Recent results from VAMOS

In this presentation:
VAMOS
recent results using:

Low intensity radioactive beams
High intensity stable beams

VAMOS++

Essential for nuclear structure and reaction studies

- ✓ Identification of reaction products
- ✓ Large accepte
- ✓ Coupling with MUST2, TIARA

Variable Mode Operation

- ✓ QQ Focusing Mode
- ✓ QQD Spectrometer
 - > Variable Dispersion
- ✓ Recoil Separator
 - QQF(D)
 - QQD (Gas filled)

S. Pullanhiotan et al, NIMA 593 (2008) 343 C. Schmitt et al, NIM A 621 (2010) 558

VAMOS Spectrometer Schematic View

Focal Plane Setup

beam

Si Wall

VAMOS Measurement (Software Spectrometer)

Experimental approach

-transfer reactions in inverse kinematics

Spectroscopy of Bound-Unbound states Ex, J^π, Spectroscopic Factors (SF) θρ,Ερ A+1 θγ,Εγ Measurements -> Observables Ep and/or Ey ->Ex $\Theta_p \rightarrow d\sigma/d\Omega \rightarrow (\ell, SF)$

Inverse kinematics->(d,p),(d,t),(d,³He),(d,d')

B. Fernandez-Dominguez et al, PRC 84, (2011), 011301

Experimental Set-Up

ANALYSIS : Example d(²⁰O,p)²¹O

UNBOUND STATES: $d(^{20}O,p)^{21}O \rightarrow ^{20}O + n$ (stripping)

UNBOUND STATES: $d(^{20}O,p)^{21}O \rightarrow ^{20}O + n$ (stripping)

First 3/2+ state corresponds to the sought vd3/2

UNBOUND STATES: $d(^{20}O,p)^{21}O \rightarrow ^{20}O + n$ (stripping)

Difficult to interpret unbound states with the standard Shell Model:

Relying on spectrocopic factors the 3/2+ state seems to favour USDA which predicts ²⁶O unbound

Multinucleon and Deep Inelastic Transfer Reactions

Beam: ²³⁸U 5.5 MeV/u 2pnA Target ⁴⁸Ca 1 mg/cm²

Identification spectra

Neutron rich isotopes of Calcium

Doppler corrected using V from VAMOS

²³⁸U (5.5 MeV/u) + ⁴⁸Ca

No new shell gap at N=34 in Calcium

M. Rejmund et al. PRC 76, 021304(R) (2007)

VAMOS++ New Detection System

Detectors

Acceptance

Prompt Gamma Spectroscopy of Fission Fragments

Preliminary Results Only

Identification of the Element

Identification of the Isotope

Ey vs A for Zr Z=40

Gamma Energy

E_{γ} vs A for Ru Z=44

Gamma Energy

¹¹²Ru γ-γ coincidences

Tomorrow and the day after

- Old mechanisms with modern tools provide unique insights to the physics of nuclei towards drip line
 - Gamma spectroscopy of neutron rich exotic nuclei
 - Transfer Reactions
 - Fission

Ensures fruitful endeavors with SPIRAL2