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Meeting Ground for

Mathematicians and
Physicists

* Low dimensional topology and

geometry are explained from
topological quantum field theories

* Chern-Simons theory is one such
theory which provides a natural

framework for the study of knots
and links
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Plan

* Chern-Simons theory
* Direct Computation of knot invariants
* Main barrier to write the polynomial form

* Our conjecture- enables writing the
polynomials for many knots

* Discussions and open problems
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Chern-Simons Theory

» QP °

Torus Knot :Trefoil (left) Hyperbolic Knot: Figure-Eight knot (right)
(small or big size does not matter)
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Need a metric independent
Theory(Chern-Simons )




Chern-Simons Theory

Chern-Simons action S is given by
47
where k is the coupling constant and gauge

connection are matrix valued(gauge group G)

The knots carrying representation R are the
Wilson loop observables whose expectation values

=7 gives knot invariants
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Chern-Simons Theory
Wilson loop operators for knot Cis Wgr(C) = 1Tr[Pexp ¢ A;Lc_ii‘-“]

whose expectation value gives colored knot invariants
(color refers to representation R of group G)

VRIC] = (Wp(C)) = Jn[DA] I; 1;1(5]) exp(iS)

where Z[M] = AI[DA] exp(i1S) (partition function)




Computation of knot invariants

The colored knot invariants Vi ('
are computed using the following two
ingredients:

1) Chern-Simons on a three ball with

boundary S 2 10 states (WZNW
conformal block space) -Witten '89

2) Redraw every knot or link as closure/plat
of braid- Birman, Alexander thm
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Knot invariant computation
* Take the trefoil :

§2 boundary

=

VRIC] = (YolY3) = <¢O|B3|wo>5

=\
I3 is a braiding operator
DecN14, 2013



To see the polynomial

form

* Expand the state Wqin a suitable
basis in which B is diagonal

* Two such bases for four-
punctured S bdy will be

YY Y

0=, ay Rl R4 ) Wigner
6j




Polynomial for trefoil

Involves braiding in the middle strands and
hence s suitable

W) = >t [Py
t

Here dim,t (unknot
normalﬁgaTlo% !

VRIC] = (Wo|B>|Wg) = Zd%mqt (A\(R, R))*
4=

A(R, R) = EtQ(ZCR /2 )

Hence polynomial in g
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Polynomial for trefoil

Chern-Simons knot invariants agree with
well-known polynomials: y

Special Cases: R=fundamental

Gauge Group | Polynomial

SU(2) Jones’

SU(N) Two-variable HOMFLY
SO(N) Two-variable Kauffman

=D For other representations of different
~@ G we get colored knot invariants (data

» for attempting classification problem)
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Kinoshita-Terasaka and
Conway knot: Mutants
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Generalisations involving
many boundaries




Generalisations to r

boundaries
|¢(1)b?d€>|¢(2)b?d€> |¢( )Mde>

=3

R (dzmq RS

* Many knots can be redrawn as gluing of
such three-balls with suitable braiding

* So colored knot invariants involves braiding

eigenvalues and Wigner 6j (unknown for SU(N))
Qﬁg



Few more building blocks x
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Few more building blocks
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Few exambples
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Colored Knot invariant

for 10152
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We need SU(N) Wigner 6
to see the polynomial form




Quantum SU(N)
Wigner6 |
SU(2):Kirillov-Reshitikin

JioJ2| _ jitjatistia. /T 5 -1 J2 J12
A5, . Sl =(—1 2710 + 1112799 + 1] <7, L .
J12 J23 L3 JJ ( ) \/[ J12 [ J23 | {Jg s a3

SU(N): Satoshi Nawata, Zodinmawia, PR (2013)

a AL A2 — € \/ dim, V., dim, V' AL A2 A
A12A23 A3 Mg {Ai} q ¥ A1z q ¥ A23 As Ay Aos

_ Xa=IFor a class of symmetric and their conjugale
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Discussions and Open
Problems

* Attempts to understand homological
invariants from refined Chern-
Simons theory

* Quantum SU(N) Wigner 6] for
arbitrary representations to work
out mutant knot invariants

* SO(N) quantum Wigner 6 required
Pssmbtain colored Kauffman
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¢ Knots,Links,Three-Manifold Invariants

from Chern-Simons Field Theory
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