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a b s t r a c t

Emerging evidence indicates that complex spatial gradients and (micro)domains of signalling activ-
ities arise from distinct cellular localization of opposing enzymes, such as a kinase and phosphatase,
in signal transduction cascades. Often, an interacting, active form of a target protein has a lower dif-
fusivity than an inactive form, and this leads to spatial gradients of the protein abundance in the
cytoplasm. A spatially distributed signalling cascade can create step-like activation profiles, which
decay at successive distances from the cell surface, assigning digital positional information to differ-
ent regions in the cell. Feedback and feedforward network motifs control activity patterns, allowing
signalling networks to serve as cellular devices for spatial computations.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Not long ago, a cell was viewed as a ‘‘bag” of enzymes that
resembled an enzymologist’s test tube. Since then, it became clear
that enzymatic pathways are spatially organized within a cell. En-
zymes can associate with each other and various cellular struc-
tures, such as internal membranes and cytoskeleton. Reaction
products can directly be transferred between enzymes without
equilibrating with the bulk phase, a phenomenon referred to as
metabolic channelling [1–3]. Likewise, the spatial signal propaga-
tion was traditionally considered between cells, usually in the con-
text of morphogenesis. However, recent discoveries have changed
our perception of cell signalling [4]. A new view is emerging that
pivotal cellular processes, including proliferation and motility, crit-
ically depend on the spatial features of intracellular signals, which
propagate positional information and encode precise membrane,
cytoplasmic, or nuclear location of the components of signalling
cascades [5,6].

More than 50 years ago, seminal Turing’s work showed that a
break of the spatial symmetry and formation of periodic concen-
tration patterns can occur in homogeneous media through reac-
tion–diffusion processes [7]. This and subsequent work laid the
foundation of the chemical–physical theory of morphogenesis. If
two morphogens, commonly referred to as activator and inhibitor,
have different diffusivities, and the activator switches on the inhib-
itor, then the spatially uniform distribution is unstable, and this
chemical Societies. Published by E
instability drives the formation of heterogeneous spatial patterns
[7]. However, precisely such conditions can rarely be found in
developmental systems, and many experimental biologists prefer
explaining the embryonic pattern formation by specific gene regu-
latory mechanisms, rather than by the dynamics of reactions and
diffusion. Although the Turing mechanism has successfully been
exploited to account for patterns of repeated stripes and spots on
the skin of many animal species, direct molecular evidence re-
mains scarce [8].

In living cells, signalling pathways are highly spatially orga-
nized, and often activator and deactivator enzymes localize to dis-
tinct cellular structures. For instance, activating signals can occur
on the plasma membrane or intracellular membranes where acti-
vated receptors and small G-proteins, such as Ras, reside, whereas
inactivating processes can be distributed throughout the cyto-
plasm. In other words, intracellular environment for reactions
and diffusion is initially inhomogeneous and does not resemble
the uniform media considered in Turing models. For a protein
phosphorylated by a membrane-bound kinase and dephosphoryl-
ated by a cytosolic phosphatase, Brown and Kholodenko predicted
that there can be a gradient of the phosphorylated form, high close
to the membrane and low within the cell [9]. This spatial phospho-
protein pattern is stable and depends on the pre-existing separa-
tion of antagonistic enzymes brought about by the spatial
organization of a cell.

In this mini-review, I survey spatial aspects of intracellular
signalling. Computational modelling and systems analysis allow
linking the knowledge of molecular mechanisms to complex
spatiotemporal dynamics of signal transduction within a cell.
lsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.febslet.2009.09.045
mailto:Boris.Kholodenko@ucd.ie
http://www.FEBSLetters.org


Fig. 1. Spatial gradients in a cylindrical cell with the kinase located at the left pole
and cytoplasmic phosphatase. When the phosphatase is far from saturation,
the concentration profile CpðxÞ of the phosphorylated form (black line) is
calculated using a simple analytical expression presented in Ref. [32], CpðxÞ ¼

Cpð0Þ e
x=Lgrad þe

2L=Lgrad e
�x=Lgrad

1þe
2L=Lgrad

� �
, where the characteristic decay length of the gradient

(Lgrad) is given in Eq. (1), and x is the distance from the pole. The concentration CðxÞ
of the unphosphorylated form (green line) and the total protein abundance (red
line) are calculated using Eqs. (6) and (7) where the ratio of diffusivities D=D� was
assumed 2. The cell length L = 10 lm, Lgrad = 2 lm, Cpð0Þ = 50 nM, Cð0Þ = 10 nM.

B.N. Kholodenko / FEBS Letters 583 (2009) 4006–4012 4007
High-resolution microscopic techniques, including single-molecule
imaging, help visualize the distribution of signalling proteins and
their activities in space and time. I demonstrate how both theoret-
ical studies and experimental work have synergistically increased
our understanding of spatial control of cell signalling.

2. Spatial gradients of signalling activities in post-translational
modification cycles

The fundamental language of cell signalling is reversible cova-
lent modification of cellular proteins, which occurs in response to
external and internal cues. In eukaryotes, post-translational pro-
tein modification reactions include phosphorylation of Tyr, Thr
and Ser residues, methylation of Arg and Lys, acetylation, ubiquity-
lation and sumoylation of Lys, and other modifications [10]. All
these modifications dramatically change protein activities, gener-
ating universal motifs of cell signalling: cycles formed by two or
more interconvertible forms of a signalling protein, which is mod-
ified by two opposing enzymes [11]. Such enzymes can be a kinase
and a phosphatase, or the corresponding enzyme pairs for methyl-
ation, acetylation or ubiquitylation. An important variation to this
theme is the exchange of guanine nucleotides GDP and GTP on
small G-proteins, such as proteins of the Ras and Rho families. A
GTP-bound form of a small G-protein is usually active, whereas a
GDP-bound form is inactive. The two opposing enzymes catalyzing
this modification cycle are a guanine nucleotide exchange factor
(GEF) and a GTP-hydrolysis activating protein (GAP).

A well-known property of protein modification cycles is ‘‘ultra-
sensitivity” to input signals, which occurs when the converting
enzymes operate near saturation [12]. Depending on the degree
of saturation, the response of either interconvertible form ranges
from a merely hyperbolic to an extremely steep sigmoid curve.
Sequestration of a signalling protein by converting enzymes signif-
icantly decreases sigmoidicity of responses [13]. If an activating
enzyme and a deactivating enzyme (two opposing enzymes) are
separated in the space, the steady-state activity gradients of the
target protein will occur in a cell [9]. The kinetic properties of such
cycles, where the opposing enzymes are spatially segregated,
significantly differ from the properties of cycles with uniformly
distributed enzymes. For instance, the dose–response curves
strongly depend on the diffusivity of the target protein and gener-
ally become less ultrasensitive [14].

We consider a universal protein modification cycle where an
activator is confined to a membrane or cellular structure, such as
chromatin, and a deactivator is distributed in the cytoplasm. Pro-
vided that the deactivator kinetics is far from saturation, the con-
centration profile of the active fraction of the target protein
decays almost exponentially with the distance from the activator
location (Fig. 1, black line). The characteristic decay length of the
gradient (Lgrad) is controlled by the protein diffusivity (D) and the
apparent first-order rate constant of the deactivator (kdeact = Vmax/
KM, where Vmax and KM are the maximal rate and Michaelis con-
stant of the deactivation reaction, respectively). Importantly, Lgrad

does not depend on the activator kinetics, and it is expressed as fol-
lows [9],

Lgrad ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=kdeact

q
: ð1Þ

Recent advances in the fluorescence resonance energy transfer-
based technologies enabled experimental discoveries of intracellu-
lar activity gradients in live cells. Such gradients of active protein
forms were reported for the small GTPase Ran [15], phosphorylated
stathmin oncoprotein 18 [16], the yeast mitogen activated protein
kinase (MAPK) Fus3 [17], and Aurora B kinase [18]. Notably, all
these gradients are brought about by the spatial separation of
opposing enzymes in activation–deactivation cycles of protein
modification, but not by the spatial symmetry breaking and forma-
tion of periodic spatial patterns, as it occurs in the Turing
mechanism.

3. Spatial gradients of total protein abundances

3.1. Different diffusivities result in the intracellular gradients of protein
abundances

There are many cases in which active and inactive protein forms
may have different diffusivities. For instance, the active form of a
signalling protein often interacts with other proteins, generating
multi-protein complexes. The diffusivity of a molecule or a
complex, D, is determined by the Einstein–Stokes equation, D ¼
kBT=6pgS, where kB is Boltzmann’s constant, T is the absolute
temperature, g is the viscosity of the medium, and S is the Stokes
radius, which is roughly proportional to the cube root of the molec-
ular weight (MW). Therefore, when an active form of a low MW
protein associates with a high MW protein, or forms a multi-pro-
tein complex, the Stokes radius of the complex can be much larger
than the Stokes radius of an inactive form. Consequently, the diffu-
sivity of the complex can be considerably less than the diffusivity
of the inactive form. Provided that the complex is sufficiently
stable, this leads to a significant decrease in the apparent diffusiv-
ity of the active protein form.

Likewise, suppose that the active form (A*) of a signalling
protein binds to an immobile buffer (B), whereas the inactive form
(A) does not, and that the diffusivities of the free forms A and A* are
the same (D). Diffusion and binding of A* to the buffer is described
by the standard reaction–diffusion equations,

@½A��
@t
¼ DD½A�� � ka½A�� � ½B� þ kd½A�B�; ð2Þ

@½A�B�
@t

¼ ka½A�� � ½B� � kd½A�B�: ð3Þ

Here ka and kd are the association and dissociation rate con-
stants, [B] and [A*B] are the concentrations of the free and bound
forms of the immobile buffer (since these forms are immobile there
is no diffusion term in Eq. (3)). Assuming that the binding reaction
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is in rapid equilibrium and the total buffer concentration (Btotal) is
much larger than the total concentration of the active form, the
concentration of the bound fraction can be expressed in terms of
the equilibrium dissociation constant (Kd = kd/ka) and the total buf-
fer concentration [Btotal],

½A�B� � ka

kd
½A�� � ½Btotal� ¼ ½A

�� � ½Btotal�
Kd

: ð4Þ

Summing Eqs. (2) and (3) and using Eq. (4), we find that diffu-
sion of the active form A* can be described using the apparent dif-
fusivity D* as follows [19,20]:

@½A��
@t
¼ D�D½A��; D� ¼ D

1þ ½Btotal�=Kd

: ð5Þ

Thus for ½Btotal�=Kd P 1; the apparent diffusivity of the active
form differs dramatically from the diffusivity of the inactive form,
which does not bind to the buffer.

When diffusivities of active and inactive protein forms are
equal, the total concentration of the target protein is the same in
any location. The gradients generated by the two forms are equal
and have opposite signs [9]. However, for different diffusivities,
this is no longer valid. For illustrative purposes, we consider the
simplest one-dimensional geometry that corresponds to a cylindri-
cal bacterial cell, but all results apply to a spherically symmetrical
cell in three dimensions. We assume that an activator, e.g., a ki-
nase, is localized to the membrane at one pole of this cell and a
deactivator phosphatase is distributed in the cytoplasm. We define
the gradient of the phosphorylated form ðGradpÞ, as the difference
between the high concentration of that form at the pole and the
lower concentration in the cytoplasm, at a distance from the pole.
For the unphosphorylated, inactive form, the direction of the gradi-
ent is opposite, so that the gradient of the unphosphorylated form
ðGraduÞ is defined as the difference between the higher concentra-
tion at a distance from the pole and the lower concentration at the
pole. Remarkably, for any feasible phosphatase kinetics (e.g.,
regardless of whether the phosphatase is far or close to saturation),
the ratio of these gradients is inversely proportional to the ratio of
the diffusivities of the phosphorylated and unphosphorylated
forms [21],

Gradp=Gradu ¼ D=D� P 1: ð6Þ

Since the diffusivity D of the inactive form is higher than the
apparent diffusivity D* of the active form, we conclude that the
phosphoprotein gradient is higher than the gradient of the inactive
form. Consequently, the gradient of the total protein abundance
Gradtotal, which is defined as the difference between the protein
abundance near the pole and in the cytoplasm, occurs due to the
more precipitous gradient of the phosphorylated form,

Gradtotal ¼ ð1� D�=DÞGradp: ð7Þ

Fig. 1 illustrates how the difference in the diffusivities of active
and inactive protein forms brings about the spatial gradient of the
protein abundance within a cell.

Experimental data obtained using high-resolution, single-mole-
cule imaging techniques demonstrate that when two receptor
monomers form a dimer, its diffusivity is much lower than pre-
dicted by the Einstein–Stokes equation for a doubling of the parti-
cle weight [22]. The fluid mosaic model of the cell membrane that
was proposed by Singer and Nicolson [23] almost 40 years ago can-
not explain such large decreases of diffusion coefficient upon
receptor oligomerization. Advances in single-molecule imaging
techniques have shown that in live cells the fluid mosaic model
should be substituted by a model where the membrane is parti-
tioned into small, dynamic subcompartments, called confinement
zones or corrals [22]. It was proposed that a significant decrease
in the apparent diffusivity of a complex is explained by non-
Brownian, confined diffusion in the membrane that contains
corral-like barriers (fences) that restrict diffusion of oligomer com-
plexes [24]. Recently, Monte Carlo techniques were employed to
simulate the effect of spatial heterogeneities, microdomains and
corrals, on the diffusion of molecules in the cell membrane
[25,26]. For the certain ratios of the transition probabilities for
diffusion across a boundary and within a corral, stochastic Monte
Carlo simulations that used the lattice model of the membrane
reproduced the effects of membrane ‘‘fences” and showed the
diffusivities similar to those obtained experimentally [27,28].
4. Spatially distributed signalling cascades

Cascades of protein modification cycles form the backbone of
major cellular signalling pathways that propagate external stimuli
from the membrane to the nucleus or other distant targets. The
spatial behaviour of signalling cascades has been studied in much
less detail than their temporal activation dynamics [29]. For in-
stance, we currently lack sufficient experimental insights into the
generation of positional information during the propagation of
external cues through protein modification cascades [30]. Typi-
cally, a plasma membrane receptor is stimulated by extracellular
cues, and it then activates a kinase at the first cascade level in
the vicinity of the membrane (Fig. 2A). The active kinase phosphor-
ylates a kinase at the next level down the cascade, and this
scenario is repeated at every downstream level. At each cascade
level, the kinase is dephosphorylated by a cytoplasmic phospha-
tase. Since phosphorylation of the first kinase occurs only at the
cell membrane, the phosphorylated fraction of this kinase that dif-
fuses in the cell and becomes dephosphorylated decreases quickly
towards the cell interior. How can the phosphorylation signal that
was initiated at the plasma membrane propagate through the cyto-
plasm where it is terminated by phosphatases? In a recent paper,
Munoz-Garcia et al. have shown the conditions under which
signals that emanate from the membrane stall in the space (gener-
ating the precipitous gradients near the membrane), or robustly
propagate through spatially distributed signalling cascades [31].

4.1. Generation of spatial stationary patterns by signalling cascades

For simplicity, we assume that in a cascade both kinases and
phosphatases are far from saturation, and that the apparent first-
order rate constants of kinases (kact ¼ Vkin

max=Kkin
M ) and phosphatases

(kdeact ¼ Vphosph
max =Kphosph

M ) are the same at the different cascade levels
(note that the kinase maximal rates Vkin

max are parameters, propor-
tional to the kinase abundances, whereas the actual rate is propor-
tional to the phosphorylated kinase fraction at each space point).
The ratio c ¼ kdeact=kact of the deactivator and activator activities
is shown to be a key parameter that determines the signal propa-
gation threshold [31], whereas Lgrad ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=kdeact

p
defines the charac-

teristic length scale of the gradient for the first kinase activity [9].
The spatial profiles shown in Fig. 2B demonstrate that for small
c values, the phosphorylation signal carried by phosphorylated
kinases at consecutive levels spreads increasingly from the mem-
brane towards the cell centre. This can be a reason why cascades
exist [32]. If c > 1, the phosphorylation signal cannot propagate
into a cell, and the profiles of activated kinases rapidly decay,
reversing the signal back to the membrane (Fig. 2C). When c is sig-
nificantly less than one, the kinase activation profiles have long,
flat plateaus, which abruptly decay at successive spatial locations
(Fig. 2B). These step-like profiles generate spatial patterns that as-
sign digital positional information to different regions in the cell.
The maximal signalling amplitude, which is the active kinase frac-
tion (the concentration of phosphorylated kinase divided by the



Fig. 2. Spatial propagation of phosphorylation signals and generation of positional information by protein modification cascades. (A) Diagram of a multi-level kinase cascade.
Asterisks show phosphorylated, active forms of kinases. (B) Spatial patterns formed by consecutive activation profiles for small ratios of phosphatase and kinase activities
ðc ¼ 0:05Þ, numbers indicate the cascade levels. (C) Rapid decay of signal propagation for large ratios of phosphatase and kinase activities ðc ¼ 4Þ. For details see Ref. [31].
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total abundance of that kinase), can reach (1� c). The spatial step
size between consecutive decays of kinase activation for successive
cascade layers is almost constant and equal to lnð1=cÞLgrad [31].
Digital information created by abruptly decaying activities at dif-
ferent distances from the cell membrane can be exploited by other
cellular processes.

More complicated steady-state patterns of protein activities oc-
cur in cascades where active proteins at different levels can influ-
ence not only the immediate downstream level, but also other
cascade levels. Known examples of such cascades include cascades
of small G-proteins, such as the Rho-family GTPase cascades [33].
Here, we illustrate the appearance of intricate spatial profiles by
considering a signalling cascade, where a GTPase at each cascade
level positively or negatively influences GEFs or GAPs for GTPases
at downstream levels [21]. The initial spatial heterogeneity occurs,
because GTPase1 at the first level is activated by GEF1 that is local-
ized at the membrane, whereas at downstream levels all GAPs
(GTPase deactivators) and GEFs (activators) are freely diffusible.
Similarly as above, the first GTPase1 activity decreases almost
exponentially in the cell interior [9]. If this GTPase1 activates the
deactivator GAP2 at the second level, the GTPase2 activity at the
second level will increase with the distance from the membrane,
because the corresponding GAP2 activity exponentially decreases
in the cell cytoplasm. Thus, this cascade level operates as a signal
inverter in the space [21]. If we assume that GAP3 at the third-level
is activated by GTPases at the first and second levels, then the sum
of two different signals, one of which decreases (active GTPase1),
but the other increases (active GTPase2), can result in the non-
monotonic GTPase3 activity profile, which has a peak in the cell
interior. In fact, complex, non-monotonic steady-state concentra-
tion profiles were recently reported for reaction cascades that
regulate microtubule stabilization [34]. More intricate spatial gra-
dients can be observed, when the components of a GTPase cascade
localize to different subcellular components. If the activating (or
deactivating) enzyme is located at both the plasma membrane
and a structure within a cell, the resulting stationary gradients will
have sharp peaks (or deeps), so that the localization of these en-
zymes (signals) can be sensed by a cell. The aspects of complicated
spatial activity patterns, which were briefly discussed, imply that
GTPase networks may serve as devices for spatial computation in-
side living cells [21].
5. Intracellular domains of different protein activities

5.1. Spatial control of signalling by the cell shape and size

Living cells have diverse sizes and shapes and different surface-
to-volume ratios. Moreover, the surface-to-volume ratio changes
during many physiological processes, including cell growth. As
mentioned above, activation signals are often generated at the
plasma membrane by G-protein coupled receptors, membrane-
bound kinases and GEFs, whereas deactivators terminate these
signals in the cytoplasm. When a cell grows in size, the surface
volume ratio decreases, and signalling messengers, such as phos-
phorylated proteins and activated GTPases, have to diffuse over
larger distances from the membrane into the cytoplasm to reach
their targets. As a result, active messengers are becoming progres-
sively deactivated towards the cell interior [35]. Conversely, when
a cell spreads over the substrate and flattens, the ratio of the plas-
ma membrane surface area to the cell volume increases, and phos-
phoproteins become phosphorylated globally in the cell. In
addition to these global effects, signalling pathways can be locally
activated and deactivated in different parts of a cell, which have
different geometry, such as the leading edge and trailing edge
of migrating cells and neuron axon, dendrites and soma [6,35].
The lamellipodia and filopodia at the leading edge are much
thinner than the cell body and trailing edge. It was shown both
theoretically and experimentally that the GTPase Cdc42 is prefer-
entially activated at the leading edge in extending protrusions,
where the surface-to-volume ratio is larger than at the trailing
edge [35,36].
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5.2. Spatial control of signalling by feedforward and feedback network
motifs

Spatial separation of the local activating and deactivating reac-
tions can lead to the formation of intracellular domains of different
protein activates [37]. In hippocampal neurons, the b-adrenergic
receptor (b-AR) initiates the signalling cascade that activates the
extracellular signal-regulated kinase (ERK) in the Raf/MEK/ERK
(MAPK) pathway. The series of biochemical processes, initiated
by b-AR, includes receptor-induced activation of adenylyl cyclase
(AC), which leads to the cAMP synthesis and subsequent activation
of the cyclic AMP-dependent protein kinase A (PKA). In turn, PKA
activates the kinase B-Raf, which phosphorylates MEK (the ERK ki-
nase), leading to ERK activation. Because AC is bound to the plasma
membrane, whereas its opposing enzyme phosphodiesterase
(PDE4) that degrades cAMP is soluble, intracellular gradients of
the cAMP concentration can arise. In fact, the existence of cAMP
gradients and localized microdomains was shown both theoreti-
cally and experimentally [38,39].

The cAMP/PKA-induced Raf/MEK/ERK cascade involves a nega-
tive feedback loop that is generated by PKA activation of PDE4
(cAMP deactivator), and a positive feedforward loop whereby
PKA inhibits the phosphatase PTP, which is a deactivator of ERK.
We next show how these network motifs and a particular geome-
try of a neuron control the cAMP concentration gradients and
cAMP-induced signalling. In hippocampal neurons the cell body
and dendrites have the same surface density of b-ARs, generating
similar adenylyl cyclase activities and cAMP levels near both the
soma and dendrite surfaces [37]. Assuming that PDE4 has a high
Michaelis constant, the distance over which steady-state cAMP
gradients decay (Lgrad) is determined by the ratio of the cAMP dif-
fusivity (D) to phosphodiesterase activity (kdeact) and is given by Eq.
(1) [9]. This equation yields the gradient decay length of approxi-
mately 4 lm that can decrease to about 2.5 lm, when PKA feed-
back activates PDE4 [6]. The neuron soma and dendrites have
very different geometries. The soma has the diameter of about
20–30 lm, whereas a dendrite has the much smaller diameter of
1–3 lm. Therefore, in the neuronal soma, the cAMP concentration
progressively decays with the distance from the membrane,
whereas cAMP can remain high in the dendrites because of their
small diameters.

How does the cAMP concentration profile influence the down-
stream ERK activation? PKA is the immediate downstream target
of cAMP, and the cAMP gradients induce spatially restricted PKA
activity. The PKA–phosphodiesterase negative feedback loop
makes gradients of cAMP and PKA activity more precipitous and lo-
cally confined. Although PKA activates B-Raf, computer simula-
tions show that the steady-state spatial distribution of PKA-
induced B-Raf and MEK activities are almost uniform, which is ex-
plained by robust B-Raf activation kinetic parameters [37]. The lack
of spatial gradients is also confirmed experimentally for MEK [37].
However, ERK activity is found to be spatially heterogeneous; du-
ally phosphorylated, active ERK forms spatial domains that bear a
resemblance to the cAMP concentration domains. These, at first
glance contradictory, observations are explained by the fact that
the spatial heterogeneity of cAMP and PKA activity profiles is
transmitted downstream of the PKA/ERK cascade by the feedfor-
ward motif where PKA not only activates B-Raf, but also inhibits
the ERK phosphatase PTP. Within a certain range of kinetic param-
eters this feedforward motif operates as a logical AND gate where
appreciable activation of ERK requires both activation of MEK and
inhibition of PTP. In other words, only in concord with PKA-in-
duced inhibition of PTP, spatially homogeneous active MEK can
switch on ERK activity. This restricts ERK stimulation to spatial do-
mains that have high PKA activity. Thus, both the proper interac-
tion design and appropriate reaction kinetics are necessary to
enable signalling cascades to generate precise, complex spatial
guidance for downstream effector processes.

5.3. Cell polarization and spatial signalling

Cell polarization is a process of crucial importance for
chemotaxis of eukaryotic cells. During chemotaxis, cell migrate
in response to gradients of the concentrations of extracellular che-
moattractants [40]. Polarization is linked to the spatial symmetry
breaking, when the homogeneous distribution of specific signalling
components is replaced by their persistent localization to opposite
ends of the cell. Although multiple hypotheses have been proposed
in the theoretical studies of cell polarization, a quantitative under-
standing of experimentally observed phenomena is still lacking.
Current models explain the occurrence of cell polarization by bista-
bility of a reaction network, coupled with diffusion and brought
about by a strong positive feedback loop or a double negative
feedback loop (reviewed in Ref. [41]).
6. Long-range signalling, retrograde transport and
phosphoprotein waves

How survival signals propagate along neuronal axons to the
soma over very long distances has puzzled neurobiologists for
many years. The survival and function of developing or damaged
neurons depends on neurotrophins, such as the nerve growth fac-
tor (NGF) that is generated by peripheral tissues. NGF binds to its
receptor, TrkA, on distal axons, which induces survival signalling
to be transmitted to the neuron body, located up to one meter
away. Obviously, diffusion is ruled out as a mechanism for such
signalling, since diffusion would be prohibitively slow. According
to a widely accepted model, shortly after NGF binding to TrkA at
nerve terminals, the NGF–TrkA complexes are internalized into
endosomes by clathrin-mediated endocytosis. Signalling endo-
somes containing activated TrkA with associated NGF are retro-
gradely transported to the cell bodies [42]. This retrograde
transport is critical for neuronal survival. However, experiments
on compartmented cultures show that survival signals can also
be transmitted by NGF-independent mechanisms [43]. In fact, it
was recently demonstrated that following nerve injury at distal
axon, phosphorylated kinases, such as ERK1/2, translocate to the
soma within a signalling complex, which contains intermediate fil-
ament vimentin, importins and the molecular motor dynein [44].
The binding of vimentin to phosphorylated ERK was shown to pro-
tect the phosphotyrosine residues on ERK against the phosphatase
activity, thus maintaining ERK in the active state [45].

Experiments on compartmented cultures showed that after
stimulation of distal axons with NGF, tyrosine phosphorylation is
detected in neuron bodies, located centimetres away from the
point of NGF application, as early as in 10–15 min [43]. With a rate
of molecular motors of about 1–10 lm/min, measurable phosphor-
ylation signal carried out by the retrograde transport over the dis-
tance of 10 cm would be detected in 2.8–28 h. Therefore, although
transport of endosomes containing the NGF–TrkA complexes and
phosphorylated kinases driven by molecular motors are robust
mechanisms of retrograde signalling, they cannot account for the
observed initial burst of tyrosine phosphorylation in the neuron
soma. A lateral propagation of TrkA activation [46] should also
be excluded, since nearly complete inhibition of TrkA in the cell
bodies and proximal axons did not affect survival, whereas TrkA
inhibition at distal axons induced apoptosis [47]. I propose that
the initial survival signals are transmitted by waves of protein
phosphorylation emerging from kinase/phosphatase cascades,
such as MAPK or PI3K cascades, or GEF/GAP cascades of G-protein
activation [48].
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7. Outlook and future directions

Two principally different physico-chemical scenarios were pro-
posed to account for the generation of positional information,
which guides diverse physiological processes. The first is the Tur-
ing mechanism of the symmetry breaking in a homogeneous reac-
tion–diffusion system, which leads to the formation of periodic
spatial patterns of species concentrations [7]. A distinctive feature
of the second mechanism proposed by Brown and Kholodenko to
operate within living cells is the initial heterogeneity due to the spa-
tial separation of an activation reaction and deactivation reaction
for a target protein [9]. The intracellular gradients generated by
this mechanism are then converted into a large variety of heteroge-
neous steady-state concentration patterns [4]. For instance, a sig-
nalling cascade can generate the effective stratification of the
space between the cell membrane and the nucleus into concentric
layers (Fig. 2B). The kinase activity of each cascade level is almost
constant between the plasma membrane and the border of the cor-
responding layer where the activity abruptly decays [31]. Arbitrary
spatial concentration patterns can be generated in signalling net-
works where the spatial segregation of opposing reactions is com-
bined with feedforward and feedback loops [21,37]. The aspects of
complicated spatial activity patterns, which were briefly discussed
for GTPase networks, imply that GTPase networks may serve as de-
vices for spatial computation inside living cells [21]. Importantly, if
the diffusivities of an active (e.g., phosphorylated) form and inac-
tive (unphosphorylated) form differ, not only do these forms
generate non-uniform spatial profiles, but the gradients of the total
protein abundance emerge within a cell (Fig. 1).

Further work is required to quantitatively understand spatially
distributed cell signalling. To comprehend the physiological regu-
lation, the control exerted by variations in cell size and shape, net-
work architecture, kinetic parameters, and diffusion on the signal
propagation and spatial concentration patterns should be precisely
quantified [32]. Similar to the principles established for spatially
homogeneous networks [49], we can expect that the control over
salient features of the spatiotemporal dynamics is not exerted by
single negative or positive regulators. Rather, the control is distrib-
uted between multiple processes, including spatially segregated
activators and deactivators, feedback and feedforward motifs, dif-
fusion, and cell size [37,50]. The spatiotemporal behaviour of cellu-
lar networks creates a code of biochemical and biological
specificity of cellular responses.
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