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Polarisation optics-two-level QM
Every Ray of Light has therefore two 
opposite Sides, originally endued with a 
Property on which the[Pg 361] unusual 
Refraction depends, and the other two 
opposite Sides not endued with that 
Property.
 (Newton, in Opticks, regarding double 
refraction)

Ex=ℜ(a1exp(iϕ 1)exp(−iω t+k z)) ; E y=ℜ(a2exp(iϕ 2)exp(−iω t+k z))
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Polarisation state – ray space
● We are concerned with the shape and orientation of the (in 

general ) elliptical orbit of the electric vector, not with its size, 
nor with phase,  i.e position on the orbit., leaving us with two 
parameters,   z1 , z2     is  equivalent to    λz1 , λz2 

● In QM, we normalise the state anyway, and, the overall phase 
does not contribute to any physical property,  the four real  
parameters in       z1 , z2            reduce  to two

● Relative amplitude and relative phase of the two harmonic 
oscillators  are encoded in the ratio  z=z2 /z1    .              So it 
would seem that we have a complex plane of z

BUT , z2 =1, z1 =0,  z=∞  has to be treated as a single 
point….Hence we go to  the Riemann sphere 



  

The Riemann sphere-  CP1 – is the 
Poincare (1888) sphere for  polarisation

Wikipedia article on the Riemann Sphere                         geogebra.org
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Stokes (1852)   route to the Poincare 
sphere
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The interference of polarised light

I=(ψ̄ 1+ψ̄ 2)(ψ 1+ψ 2)  (intensity of two superposed beams) 
=ψ̄ 1ψ 1+ψ̄ 2ψ 2  (individual intensities) 
+ψ̄ 1ψ 2+ψ̄ 2ψ 1  (interference terms) 

-Not a new subject –goes back to  Fresnel and Arago 
(1817)   

- By shifting the phase of any one beam by π/2, the   
imaginary part of the interference term is also                  
measurable
    Can interpret as interference between ψ̄ 1  and ψ 1(ψ̄ 1ψ 2)



  

Defining the phase difference for two 
arbitrary polarisation states

 

Extract from ‘Generalised Theory of Interference’ , Proc. Ind. 
Acad. Sci 44, 247  (1956)   by S. Pancharatnam.  



  

This definition has an unexpected property

The phase of                                              is not zero - it 
 equals  half the solid angle made by the representatives 
of  the three states on the Poincare sphere. This phase is 
independent of the phase choices for the three  ψ ‘s

(ψ̄ 1ψ 2)(ψ̄ 2ψ 3)(ψ̄ 3ψ 1)



  

‘Pancharatnam phase’: an example
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B
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ψ A = [11¿ ]
ψ B = [10¿ ]

ψC = [1i ¿ ]

C

B
A

Being ‘in phase with’ , considered as 
a relation, is reflexive and symmetric, 
but not transitive



  

The Pancharatnam Connection

Current Science: August 1994
Resonance: April 2013  



  



  

Giant Metrewave Radio Telescope



  

Adding phase  to the Poincare sphere  

● The unit intensity / normalisation condition puts us on the 
three-sphere   S3

● Each orbit is, at least topologically, a circle S1

●  ‘Collapse’ each orbit to a point, we get  a two-sphere  S2 

● Can we introduce the usual spherical  co-ordinates for 
polarisation state and one more for phase? How does 
this  S2  worth of  circles sit inside the  S3 



  

Attempted phase convention over the PS



  

Filling  the three sphere with circles and tori
Clifford (1873) parallels

● The three sphere can be represented in 3-d euclidean 
space using two solid spheres,representing the ‘northern’ 
and southern’ hemispheres, just as we could represent a 
two sphere by using  two discs

● Each closed orbit of the 2-d oscillator is a clrcle, they have 
to be non-intersecting, and between them they fill the 3-
sphere.  Incidentally, any two are  linked, and also have a 
constant separation – hence the ‘parallels’ 

● Each line of latitude of the Poincare sphere corresponds to 
a torus (incidentally ‘flat’!)    



  

Beyond  Cartesian duality 
● No difficulty in assigning x and y to points on a plane, or an angle θ  and a height 

z to a point on a cylinder
● Not so easy to assign an angle  θ and a height  z  to points on a Mobius band.   

We need two ‘patches’ to do the job
●  This is only locally a ‘Cartesian    product, but globally ‘twisted’                 
● This kind of situation led a few mathematicians to   define ? invent ?                       

 discover?  fibre bundles, around (1930-1940) .  The  geometric object that 
captures  how   polarisation and   phase are intertwined, is now  known as the 
‘Hopf fibration’  after Heinz Hopf  (1931)

                                                       Not all fibre bundles are twisted! The                 
                                                        cylinder and the plane are examples. 
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The Hopf fibration (1931)



  



  



  



  

Hopf fibration 
in 
stereographic 
projection- 
from Penrose 
and Rindler, 
“Spinors and 
Spacetime” 
volume 1



  

One more geometric phase associated with 
polarised light

● In a medium with refractive index dependent on space, light 
rays can describe a curve and indeed, a space curve like a 
helix

● This can also be achieved by sending light along a fibre and 
bending the fibre into a space curve. 

● In a WKB kind of limit, one can ask what happens to the 
polarisation – its enough to know what happens to linear 
polarisations since we can then use them as a basis. 

● With respect to a local plane approximating the curve (by 
taking three nearby points), the polarisation does not 
change – but this plane changes as we move along the 
curve!



  

The geometry of ‘coiled light’

The electric 
vector lives in the 
plane transverse 
to the direction of 
propagation, that 
is, in the tangent 
plane to the 
sphere.  As the 
direction 
changes, vectors 
in this plane 
undergo ‘parallel 
displacement’ 



  

Combining the two  geometric phases: 
polarisation of beams going in all directions
● First guess: The polarisation can now be in any plane, so 

why not a 3-d harmonic oscillator, described by three 
complex amplitudes     z1,  z2 , z3 

● The QM analogue is a three level system, and we are 
interested in its ray space,  i.e.  ignoring normalisation 
and overall phase, so   ( z1 ,,  z2 , z3  )  same as λ ( z1,,,  z2  ,, 

z3  ) 

● Four real parameters, 
● The  trick of taking ratios would give  (1,z2/z1 ,, z3 /z1), 

hence two Riemann spheres – but  has a problem! 



  

Three  equivalent  ways to get the ray 
space of a three level system

● Use two complex numbers, the roots of the equation

                                    Unordered pair of complex 
numbers, each of which can be put on a sphere

●  Think of this as a spin one object, made up of two spin 
half states,  symmetrised, ( dropping the spin zero part 
which is antisymmetric) –  due to Majorana, works for any 
spin n/2 – unordered n-tuple of points on a sphere.  

● Two unit vectors, order immaterial                                      
 bisector giving  normal to the plane                                   
 and sense of the orbit and the                                          
the foci of the  ellipse given by the                                      
  in plane components

z1α
2+ z2α+ z3=0



  

Topology of the full space of all directions 
and all polarisations: twisted or not? 

● The geometric phase can be expressed in terms of the path 
in the auxiliary spin 1 / three level ray space  CP2   

● However,  the full space we are after is not   CP2   Each 
elliptical orbit corresponds to two oppsite k’s 

● Mere doubling of   CP2      will not do – because the 
boundary between the left and right rotating ellipses is the 
set of linear vibrations, each of which corresponds to an 
entire circle worth of k’s   

● The solution – if we can find a basis for each k, which is 
smooth on the sphere  of directions, then we clearly can 
associate two complex numbers -so one Poincare sphere, 
smoothly,  for all    k’s  , so we are back to S2 x S2



  

A smooth basis choice for all directions..

● Cannot use linear basis pair - ‘hairy ball theorem’

● Could work with general (complex) basis pair

● Can be manufactured by suitable sources

● Geometric phases can be calculated, agreeing with / 
generalising / unifying earlier results 
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