40 days Lockdown for 40 days and then normal activity, but with CI. 90% of the

household comply with the lockdown.

LD26-PE-

CI

Phased emergence (PE)

from lockdown, scenario 1

Lockdown for 26 days, then CI, HQ and SDO for 14 days. Schools and

colleges remain closed during this period. Normal activity resumes after

this period with reopening of schools and colleges, but with CI. In all

interventions, 90% of the household comply with the lockdown.

LD26-PE-

SCCI

Phased emergence from

lockdown, scenario 2

Lockdown for 26 days, then CI, HQ and SDO for 14 days. Schools and

colleges remain closed during this period (SC). Normal activity resumes

after this period but schools and colleges remain closed for another 28

days (SC). CI remains in place throughout. In all interventions, 90% of

the household comply with the lockdown.

LD26-

PEOE-CI

Phased emergence from

lockdown, scenario 3

Lockdown for 26 days, then CI, HQ and SDO for 14 days. Schools and

colleges remain closed and an odd-even workplace strategy is in place

during this period. Normal activity resumes after this period. CI remains

in force throughout. In all interventions, 90% of the household comply

with the lockdown.

The COVID-19 Community Mobility Report for India [1] in Table II, prepared by Google

based on data from Google Account users who have “opted-in” to location history, indicates

significant reduction in mobility during the lockdown period compared to the baseline period

of 03 January 2020 to 06 February 2020. This informs the nominal contact rate choices in
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Fig. 1: Cases and fatalities all over India (black dots), only in Mumbai (blue dots), and only in Bengaluru

(red dots), in the log scale. Bengaluru data is taken from [2] and Karnataka’s Health and Family Welfare

Department’s media bulletins. Mumbai data is taken from Bombay Municipal Corporation’s Twitter handle.

The first shaded vertical patch shows the lockdown period 25 March - 19 April 2020. The second shaded

vertical patch is the lockdown period 20 April 2020 - 03 May 2020 when some relaxations may be allowed.

The case-to-fatality ratios are different for Mumbai and India. We therefore focus on estimating fatalities.

the interventions’ definitions in Table I.

TABLE II: Mobility report generated on 11 April 2020, see [1].

Place Reduction

Retail and recreation -80%

Grocery and pharmacy -55%

Parks and public plazas -52%

Public transit stations -69%

Workplaces -64%

Residential +30%

Simulated outcomes for seven scenarios are given in Figures 2-11 for Mumbai and Ben-

galuru. Some are more likely, others are for baseline comparison. Our study suggests what

might ensue as the infection spreads within one large isolated city. The outcomes are based

on Bengaluru and Mumbai demographic data.

Figure 1 shows the cumulative number of cases in India, in Mumbai alone, and in Bengaluru
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alone. The (vertical) offset between the two black curves (in either subpicture) is larger than

the offset between the two blue curves in the top subpicture suggesting a higher case-to-

fatality ratio in Mumbai compared to that all over India1. There is no evidence to suggest

that the Mumbai infection fatality ratio should be different from the national level. This points

to a combination of under-ascertained cases in Mumbai, or possibly aggressive hospitalisation

elsewhere to facilitate case isolation, or both. We therefore look at reported fatalities to arrive

at our estimates.

Several significant social distancing measures were already in place prior to the nation-wide

lockdown on 25 March 2020; see Tables III and IV.

TABLE III: Bengaluru timeline, see [4].

Start date Restrictions

09 March 2020 Closure of kindergartens and primary classes in all schools.

14 March 2020 Malls, universities and colleges, movie theatres, night clubs, marriages and

conferences and other public areas with high footfall closed.

16 March 2020 Classes 7 to 9 examinations postponed.

22 March 2020 Janata curfew. Prohibitory orders until midnight.

23 March 2020 All nonessential services suspended.

25 March 2020 National lockdown begins.

TABLE IV: Mumbai timeline, see [5].

Start date Restrictions

14 March 2020 Closure of malls, gyms, cinema halls, swimming pools, commercial and

educational establishments.

15 March 2020 Ban on public gathering and events.

19 March 2020 Alternate day opening for some close-by pairs of markets.

20 March 2020 No standing travel allowed in Mumbai’s public transport buses.

21 March 2020 All workplaces except those providing essential services closed.

22 March 2020 Janata curfew.

23 March 2020 District borders closed statewide. Local trains stopped.

25 March 2020 National lockdown begins.

1Note that we are using this ratio only to compare India levels and Mumbai levels, not for actual estimation of case-to-

fatality ratio. See [3] for issues related to estimation of this ratio.
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In order to facilitate timely dissemination of our study outcomes, and since we focus

on scenarios post-lockdown, we approximate the effect of these measures as a pre-lockdown

starting 14 March 2020 in Bengaluru and a pre-lockdown starting 16 March 2020 in Mumbai.

Contact parameters for both Bengaluru and Mumbai were calibrated using smaller scale

replicas (1 million population) of each city. Furthermore, only the growth exponent, or

equivalently the doubling time, of the initial phase of all India COVID-19 fatalities data

was used. See the calibration details in the Methods section of this paper.

With these assumptions, we get the following estimates for Mumbai and Bengaluru. The

estimates of fatalities refer only to the direct COVID-19 fatalities as a consequence of

the disease mortality and do not include fatalities that are directly or indirectly related to

healthcare capacity limitations.

A. Estimates for Mumbai

The estimates are in Figures 2-6.

• Figure 2: The effect of lockdown on the number of fatalities is seen only around

14 April 2020 and thereafter. This is consistent with estimated long onset-to-fatality

duration reported in [3].

• Figure 2: Our simulation-based estimate predicts the reduction in the growth rate for

Mumbai COVID-19 fatalities.

Figure 3 provides the same estimates of fatalities but in a linear scale for various post-

lockdown scenarios.

• If the lockdown were to continue indefinitely, the number of direct COVID-19 fatalities

in Mumbai will likely be much smaller than in the no intervention scenario. (In our

model, assuming 90% compliance, the fatalities reduce to 530 (standard error 190 on

two Mumbai instantiations with 5 runs on each) compared to 27790 (standard error 210)

in the no intervention case. These numbers would naturally vary with compliance levels.

See later pages for Bengaluru estimates.)

• If lockdown were lifted on 20 April 2020, and we returned to normal activity, the model

suggests that the number of direct COVID-19 fatalities may begin to increase, despite

case isolation, but with some delay. (We assume that cases isolate, but after one day

following onset of symptoms and only with 90% compliance.)

As already remarked, this is under the unrealistic assumption that no additional inter-

vention strategy will be carried out in the interim period.
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• If the lockdown is lifted in phases as follows, case isolation plus home quarantine plus

social distancing of those 65 years and older plus closure of schools and colleges from

20 April 2020 to 03 May 2020, and thereafter normal activity resumes but with case

isolation, the direct COVID-19 fatalities may rise once again. This too is under the

unrealistic assumption that no additional intervention strategy will be carried out in the

interim period.

• While the relaxation of restrictions may result in infection level rising up to near no-

intervention level, there is yet significant delay before the fatalities start to show an

exponential growth. This delay may allow better mobilisation of resources for aggressive

testing, tracking, and containment that can change the course of the epidemic. The

outcomes of our simulation provide an estimation of this delay.

• While the curves for fatalities match the observed data (Figure 2), the number of

estimated hospitalisations in Figure 4 are off. Possible reasons include a difference in

Mumbai’s hospitalisation protocol resulting in a later admission to a hospital capable of

handling COVID-19, or delay on the part of patients in seeking hospital care, or under-

ascertained cases. These factors must then be adjusted for possible early hospitalisation

of the actively traced cases to facilitate case isolation. Given these uncertainties, we do

not attempt to match Mumbai’s cumulative cases curve at this stage, but instead focus

on fatalities.

• Figures 5 and 6: If the lockdown were to continue into the distant future, the peak daily

demands for regular hospital and ICU beds have likely been reached. We must point out

that these estimates are based on a disease spread model and hospitalisation protocol

given in [6] and must be adapted to NCDC/ICMR’s hospitalisation guideline and India

case histories, once they become available.

B. Estimates for Bengaluru

.

Bengaluru has much fewer COVID-19 fatalities than Mumbai and matching to the Ben-

galuru fatality time series is not advisable. To proceed with the estimations, we have assumed

that the Bengaluru cases-to-fatality ratio matches that of India. Under this assumption, we

next provide the estimates for Bengaluru under various post-lockdown scenarios.

• If the lockdown were to continue indefinitely, the number of direct COVID-19 fatalities

in Bengaluru will likely be much smaller than in the no intervention scenario. (In our

model, assuming 90% compliance, the fatalities reduce to 30 (standard error 10 on two
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Fig. 2: Estimated fatalities in Mumbai in the log scale for various interventions. The first shaded vertical

patch: pre-lockdown period of 16 March 2020 to 24 March 2020. Second shaded vertical patch: lockdown 25

March - 19 April 2020. Third shaded vertical patch: partial lockdown 20 April 2020 - 03 May 2020 when

some relaxations may be allowed. The Mumbai fatalities are based on data gathered from Bombay Municipal

Corporation Twitter Handle. The slowing down of fatalities has been captured by the simulator.

Bengaluru instantiations with 5 runs on each) compared to 21200 (standard error 120) in

the no intervention case. These numbers would naturally vary with compliance levels.)

• If lockdown were lifted on 20 April 2020, and we returned to normal activity, the

model suggests that the number of direct COVID-19 fatalities increases to near no-

intervention level, but with some delay. Again, this is under the unrealistic assumption

that no additional intervention strategy will be carried out in the interim period.

• If the lockdown is lifted in phases as follows, case isolation plus home quarantine plus

social distancing of those 65 years and older plus closure of schools and colleges from

20 April 2020 to 03 May 2020, and thereafter normal activity resumes, the fatalities may

rise once again despite case isolation (one day after symptom onset, 90% compliance.)

Again, this is under the unrealistic assumption that no additional intervention strategy

will be carried out in the interim period.

• In Figure 9, the cumulative number of hospitalised cases follows the trend in the

estimates, except for a constant factor offset or delay or both. As already described,

this might be due to delay in hospitalisation, or delay in seeking hospital care, or due

to under-ascertained cases.
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Fig. 3: Estimated number of fatalities in Mumbai in the linear scale for various interventions. See details in

caption for Figure 2. A second wave of infection may occur if the first wave is not properly contained.

Fig. 4: Estimated number of hospitalisations (cumulative) in Mumbai. See details in caption for Figure 2. The

estimated numbers are off, perhaps due to hospitalisation modelling assumptions (smaller time to hospitalisation,

delay in seeking hospital care, and under-ascertained cases).

• Figures 10 and 11: If the lockdown were to continue into the distant future, the peak daily

demands for regular hospital beds and ICU beds have likely been reached. We point out

that these estimates are based on the disease spread model and hospitalisation protocol

in [6]. The estimate should be adapted to NCDC/ICMR’s hospitalisation guidelines.
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Fig. 5: Estimated number of hospital beds (daily) in Mumbai. See details in caption for Figure 2. This assumes

a certain case definition for hospitalisation and needs to be refined based on India data. If lockdown continues

far into the future, we have possibly cross the peak demand.

Fig. 6: Estimated number of critical care beds (daily) in Mumbai. See details in caption for Figure 2. If

lockdown continues far into the future, we have possibly cross the peak demand.

III. EXTENSIONS

The detailed ward-level model can help quantify vulnerabilities of the wards. This can also

help localise the intervention thresholds and strategies. We could have different protocols

for different districts based on “red”, “orange”, and “green” categorisations. The effects of
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Fig. 7: Estimated fatalities in Bengaluru in the log scale for various interventions. The first two shaded vertical

patches show the pre-lockdown period of 14 March 2020 to 24 March 2020 and the national lockdown period

25 March - 19 April 2020. The third shaded vertical patch is the lockdown period 20 April 2020 - 03 May

2020 when some relaxations may be allowed. The Bengaluru fatalities are shown as red dots (according to

crowd-sourced data in [2], as on 18 April 2020).

Fig. 8: Estimated number of fatalities in Bengaluru in the linear scale for various interventions. See details

in caption for Figure 7. A second wave may arise if not properly contained now.

different zones having different sets of restrictions could be simulated, and one could further

study good categorisations of wards into green, orange, and red zones.
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Fig. 9: Estimated number of hospitalisations (cumulative) in Bengaluru. See details in caption for Figure

7. The estimated numbers are off by a constant factor, possibly due to model assumptions (smaller time to

hospitalisation, delay in seeking hospital care, and under-ascertained cases).

Fig. 10: Estimated number of hospital beds (daily) in Bengaluru. See details in caption for Figure 7. This

assumes a certain case definition for hospitalisation and needs to be refined based on India data. If the lockdown

continues far into the future, we may have crossed the peak demand point.

One could also study cyclic exit strategies as done in [7]. These should be straightforward

to implement in our simulator.

With instantiations of a few representative cities, towns, districts, subdistricts, etc., and
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Fig. 11: Estimated number of critical care beds (daily) in Bengaluru. See details in caption for Figure 7. If

the lockdown continues far into the future, we may have crossed the peak demand point.

with interactions between these entities to model migration and travel, we can patch the

outputs together to obtain nation-wide estimates.

An additional aspect that could be studied are impacts of hospital bed capacity limitations

and noncompliance. If patients are either asked to go home or are discharged early, with the

advice of home-quarantine, how might this affect the spread in the population? If a fraction of

the population do not comply or if such home-quarantined individuals violate the quarantine,

say for purchasing essential supplies, what might be the consequence? We do not pursue

these questions at this time.

IV. METHOD: AGENT-BASED MODELLING

Our simulator, which enables comparisons such as the above, is an agent-based one that

instantiates a ‘synthetic’ city with various interactions spaces. The synthetic city is matched

to the demographics of a real city, e.g., Bengaluru or Mumbai. We then seed infections and

study how it spreads in the synthetic city under various interventions.

While SEIR models and even compartmentalised SEIR models with interactions, e.g., [8],

are easy to scale-up, the more detailed agent-based simulators that explicitly bring interaction
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spaces enable comparisons of various targeted interventions2.

There are other agent-based simulators that have informed policy decisions3. Other models

work at an intermediate level by modelling the social network of interactions, e.g., [11].

The purpose of our specific agent-based simulator is to enable comparison of more local

interventions. Since we have explicitly brought out the transport spaces and local community

spaces, our simulator provides an opportunity to compare targeted local strategies, e.g.,

transport spaces operating at half the capacity versus workplaces operating at half the capacity.

Analogous to compartmentalised SEIR models, it would be interesting to ‘patch-up’ multi-

ple city-scale simulators to study the effect of migrations across each component agent-based

simulators. We leave this for later exploration.

The best way to get reliable nation-wide estimates is to have multiple instantiations

representative of big cities, small towns, districts, and subdistricts. We hope our work provides

the impetus to bring to life models of these entities.

The rest of this note describes our simulator.

V. SIMULATOR

A. Agents and interacting entities

We developed an agent-based simulator of an epidemic spread in a city. The model involves

transmission in households, schools and workplaces, community spaces, and transport spaces.

The model uses the following data as input:

• Geo-spatial data that provides information on the wards of a city (components) along

with boundaries. (If this is not available, one could feed in ward centre locations and

ward areas).

• Population in each ward, with break up on those living in high density and low density

areas.

• Age distribution in the population.

• Household size distribution (in high and low density areas) and some information on

the age composition of the houses (e.g., generation gaps, etc.)

• The number of employed individuals in the city.

2SEIR models capture the average growth patterns. An additional advantage of agent-based models is that they can help

us understand the stochasticity in the disease evolution process, the best case scenarios, the worst-case scenarios, variations

around the mean evolution, confidence intervals, etc.
3See [6] for UK and USA related studies specific to COVID-19, see [9] and references therein for many agent-based

models and their comparisons, and see [10] for a taxonomy.
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• Distribution of the number of students in schools and colleges.

• Distribution of the workplace sizes.

• Distribution of commute distances.

• Origin-destination densities that quantify movement patterns within the city.

Taking the above data into account, individuals, households, workplaces, schools, transport

spaces, and community spaces are instantiated. Individuals are then assigned to households,

workplaces or schools, transport and community spaces. The algorithms for the assignments

do a coarse matching. The matching may be refined as better data becomes available.

The interaction spaces – households, workplaces or schools, transport and community

spaces – reflect different social networks and transmission happens along their edges. There

is interaction among these graphs because the nodes are common across the graphs. An

individual of school-going age who is exposed to the infection at school may expose others

at home. This reflects an interaction between the school graph and the household graph.

Similarly other graphs interact.

B. Interactions

Individuals and households: N individuals are instantiated and ages are sampled according

to the age distribution in the population. Households (based on the N and the mean number

per household) are then instantiated and assigned a random number of individuals sampled

according to the distribution of household sizes. An assignment of individuals to households

is then done to match, to the extent possible, the generational structure in typical households.

The households are then assigned to wards so that the total number of individuals in the ward

is in proportion to population density in the ward, taken from census data. A population den-

sity map is given in Figure 12 for Bengaluru and in Figure 13 for Mumbai. The generational

gap, household distribution, and age distribution patterns are assumed to be uniform across

the wards in the city. Each household in a ward is then assigned a random location in the

ward, and all individuals associated with the household are assigned the same geo-location

as the household.

Based on the age and the unemployment fraction, each individual is either a student or a

worker or neither.

Assignment of schools: Children of school-going ages 5-14 and a certain fraction of the

population aged 15-19 are assigned to schools. These are taken to be students. The remaining

fraction of the population aged 15-19 and a certain fraction of the population aged 20-59,
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Fig. 12: Bengaluru population profile across wards.

based on information on the employed fraction4, are all classified as workers and are assigned

workplaces. The rest of the population (nonstudent, unemployed) is not assigned to either

schools or workplaces.

In past works, given the structure of educational institutions elsewhere, educational insti-

tutions have been divided into primary schools, secondary schools, higher secondary schools,

and universities. The norm in Indian urban areas is that schools handle primary to higher

secondary students and then colleges handle undergraduates. We view all such entities as

schools.

School are located uniformly at random across the city. The number of schools is based on

the number of students and the average school size. We then assign to each school a random

number of students sampled from the school size distribution. Students are then randomly

picked and then assigned randomly to one of the three nearest schools. In the event the

chosen school for a student is already filled to capacity, such students are randomly assigned

4The unemployed fraction in Bengaluru, from the census data, is just over 50%, even after taking into account employment

in the unorganised sector. Similar is the case with Mumbai. This may have some bearing on the epidemic spread.
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Fig. 13: Mumbai population profile across wards.

to schools with unfilled capacity at the end. This could be updated later based on data of

school locations and travel times to school.

Assignment of workplaces: Workplace interactions can enable the spread of an epidemic.

In principle, Bengaluru’s and Mumbai’s land-use data could be used to locate office spaces.

Two different approaches were taken to assign individuals to workplaces.

In the Bengaluru instantiation, each workplace is located uniformly at random across

the city and is assigned a random workplace size. Distances are then sampled from the

origin-destination intensity data available for the respective cities. For each sampled distance,

individuals whose distances are closest to this value are identified, and one of them chosen

randomly is assigned to this workplace.

In the Mumbai instantiation, data on the number of travelers per day across each ordered

pair of wards (origin-destination matrix of number of travelers) is used to assign individuals

to offices. Based on “zone to zone” travel data from [12] an origin-destination matrix was

extrapolated based on the population of each ward. This origin-destination matrix, for every



19

Fig. 14: A simplified model of COVID-19 progression. This can be updated based on data from clinicians

and virologists.

pair of wards, contains the fraction of employed individuals who belong to the first ward

that have offices in the second.

The above assignments could be improved further in later versions of this simulator.

Community spaces: Community spaces include day care centres, clinics, hospitals, shops,

markets, banks, movie halls, marriage halls, malls, eateries, food messes, dining areas and

restaurants, public transit entities like bus stops, metro stops, bus termini, train stations,

airports, etc. While we hope to return to model a few of the important ones explicitly at a

later time, we proceed along the route taken by [13] with two modifications.

In our current implementation, each individual sees one community that is personalised

to the individual’s location and age and one transport space personalised to the individual’s

commute distance. More factors can be brought in at a later time. For ease of implementation,

the personalisation of the community space is based on ward-level common local communities

and a distance-kernel based weighting. The personalisation of the transport space is based

on commute distance. Details are given in Section V-D.

Age-stratified interaction: The interactions across these communities could be age-stratified.

This may be informed by social networks studies, for e.g., as in [14] which has been used

in a recent compartmentalised SEIR model [8].

The output of all the above is our synthetic city on which infection spreads.

C. Disease progression

We have used a simplified model of COVID-19 progression, based on descriptions in [3]

and [6]. This will need updating as we get more information.
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An individual may have one of the following states, see Fig. 14:

susceptible, exposed, infective (pre-symptomatic or asymptomatic), recovered, symptomatic,

hospitalised, critical, or deceased,

We assume that initially the entire population is susceptible to the infection. Let τ denote

the time at which an individual is exposed to the virus, see Fig. 14. The incubation period is

random with the Gamma distribution of shape 2 and scale 2.29. The mean incubation period is

then 4.58 days (4.6 days in [6] and 4.58 in [15]). Individuals are infectious for an exponentially

distributed period of mean duration 0.5 of a day. We assume that a third of the patients recover

but the remaining two-third develop symptoms. Symptomatic patients are assumed to be 1.5

times more infectious during the symptomatic period than during the pre-symptomatic but

infective stage. Individuals either recover or move to the hospital after a random duration

that is exponentially distributed with a mean of 5 days5. The probability that an individual

recovers depends on the individual’s age6. It is also assumed that recovered individuals are

no longer infective nor susceptible to a second infection. While hospitalised individuals may

continue to be infectious, they are assumed to be sufficiently isolated, and hence do not further

contribute to the spread of the infection. Further progression of hospitalised individuals to

critical care is mainly for assessing the need for hospital beds, intensive care unit (ICU) beds,

critical care equipments, etc. This will need to be adapted to our local hospital protocol.

Let us reiterate. Once a susceptible individual has been exposed, the trajectory in Fig. 14

takes over for that individual. Further modulations are (in our current implementation) only

based on the agent’s age.

D. Model of infection spread

The model of infection spread in such agent-based models is stochastic and utilises the

connection structures already described.

At each time t, an infection rate λn(t) is computed for each individual n based on the

prevailing conditions. In the time duration ∆t following time t, each susceptible individual

moves to the exposed state with probability 1− exp{−λn(t) ·∆t}, independently of all other

events. Other transitions are as per the disease progression described earlier. Time is then

5This needs to be updated based on hospitalisation guidelines. As discussed earlier, the mismatch in Figure 16 may be

because of either hospital guideline or delay in seeking hospital care or both.
6It is possible to add comorbidities - diabetes, hypertension, etc. - in addition to age. Mortality and prognosis appear to

depend heavily on comorbidities. We leave it for the future.
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TABLE V: Hospitalisation estimates from [3] while we await reliable data in the Indian

setting.

Age-group % symptomatic cases % hospitalised cases % critical cases

(years) requiring hospitalisation requiring critical care deceased

0 to 9 0.1% 5.0% 40%

10 to 19 0.3% 5.0% 40%

20 to 29 1.2% 5.0% 50%

30 to 39 3.2% 05.0% 50%

40 to 49 4.9% 6.3% 50%

50 to 59 10.2% 12.2% 50%

60 to 69 16.6% 27.4% 50%

70 to 79 24.3% 43.2% 50%

80+ 27.3% 70.9% 50%

updated to t+ ∆t, the conditions are then updated to reflect the new exposures, changes to

infectiousness, hospitalisations, recoveries, etc., during the period t to t + ∆t. The process

outlined at the beginning of this paragraph is repeated until the end of the simulation. ∆t

was taken to be 6 hours in our simulator and is configurable.

A city of N individuals, H households, S schools, W workplaces, one community space

(comprising C wards), one transport space, and associations of individuals to these entities

is the starting point for the infection spread simulator. Infection spread is then implemented

as follows.

An individual n can transmit the virus in the infective (pre-symptomatic or asymptomatic

stage) or in the symptomatic stage. At time t, this is indicated as In(t) = 1 when infective

and otherwise In(t) = 0 otherwise.

Additionally, each individual has two other parameters: a severity variable Cn and a relative

infectiousness variable ρn, see [13]. Both bring in heterogeneity to the model. Severity Cn = 1

if the individual suffers from a severe infection and Cn = 0 otherwise; this is sampled at

50% probability independently of all other events. Infectiousness ρn is a random variable that

is Gamma distributed with shape 0.25 and scale 4 (so the mean is 1). The severity variable

captures severity-related absenteeism at school or workplace, and associated decrease of

infection spread at school or workplace and increase of infection spread at home.

If the individual gets exposed at time τn, a relative infection-stage-related infectiousness

is taken to be κ(t − τn) at time t. For the disease progression described in the previous

section, this is 1 in the presymptomatic and asymptomatic stages, 1.5 in the symptomatic,
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hospitalised, and critical stages, and 0 in the other stages.

Let βh, βs, βw, βT and βc be the transmission coefficients at home, school, workplace,

transport and community spaces. These can be viewed as scaled contact rates with members

in the household, school, workplace, and community, respectively. More precisely, these are

the expected number of eventful (infection spreading) contact opportunities in each of these

interaction spaces. It accounts for the combined effect of frequency of meetings and the

probability of infection spread during each meeting.

Let nh, ns, nw, nT , nc be the number of individuals assigned to household h, school s,

workplace w, transport space T , and ward c.

A susceptible individual n belongs to home h(n), school s(n), workplace w(n), transport

space T (n) (1 if using public transport and 0 otherwise), and community space c(n).

Interactions without age-stratification: A susceptible individual n sees the following in-

fection rate at time t:

λn(t) =
∑

n′:h(n′)=h(n)

1

nαh(n)
· In′(t)βhκ(t− τn′)ρn′(1 + Cn′(ω − 1))

+
∑

n′:s(n′)=s(n)

1

ns(n)
· In′(t)βsκ(t− τn′)ρn′(1 + Cn′(ωψs(t− τn)− 1))

+
∑

n′:w(n′)=w(n)

1

nw(n)
· In′(t)βwκ(t− τn′)ρn′(1 + Cn′(ωψw(t− τn)− 1))

+ T (n)dn,w(n)
∑

n′:T (n′)=T (n)

(
dn′,w(n′)In′(t)βTκ(t− τn′)ρn′(1 + Cn′(ωψw(t− τn)− 1))∑

n′:T (n′)=T (n) dn′,w(n′)

)

+
ζ(an) · f(dn,c)∑

c′ f(dc,c′)

∑
c′

f(dc,c′)hc,c′(t) (1)

where

hc,c′(t) =

(∑
n′:c(n′)=c′ f(dn′,c(n′)) · In′(t)βcrcκ(t− τn′)ρn′(1 + Cn′(ω − 1))∑

n′ f(dn′,c(n′))

)
(2)

which will be described soon.

The expression (1) can be viewed as the rate at which the susceptible individual n contracts

the infection at time t. Each of the components on the right-hand side indicates the rate from

home, school, workplace, transport space, and community. The additional quantities, over

and above what we have already described, are as follows.

The parameter α determines how household transmission rate scales with household size,

a crowding-at-household factor. It increases the propensity to spread the infection by a factor

n1−α. We have taken α = 0.8, see [13].
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A common parameter ω indicates how a severely infected person affects a susceptible one,

as will be clear from below. (This is to be tuned at a later stage and is set to 2 now).

The functions ψs(·) and ψw(·) account for absenteeism in case of a severe infection. It

can be time-varying and can depend on school or workplace. We take ψs(t) = 0.1 and

ψw(t) = 0.5 while infective and after one day since infectiousness. School-goers with severe

infection contribute lesser to the infection spread, due to higher absenteeism, than those that

go to workplaces; moreover, the absenteeism results in an increased spreading rate at home.

The function ζ(a) is the relative travel related contact rate of an individual aged a. We

take this to be 0.1, 0.25, 0.5, 0.75, 1, 1, 1, 1, 1, 1, 1, 1, 0.75, 0.5, 0.25, 0.1 for the various

age groups in steps of 5 years, with the last one being the 80+ category.

The quantity hc,c′(t) represents the transmission rate from individuals in ward c′ to an

individual in ward c. As above, each individual contributes in a distance weighted way in

how individuals in a ward c′ affects an individual in another ward c.

The factor rc stands for a high-density interaction multiplying factor. For Mumbai, rc = 2

for some high density areas and rc = 1 for the other areas. For Bengaluru rc = 1 for all

wards.

The function f(·) is a distance kernel that can be matched to the travel patterns in the city.

Finally, our choice of the infection rate from the community space is a little different from

the rate specified in [13]. However, when the distance kernel is f(d) = 1/(1 + (d/a)b) and

d� a, i.e., the wards are small, then our specification is close to that indicated in [13]. We

take a = 10.751 km and b = 5.384, based on a fit on data for Bengaluru.

As one can see from (1), we have one community space but with contributions from various

wards. This is to easily amenable to future modifications that include ’containment zones’

and restrict interaction across zones.

Age-stratified interactions: If this is enabled, the home, school, and workspace community

interaction rates have an extra factor Mh
n,n′ ,M s

n,n′ , and Mw
n,n′ in the summand which accounts

for age-stratified interactions. Each of these depends on n and n′ only through the ages of

agents n and n′. The resulting contact rate for individual n at time t is then:
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λn(t) =
∑

n′:h(n′)=h(n)

Mh
n,n′

nαh(n)
· In′(t)βhκ(t− τn′)ρn′(1 + Cn′(ω − 1))

+
∑

n′:s(n′)=s(n)

M s
n,n′

ns(n)
· In′(t)βsκ(t− τn′)ρn′(1 + Cn′(ωψs(t− τn)− 1))

+
∑

n′:w(n′)=w(n)

Mw
n,n′

nw(n)
· In′(t)βwκ(t− τn′)ρn′(1 + Cn′(ωψw(t− τn)− 1))

+ T (n)dn,w(n)
∑

n′:T (n′)=T (n)

(
dn′,w(n′)In′(t)βTκ(t− τn′)ρn′(1 + Cn′(ωψw(t− τn)− 1))∑

n′:T (n′)=T (n) dn′,w(n′)

)

+
ζ(an) · f(dn,c)∑

c′ f(dc,c′)

∑
c′

f(dc,c′)hc,c′(t) (3)

where hc,c′(t) is given in (2). Computational complexity can be reduced by focusing only on

the principal components of Mh,M s, and Mw.

E. Seeding of infection

Two methods of seeding the infection have been implemented.

• A small number of individuals can be set to either exposed, presymptomatic/asymptomatic,

or symptomatic states, at time t = 0, to seed the infection. This can be done randomly

based either on ward-level probabilities, which could be input to the simulator, or it can

be done uniformly at random across all wards in the city.

• A seeding file indicates the average number of individuals who should be seeded on each

day in the first stage of infectiousness (presymptomatic or asymptomatic). This could

be done based on data for patients with a foreign travel history who eventually visited

a hospital. A certain multiplication factor then accounts for the asymptomatic and the

symptomatic individuals that recover without the need to visit the hospital. The seeding

is done at a random time earlier in the time line, based on the disease progression.

F. Interventions and their implementation

The simulator has the capability to accommodate interventions and compliance. Table I

describes some of the interventions in [6], some adapted to suit our demographics, and some

new interventions involving the nation-wide 26-day ‘lockdown’ in India and possible future

scenarios that can bring us out of the lockdown.
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VI. CALIBRATION

The key parameters to be tuned are βh, βw, βs, βt, βc, and the seeding time prior to some

reference time, 01 March 2020 in our case.

In the current study, although we have a transportation interaction space, we have taken

βt = 0. Bengaluru travel interactions may likely be captured through the local community

interactions. For Mumbai however, local trains are a key mode of daily transportation with

a population of the order of 7.5 million travelling daily using this mode in normal times.

However, trains were stopped in Mumbai prior to the national lockdown and were running

below capacity for at least a week before that. Moreover, the initial infections were seeded

by travellers that came from abroad. The primary mode of travel for this group is unlikely to

be rail transport. So for this version, we have disabled the transport space by setting βt = 0.

Other parameters are the distance kernel parameters, the parameter α that accounts for

crowding in households, the age-stratified interactions, the distribution parameters for indi-

vidual infectiousness, the probability of severity, etc. These are set as follows:

TABLE VI: Model parameters

Parameter Symbol Bengaluru Mumbai

Transmission coefficient at home βh 1.0080 (calibrated) 0.8129 (calibrated)

Transmission coefficient at school βs 1.0164 (calibrated) 1.3019 (calibrated)

Transmission coefficient at workplace βw 0.5082 (calibrated) 0.6509 (calibrated)

Transmission coefficient at community βc 0.2000 (calibrated) 0.1514 (calibrated)

Transmission coefficient at transport space βt 0 0

Household crowding 1− α 0.2 0.2

Community crowding rc 1 2

Distance kernel f(d) = 1/(1 + (d/a)b) (a, b) (10.751, 5.384) (4.000, 3.800)

Infectiousness shape (Gamma distributed) (shape,scale) (0.25, 4) (0.25, 4)

Severity probability Pr{Cn = 1} 0.5 0.5

Age stratification Mn,n′ Not used Not used

We assume a counterfactual situation where the current national level of infection is moved

to the city under study. This is clearly not the current situation in India. The COVID-19

epidemic, at this moment, is spread across various cities in India, there are lower levels of

infection in each city and, furthermore, a lockdown is in place. (This gives health officials

an opportunity to aggressively track, localise, and contain the infection.) The counterfactual

situation (all of India’s infections in the isolated city under study) is due to paucity of reliable

city level fatalities data.
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Our simulator was calibrated to match the cumulative case fatalities in India up to 10 April 2020

(199 fatalities) on a synthetic Bengaluru and Mumbai with just one million population. The

India cases and fatalities data is based on daily updates compiled by the European Centre for

Disease Prevention and Control [16]. As mentioned before, the cases-to-fatality ratio seems

to be different for Mumbai and India. So fatalities are likely to be more reliable for tuning

the contact rates. Besides, the fatalities up to 08 April 2020 were likely due to contacts prior

to lockdown. So the effect of lockdown on the calibration is minimised. Also, we consider

a city of size only one million simply for computational ease. Again, in the initial period,

in our modelling framework, once the city is sufficiently large (say, more than 500,000) the

growth of infections and fatalities is more-or-less linear in the city size. In particular, the

parameters that replicate the observed fatalities show negligible sensitivity to the city size

when the city is sufficiently large.

The following tatonnement procedure was used to estimate β values in a no-intervention

scenario. Hundred infected individuals were seeded in the exposed state. The times of their

exposures were sampled according to the Gamma distribution associated with the incubation

period, and the individuals were placed uniformly on the incubation period.

• Based on the estimates in [13], βs was set to twice βw.

• The sizes of βh, βw and βc were then tuned to obtain

– roughly equal transmission probabilities of the disease from home, workplace (schools

and offices), and community;

– a match on the exponential scale of the number of fatalities observed pan-India until

10 April 2020 (199 deaths as per the ECDC numbers).

While the lockdown was already in force from 25 March 2020 to 09 April 2020, the

long mean time to fatality suggests that we may not underestimate the contact rates.

The pan-India numbers were chosen to get a more reliable estimate of the growth

exponent of the number of fatalities. Furthermore, the disease spreads from the immediate

social network neighbourhood of the seeded individuals, with spread in the community

space modulated by distance. The spread will likely be localised in the first few days.

So long as the local neighbourhoods of these networks do not overlap, one could view

the pan-India infections as happening independently in various disjoint localities of

Bengaluru/Mumbai, at least up to a few days post lockdown.

Alternative approaches were also considered, but were abandoned. We identified the num-

ber of individuals who tested positive or were hospitalised (all over India) with a foreign
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travel history. The available information showed that the number of such individuals who

were hospitalised grew exponentially until 24 March 2020 and then decayed exponentially

eventually dropping down to zero. Travel advisory notifications starting from early February,

beginning with visa cancellations of those traveling from China, Korea, Iran, Italy, Japan,

coupled with the long delay from exposure to hospitalisation (mean 10 days in our model)

explain why these numbers fall. However, simulations suggest that using only these as seeds,

with a scale factor for case under-ascertainment, does not explain the continued constant

growth rate in the number of deaths until early April, post lockdown. Perhaps we had entered

the exponential growth phase prior to 24 March 2020. If this were indeed the case, one can

side-step the stochasticity that arises from seeding based on travel histories, and start with

an initial randomly seeded population. This latter approach is what we took to calibrate the

parameters.

The final set of parameters used for the exploration of scenarios are displayed in Table

VI.

For validation, these were then applied to two independently sampled instantiations of Ben-

galuru with population 10 million and two independently sampled instantiations of Mumbai

with population 12.4 million. Five runs were carried out on each instantiation to get the mean

estimates and standard errors of estimates for that city.

Figure 15 matches the number of fatalities in the counterfactual situation used for cali-

bration. Figure 16 shows that estimates of the number of hospitalised cases are off which,

as we explained before, is possibly due to delay in hospitalisation (protocol delay or patient

delay in seeking care) or under-ascertainment.
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Fig. 15: Estimated fatalities in Bengaluru in the log scale for various interventions under the counterfactual

initial condition (all of India’s infections concentrated in Bengaluru). The first shaded vertical patch is the

lockdown period 25 March - 19 April 2020. The second shaded vertical patch is the lockdown period 20 April

2020 - 03 May 2020 when some relaxations may be allowed. The India numbers are shown as blacks dots.

The scenarios are just for additional information and do not include case isolation. The infection rise up once

again after the lockdown period. A similar figure was obtained for Mumbai, but is not included in this draft.
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APPENDIX A

ARCHITECTURE OF THE IMPLEMENTATION

The following information will be useful for those who wish to download the files and

add their own variations. We will release our code soon.

The workflow is divided into four stages.

1) Data gathering and data preparation for instantiating a synthetic city is the first stage

of the workflow and it involves three sub-stages namely:

(a) Data cleansing and processing: The required data for instantiating a synthetic

city is mined primarily from the decennial census data as well as intermediate

survey estimates for a city. The mined data typically are spreadsheets which are

downloaded in either .xlsx, or .csv file formats. The downloaded files are cleaned

to remove unnecessary columns, null values, duplicates using Python’s pandas
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Fig. 16: Estimated number of hospitalisations (cumulative) in Bengaluru under the counter factual initial

condition. See details in caption for Figure 15. The estimated numbers are off by a constant factor, possibly

due to model assumptions (smaller time to hospitalisation, delay in seeking hospital care, and under-ascertained

cases).

package. The pandas package is further used in data processing which could involve

combining multiple .csv files to obtain the desired input.

(b) Data collation: Required data like demographic information like the total popula-

tion, total number of employed individuals, total number of unemployed individuals

and total number of households for each ward of a city which are extracted from

census tables are processed into .csv files. Further, additional parameters like

the distributions of household sizes, number of students per school and the age

distributions are collated as a JSON file.

(c) Geo-spatial mapping: In addition to the census data, the instantiation for the city

also requires the geographic representations for a ward like the ward centre, ward

boundaries which are obtained from map files. Map files are mined in different

formats like shapefiles (.shp, .shx) or geoJSON (.geojson), which are processed

using Python‘s geopandas package.

2) Instantiating the city files is done by running a python script on the following inputs:

the map data (.geojson), the census data on the demographics(.csv), households(.csv)

and employment(.csv) files along with the additional parameters specified in ‘cityPro-

file.json’. The instantiation of a synthetic city is done in three stages namely:
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(a) Processing Inputs: The script ingests the input (.csv) files using the pandas package

and computes parameters based on the input like the unemployment fraction,

fraction of population in each ward. The GeoJSON file is proceseed with geopandas

pacakge to parses the input file and the shapely package to compute ward centre,

ward boundaries and neighboring wards. Apart from the data files, the target pop-

ulation for which the instantiation is to be done, the average number of students in

a school, the average number of individuals in one workplace are input parameters

specified at the start of the script. The age distribution, household-size distribution

and school-size distribution are taken as inputs from the ‘cityProfile.json’ file.

(b) Instantiating individuals comprises of algorithms which randomly assigns indi-

viduals to households respecting the household-size distribution. Each household

has individuals assigned with generational gaps which respect the age distribution.

Individuals are assigned to workplaces or schools based on their age and assigned

‘workplaceType’ which specifies if the individual is to be assigned a school, a

workflow or neither. Once an individual is assigned to a household, the location

of the individual is mapped to the location of the assigned household. While

instantiating households, the ward number to which the household is assigned

is specified and based on the ward number the respective ward boundaries are

obtained from the map data in the GeoJSON file. The ward boundaries are typically

represented as either ‘Polygons’ or ‘MultiPolygons’. The location of the household

is randomly picked as a point that lies within the polygon. The same logic is used

for instantiating the location of workplaces, and schools. Common areas where

community interactions take place are instantiated at the ward centres, which trans-

lates into finding the centroid of the polygon. These tasks are accomplished using

the following python packages: numpy, random, pandas and shapely. The outputs

of this stage are pandas dataframes for the instantiated individuals, households,

schools, workplaces, transport and community areas.

(c) Additional processing for generating city files: The instantiated dataframes for indi-

viduals, households, schools, workplaces, and common areas are used to generate

the static data files to instantiate the synthetic city. Before generating the city

files, additional processing is done on the dataframes which include computing

the distance of the individuals to their respective ward centres and selecting the

columns that will be used for generating the city files. This stage uses the pandas

package for processing and generating the city files as JSON files where each
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dataframe for individuals, houesholds, schools, workplaces, and common areas are

generated as separate JSON files.

3) The simulator that implements the time evolution has been done in both JavaScript and

in C++. Once a trajectory for the specified time is obtained, information is dumped

to a file. This is called a certain number of times to obtain the one-standard deviation

plots. Postprocessing scripts and validation scripts are all written in Python.

4) A web-interface for quick exploration (with settable parameters) has also been imple-

mented.
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