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Outline of Lectures
• 1) Overview of nuclear structure ‘limits’

– Some experimental observables, evidence for shell structure
– Independent particle (shell) model
– Single particle excitations and 2 particle interactions.

• 2)   Low Energy Collective Modes and EM Decays in Nuclei.
– Low-energy Quadrupole Vibrations in Nuclei
– Rotations in even-even nuclei
– Vibrator-rotor transitions, E-GOS curves

• 3)  EM transition rates..what they mean and overview of how you measure them
– Deformed Shell Model: the Nilsson Model, K-isomers
– Definitions of B(ML) etc. ; Weisskopf estimates etc.
– Transition quadrupole moments (Qo)
– Electronic coincidences; Doppler Shift methods. 
– Yrast trap isomers
– Magnetic moments and g-factors



Some nuclear observables?

1) Masses and energy differences
2) Energy levels
3) Level spins  and parities
4) EM transition rates between states
5) Magnetic properties (g-factors)
6) Electric quadrupole moments?

Essence of nuclear structure physics
……..

How do these change as functions
of N, Z, I, Ex ?



Evidence for Nuclear Shell Structure?

• Increased numbers of stable isotones 
and isotopes at certain N,Z values.

• Discontinuities in Sn, Sp around certain 
N,Z values (linked to neutron capture 
cross-section reduction).

• Excitation energy systematics with N,Z.



More number of stable isotones at N=20, 28, 50 and 82 compared to neighbours…



NUCLIDE                  Sn (MeV) Sp (MeV)

16O                              15.66                    12.13
17O9 4.14 13.78
17F 16.81                     0.60

40Ca                             15.64                     8.33
41Ca21 8.36 8.89
41Sc                              16.19                     1.09

208Pb                             7.37                      8.01
209Pb127 3.94 8.15 
209Bi                              7.46                     3.80

Sn = [ M (A-1XN-1) – M(AXN) + mn) c2  = neutron separation energy

Sp = [ M (A-1XN) – M(AXN) + mp) c2  = neutron separation energy
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Discontinuities at N=50, 82 and 126…
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A reminder of some undergraduate nuclear physics

Nuclear binding 

Mnucleus < Sum of the constituent nucleon 
masses.

B(Z,A)/c2 = ZMp + NMn – M(Z,A) ( > 0)



Semi-empirical mass formula which assumes the nucleus acts
like a liquid drop with a well defined surface, reproduces the 
nuclear binding energy per nucleon curve well, but requires 
additional corrections around ‘magic’ N and Z values.



SEMF ‘residuals’ show
effects due to ‘magic’
proton and neutron 
numbers.



Nuclear Excited States – Nuclear Spectroscopy .

• Nuclear states labelled  by spin and parity quantum numbers and energy. 
• Excited states (usually) decay by gamma rays (non-visible, high energy light).
• Measuring gamma rays gives the energy differences between quantum states.

gamma 
ray decay



First excited state in (most)
even-N AND even-Z has I=2+

Excited states spin/parities depend 
on the nucleon configurations. 
i.e., which specific orbits the 
protons and neutrons occupy. 

Different orbits costs different 
amounts of energy → result is a 
complex energy ‘level scheme’.
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Evidence for nuclear shell structure…..
energy of 1st excited state in even-even nuclei….E(2+).
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Correlations are observed
between the first I=2+

energy and (N,Z) values.

‘Magic numbers’ which 
correspond to nuclear
shell closures are clear.



4+/2+ energy ratio:
mirrors 2+ systematics.
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“Magic plus 2”: Characteristic spectra
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A. Jungclaus et al.,

2 neutron or 2 proton holes in doubly magic nuclei 
also show spectra like 2 proton or neutron particles.



Two particle (or two-hole) nuclei outside magic numbers 
Have characteristic decay energy spectra.

These are interpreted as the decays from energy levels.



B(E2: 0+1  2+1)   2+1 E20+12
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The empirical magic numbers 
near stability‘Magic numbers’ observed at 

N,Z = 2, 8, 20, 28, (40), 50, 
(64), 82, 126

Why?



large gaps in single-particle structure of nuclei…MAGIC NUMBERS = ENERGY GAPS



The binding energy 
PER nucleon curve 
for nuclei saturates 
at ~8 MeV/u.

Nuclear potential 
does not interact as 
A(A-1)…but as A.

Therefore, nuclear 
force is short range 
~1 nucleon, ~1 fm.



One possible (wrong!) model of
nuclear binding….

Assume that each nucleon interacts 
with n other nucleons and that all such 
interactions are approximately equal.  

The resulting Binding Energy function 
would then have an A(A-1) energy 
dependence……
…..but we ‘observe’ BE ~ A for A>20.

Conclusion:

Nuclear force is short range –
shorter range than the size of 
heavy nuclei .

Only really interacts with near 
neighbours. from R.F. Casten book.



Form of the Nuclear Potential ?

• Assume nuclear ‘average’ (mean-field) potential can be 
written to look (a bit like) a square well potential.

• A  good first approximation. 
– Constant potential within the nucleus, zero outside 

the nuclear range.
– Nearest neighbour approximation valid.

• Add on additional term(s) such as l.s ‘spin-orbit 
correction’ to reproduce the correct answers (i.e. 
reproduce the magic numbers shell gaps).



Energy (E = K+V) depends on wavelength of particle in 3-D box.

Only certain‘wavelengths’ (i.e. energies) of standing waves 
are allowed.

These are defined by the principal quantum number, n.

Higher n values correspond to more ‘wavelengths’ and higher E.



Solving the Schrodinger equation
for a Finite Square Well
potential gives rise to states of 
different values of: 

• n (principal quantum 
number) and 

• l (orbital angular momentum).

Can tunnel out of the edges,

Also has l(l+1) centrifugal 
term in the potential.

Effect is high – l values are on 
average towards the ‘edge’ of 
the nuclear matter.



Assume nuclear ‘average’ (mean-field) potential can be written 
to look like a finite square well (defined edge) potential.

A  more ‘realistic’ potential is something of the Fermi form,
Like the Woods-Saxon Potential (looks a bit like an finite 
square well, but with a more ‘diffuse’ surface).

-Vo

r →



Anything else?

• Pauli exclusion principle, no two nucleons (fermions) can be in the 
same quantum state. 

• Group orbitals in terms of 
– n (principal quantum number)
– l=orbital angular momentum values allowed for given n. n=0, 

l=0;   n=1, l=1;   n=2, l=0,2; n=3, l=1,3;   
n=4, l=0,2,4; n=5, l=1,3,5 etc..

– Need to account for proton/neutron intrinsic spins
• j = l + s or l – s   (where s = ½ ħ )
• l values described in spectroscopic notation 

– l = 0 , 1,  2,  3,   4,   5,  6,  7
– l = s,   p,  d,  f,   g,   h,  i,   k

– Degeneracy of each j level is given by 2j+1, since can have 
projections of mj = -j, -j+1, …., j-1, j.



Spin-orbit term, which gives energy correction depending on 
l.s , i.e., dot/scalar product between the vectors l and s) is 
added to give ‘correct’ magic numbers and shell gaps.



Description of Doubly-Magic +1 Nuclei

Assume inert core and single, unpaired particle
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Description of Doubly-Magic +1 Nuclei

Assume inert core and single, unpaired particle





What about 2 nucleons outside a closed shell ?



Residual Interactions?

• We need to include any addition changes to the energy 
which arise from the interactions between valence 
nucleons.

• This is in addition the mean-field (average) potential 
which the valence proton/neutron feels.

• Hamiltonian now becomes H = H0 + Hresidual

• 2-nucleon system can be thought of as an inert, doubly 
magic core plus 2 interacting nucleons.

• Residual interactions between these two ‘valence’
nucleons will determine the energy sequence of the 
allowed spins / parities.



What spins can you make?
• If two particles are in identical orbits (j2), then what 

spins are allowed?

Two possible cases:
• Same particle, e.g., 2 protons or 2 neutrons = even-

even nuclei like 42Ca, 2 neutrons in f7/2 = (f7/2)2

We can couple the two neutrons to make states with 
spin/parity J=0+, 2+, 4+ and  6+

These all have T=1 in isospin formalism, intrinsic spins 
are anti-aligned with respect to each other.

• Proton-neutron configurations (odd-odd)
e.g., 42Sc, 1 proton and 1 neutron in f7/2
We can couple these two make states with 
spin / parity 0+, 1+, 2+, 3+, 4+, 5+, 6+ and 7+.

Even spins have T=1  (S=0, intrinsic spins anti-aligned); 
Odd spins have T=0 (S=1, intrinsic spins aligned)



m – scheme showing which Jtot values are allowed for (f7/2)2

coupling of two identical particles (2 protons or 2 neutrons). 

Note, that only even spin states are allowed. 



Schematic for (f7/2)2 configuration. 
4 degenerate states if there are no residual interactions.

Residual interactions between two valence nucleons give  
additional binding, lowering the (mass) energy of the state. 







Geometric Interpretation of the  Residual 
Interaction for a j2 Configuration Coupled to Spin J
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interaction gives nice simple 
geometric rationale for 
Seniority Isomers from 
E ~ -VoFr tan (/2)
for T=1, even J
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e.g. J =  (h9/2)2 coupled to
0+, 2+, 4+, 6+ and 8+.



 interaction gives nice simple geometric rationale 
for Seniority Isomers from E ~ -VoFr tan (/2)
for T=1, even J

0
2
4
6
8

See e.g., Nuclear structure from a simple perspective, R.F. Casten Chap 4.)



A. Jungclaus et al.,

Note, 2 neutron or 2 proton holes in doubly magic nuclei 
show spectra like 2 proton or neutron particles.



Basic EM Selection Rules?





'Near-Yrast' decays
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The EM transition rate depends on E2+1,, the highest energy transitions 
for the lowest  are (generally) favoured. 
This results in the preferential population of yrast and near-yrast states.
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The EM transition rate depends on E2+1,, the highest energy transitions 
for the lowest  are (generally) favoured. 
This results in the preferential population of yrast and near-yrast states.

= gamma-ray between 
yrast states
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The EM transition rate depends on E2+1, (for E2 decays E
5) 

Thus, the highest energy transitions for the lowest  are usually favoured. 
Non-yrast states decay to yrast ones (unless very different , K-isomers

=  ray from non-yrast state.

=  ray between yrast states
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Schematic for (f7/2)2 configuration. 
4 degenerate states if there are no residual interactions.

Residual interactions between two valence nucleons give  
additional binding, lowering the (mass) energy of the state. 














