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Abstract. We will describe the basic theory of non-complete algebraic sur-

faces developed by Japanese algebraic geometers. We will also mention some

of the major results in this theory as well as several results about affine sur-

faces proved using this theory during the last thirty years.

§1. Introduction.

The Enriques-Kodaira classification of minimal algebraic surfaces can be

briefly described as follows.

Let X be a smooth projective surface which does not contain any exceptional

curve of the first kind (i.e. no smooth rational curve with self-intersection

−1). We say that X is a relatively minimal surface.

(1) If κ(X) = −∞ then either X ∼= P2 or X admits a morphism X→B
onto a smooth projective curve all whose fibers are isomorphic to P1. In this

latter case X is called a relatively minimal ruled surface.

(2) If κ(X) = 0 then X is either an abelian surface, a K − 3 surface, an

Enriques surface, or a hyperelliptic surface (i.e. a quotient of a product of

two elliptic curves by a finite group of automorphisms, acting freely).
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(3) If κ(X) = 1 then X has an elliptic fibration ϕ : X→B onto a smooth

projective curve. Kodaira gave a rich theory of possible singular fibers of ϕ,

the monodromy action on the first integral homology group of a general fiber

in a neighborhood of any singular fiber, a formula for the canonical bundle

of X in terms of the canonical bundle of B and the singular fibers, study

of variation of complex structures of the fibers of ϕ, etc. Elliptic fibrations

continue to play a special and important role in surface theory.

(4) If κ(X) = 2 then X is called a surface of general type. Kodaira and

Bombieri proved important results about the pluri-canonical maps given by

the linear systems |nKX |. A vanishing theorem (generalising the famous Ko-

daira vanishing theorem) proved by C.P. Ramanujam plays an important role

in the study of these maps. Mumford proved that for large n this map is a

birational morphism onto a projectively normal surface with at most rational

double points. As expected, there are still many mysteries about the nature

of possible invariants of a surface of general type like pg (geometric genus),

K2
X , qX (irregularity), fundamental group, etc.

It is a great surprise that most of these results have close analogues in the

theory of non-complete surface theory. It was S. Iitaka’s extraordinary in-

tuition to introduce the notion of logarithmic Kodaira dimension, κ(V ), of

a smooth quasi-projective variety V . He proved many basic properties of

this invariant. This was followed by a fundamental work of Y. Kawamata.

Kawamata proved important structure theorems for smooth surfaces with

κ ≥ 1. He also made an important study of the log pluricanonical map and

the singularities of the image. In 1979, Miyanishi - Sugie - Fijita proved the

Cancellation Theorem for C2. A crucial step in this proof was to prove a

general result for varieites with κ = −∞. Fujita wrote an important paper
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about topology of non-complete algebraic surfaces which continues to be very

useful.

One more important contribution in the theory of non-complete algebraic sur-

faces was a Bogomolov - Miyaoka - Yau type inequality proved by Kobayashi

- Nakamura - Sakai. This inequality continues to play a crucial role in many

results proved after 1990. The book ([33]) gives a detailed treatment of the

theory of non-complete surface theory. It is safe to say that the Japanese al-

gebraic geometers can take a patent on the theory of non-complete surfaces!

Outside Japan this theory has been extensively used by H. Flenner, R.V.

Gurjar, S. Kaliman, M. Koras, S. Kolte, S. Lu. A. Maharana, S. Orevkov,

K. Palka, S. Paul, C.R. Pradeep, P. Russell, A.R. Shastri, M. Zaidenberg,

D.-Q. Zhang and others to prove important results about affine surfaces.

Our aim is to survey these and other results in this area of algebraic geom-

etry. We believe that commutative algebraists will benefit by studying this

theory. Due to lack of time, we cannot include all the interesting results

proved in this area and we will say only a few words about the proofs of the

results. At the end we will state some unsolved problems.

§2. Some fundamental results about open algebraic surfaces

Let k be an algebraically closed field. Sometimes we my assume k = C when

topological arguments are useful. For example, in the deep study of elliptic

surfaces by K. Kodaira classical complex analysis is crucial.

All varieties will be defined over k. We begin with some basic surface

theory.

Let X be a smooth projective (irreducible) surface, p ∈ X a closed point

and f, g ∈ mp elements ofOX,p without common factors. Then the ideal (f, g)

is primary for the maximal ideal mp. Therefore dimkOX,p/(f, g) is finite. If
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C,D are the scheme-theoretic curves defined by OX,p/(f) and OX,p/(g) re-

spectively then the intersection multiplicity of C,D at p is defined to be this

dimension and denoted by (C ·D)p. If C,D ⊂ X are scheme-theoretic curves

without any common component then we define C ·D =
∑

p∈C∩D

(C ·D)p. Let

Γ =
∑
aiCi,∆ =

∑
bjDj be formal linear combinations of irreducible curve

on X with integer (or rational) coefficients such that no Ci and Dj are same

and only finitely many ai, bj are non-zero. Then we define

Γ ·∆ =
∑
i,j

aibjCi ·∆j

We define C · C as follows.

Let p ∈ C be any point. We can find a rational function ϕ ∈ k(X) such that

the divisor (ϕ) + C =
∑
bjDj, where no Dj occurs in the support of C.

Define C · C =
∑
bjC · Dj. This is well defined. This uses the fact that

the number of zeros and poles of a rational function on a smooth projective

curves, counted properly, are equal.

It can be said that the whole of theory of algebraic surfaces depends on prop-

erties the intersection numbers C ·D.

Blowing up

Recall that for any p ∈ X, we can construct another smooth projective sur-

face X̃ with a proper morphism π : X̃ → X such that E := π−1(p) ∼= P1 and

π : X̃ − E ∼−→ X − p. A surprising result is that E · E = −1. E is called

the exceptional curve for the blowing up of X at p. A smooth projective

irreducible curve C ⊂ X such that C · C = −n is called a (−n)−curve if C

is also rational. This terminology is mainly used when n > 0. These curves

play an important role in the study of normal singular points of algebraic

surfaces.
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Recall that for any divisor D =
∑
bjDj on X (some bj may be < 0), the lin-

ear system H0(X,O(D)) = {ϕ ∈ k(X) | (ϕ) + D ≥ 0} is finite dimensional.

The set of effective divisors (ϕ) +D as ϕ varies in H0(X,O(D)) is called the

complete linear system of divisors which are effective and rationally equiva-

lent to D. It is denoted by |D|. If H0(X,O(D)) = (0), then |D| = φ. We

state two important results.

Riemann- Roch Theorem

Recall that Ω1
X is the sheaf of regular 1-forms on X. This is a locally free

sheaf on X of rank n if X is a smooth variety of dimension n. If p ∈ X, then

a section of Ω1
X at p has the form f1dz1 + f2z2 + · · ·+ fnzn, where fi ∈ OX,p

and mp = (z1, · · · , zn).

The sheaf
∧n Ω1

X is called the canonical line bundle of X and denoted by KX .

A section of KX at p is of the form fdz1 ∧ dz2 ∧ · · · ∧ dzn, where f ∈ OX,p.

Recall that z1, · · · , zn is a transcendence basis for k(X). A rational n-form

w := ϕ dz1 ∧ dz2 ∧ · · · ∧ · · · ∧ dzn with ϕ ∈ k(X) has zeros and poles. We

denote by (w) the divisor
∑
aiDi −

∑
bjΓj where D1, D2, · · · are zeros of w

and Γ1,Γ2, · · · are poles of w (hence ai > 0, bj > 0). In case n = 2, Di,Γj are

irreducible curves on X. If n = 1 and ϕ ∈ k(X) then degree (ϕ) = 0. Here,

for any divisor D =
∑
aipi on X the integer

∑
ai is called the degree of D,

denoted by degD.

Riemann- Roch Theorem for curves

Let C be a smooth projective irreducible curve of genus g, i.e. dimkH
1(C,OC) =

g = dimkH
0(C,Ω1

C).

For any divisor D on C,

dimkH
0(C,O(D))− dimkH

1(C,O(D)) = degD + 1− g.

By Serre duality theorem

H1(C,O(D)) ∼= H0(C,O(KC −D)).

5



Riemann- Roch Theorem for surfaces

Let X be a smooth projective irreducible surfaces, D a divisor on X. Then

dimkH
0(X,O(D)) − dimkH

1(X,O(D)) + dimkH
2
k(X,O(D)) = D2−D·KX

2
+

χ(X,O)

HereO is the structure sheaf ofX and χ(X,O) = dimkH
0(X,O)−dimkH

1(X,O)+

dimkH
2(X,O). If C is an irreducible (not necessarily smooth) curve on X

then the arithmetic genus of C, pa(C), is equal to C2+C·KX

2
+1. This formula is

called the adjunction formula. If C is the desingularization (equivalently,

normalization in its function field) of C, then dimkH
1(C,OC) is called the

geometric genus of C, denoted by gC . We have pa(C)− gC =
∑ ei(ei−1)

2
.

Here the summation is over all singular points of C with multiplicity ei (in-

cluding infinitely near ones)

Finally, we state another deep result.

M. Noether’s formula

χ(X,O) =
K2

X + χtop(X)

12

Here χtop(X) is the topological Euler-characteristic X in case k = C. These

three results are very important for the theory of surfaces.

Using C ·D, we get an intersection form on the family of all divisors on X.

Hodge index theorem.

Let H be a divisor on X with H ·H > 0. If D is a divisor on X such that

H ·D = 0 then either D is numerically equivalent to zero (i.e. D ·C = 0 for

every curve C on X), or D2 < 0.

A divisor H is ample if H2 > 0 and H · C > 0 for every irreducible curve C

on X.

This is called the Nakai’s criterion of ampleness.
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If X is a smooth projective irreducible surface and D ⊂ X a (possibly re-

ducible) curve on X such that X−D is affine then
∑
aiDi is ample for some

effective divisor supported on D.

This is called the Goodman’s criterion of affineness. It was also

proved by Gizatullin.

Classification of surfaces

Let X0 be a smooth projective surface. If E ⊂ X0 is a (−1)−curve, then X0

is obtained by blowing up a smooth point p1 on a smooth projective surface

X1, π : X0 → X1, such that E = π−1(p1). This is Castelnuovo’s criterion

of contraction. We can see that the rank of the Neron-Severi group, or

dimkH
1(X0,Ω

1
X0

), or b2(X0) decreases by 1, i.e. b2(X0) = b2(X1) + 1. Since

b2(X) > 0 for any smooth projective surface X, if we repeat this procedure

of contracting (−1)−curves then we reach a smooth projective surface Xn

which has no (−1)−curve.

Xn is called a relatively minimal model of k(X). It is unique except for

rational or ruled surfaces, i.e. unless k(X) has the form k(C)(t), where C is

a smooth projective curve and t an indeterminate over k(C).

We will give some description of relatively minimal models using the

invariant Kodaira dimension κ(X).

Using the concept of logarithmic Kodaira dimension introduced by S.

Iitaka, this has been extended to non-complete algebraic surfaces by S. Iitaka,

Y. Kawamata, T. Fujita, M. Miyanishi, T. Sugie, with important contribu-

tion by F. Sakai, S. Tsunoda, R. Kobayashi.

Kodaira dimension

Let X be a smooth projective surface. If H0(X,O(nKX)) = (0) for all n ≥ 1

then we say that κ(X) = −∞.

Now assume that |nKX | 6= φ for some n ≥ 1. If dimH0(X,O(nKX)) is
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non-zero for some n but bounded for n ≥ 1 then we write κ(X) = 0

If dimH0(X, (nKX)) is unbounded as a function of n but grows linearly

with n then κ(X) = 1.

Finally, if dimH0(X, (nKX)) grows as a quadratic function of n then

κ(X) = 2. We call κ(X) the Kodaira dimension of X. If X, Y are bi-

rationally isomorphic smooth projective surfaces then κ(X) = k(Y ). The

converse is, of course, false even when X is a curve.

Detailed structure of minimal models

If κ(X) ≥ 0 then the relatively minimal model of k(X) is unique upto an

isomorphism.

Assume that X is a relatively minimal model.

The case κ(X) = −∞ .

Then either X ∼= P2 or there is a morphism f : X → C onto a smooth

projective curve C such that every (scheme-theoretic) fiber of f is P1. There

is a rank 2 vector bundle V → C such that the associated projective bundle is

X → C. Thus the theory of ruled surfaces is intimately tied to the theory of

rank 2 vector bundles on smooth projective curves. There are still important

unsolved questions about the geometry of P2 or ruled surfaces. X contains

at most one irreducible curve C with C2 < 0. If it exists then C is a cross-

section of f . If l denotes a fiber of f then every divisor ∆ on X is numerically

aC + bl, where C is a fixed cross-section of f .

There are non-trivial restriction on a, b if ∆ is irreducible, or ample, · · ·.
If X is rational then either X is isomorphic to P1 × P1 or ∃C ⊂ X with C a

(−n)−curve with n > 0. This is called a Hirzebruch surface
∑

n (or Fn).

We can show that Fn and Fm are diffeomorphic if n − m is even and

conversely.
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The case κ(X) = 0 .

Then 12K is a trivial line bundle. X is one of the following.

(i) K-3 surface (i.e. KX is trivial and X is simply-connected).

(ii) An Enriques surface. Now 2KX is trivial and H1(X,O) = 0.

(iii) A hyperelliptic surface with a morphism f : X → P1 with every fiber

an irreducible elliptic curve.

(iv) An abelian surface. (i.e. the tangent bundle TX is trivial).

Each of these classes has a rich geometry, with contributions from many

mathematicians.

The surfaces in (ii) also admit an elliptic fibration f : X → P1.

The case κ(X) = 1 .

In this case there is a morphism f : X → C onto a smooth curve such

that a general fiber of f is an elliptic curve, i.e. X is an elliptic surface.

For every singular fiber Fs, the arithmetic genus pa(Fs) = 1 by semi-continuity

theorem. This means K ·Fs = 0. Writing Fs =
∑
aiAi, we know that A2

i < 0

for every i if Fs is reducible. Hence it is easy to deduce that each Ai is a

(−2)−curve if Fs is reducible. Kodaira listed all possibilities that can occur

for Fs. He also gave description of monodromy around each singular fiber.

The surfaces f : X → C which admit a cross-section are special, called

Basic Surface by Kodaira. In general f can have multiple fibers. Kodaira

discovered an important notion called a logarithmic transform. This en-

ables to get rid of multiple fibers without changing the fibration outside this

fiber, and conversely we can create multiple fibers with prescribed multiplic-

ity from non-simplyconnected fibers.
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Assuming that f has no multiple fiber, Kodaira showed how such a surface

can be obtained from a Basic Surface by deformation. The knowledge of all

the singular fibers enables us to calculate χtop(X) and KX .

Kodaira’s work on elliptic surfaces uses deeply classical complex analysis.

The case κ(X) = 2 .

Such a surface is called a surface of general type.

Here the deeper study of |nKX | was initiated by Kodaira. Using Kodaira

Vanishing Theorem, and its variant Ramanujam Vanishing Theorem, we can

show that H0(X,nK) has no base points if n ≥ 5. For K2
X >> 0, this can

be improved. The morphism given by |nK| for n ≥ 5 maps X birationally

onto a surface with at most rational double points.

An inequality proved by Bogomolov-Yau-Miyaoka plays an important role.

K2
X ≤ 3 · χtop(X).

If equality occurs then the universal cover of X is the unit disc in C2. Yau’s

proof uses differential geometric method. This has been generalized to non-

complete algebraic surfaces by Kobayashi- Nakamura-Sakai.

There are still many mysteries about surfaces of general type, e.g. which

pairs (K2, χtop) of numbers can occur ? Similarly, π1(X) is still not com-

pletely understood though there are some important results in this connec-

tion.

Logarithmic Kodaira dimension

This theory was initiated by S. Iitaka. Later Y. Kawamata, T. Fujita, M.

Miyanishi, F. Sakai, T. Sugie, R. Kobayashi, T. Tsunoda made important

contributions to make the theory rich. It continues to find highly non-trivial

applications, as we will mention at the end.
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Let X be a smooth quasi-projective irreducible variety of dimension n.

We can embed X ⊂ V , where V is a smooth projective variety such that

D := V − X is a divisor with simple normal crossings, i.e. for any p ∈ D,

there exists local uniformising parameters z1, · · · , zn for OV,p such that D

is defined by {z1 · z2 · · · zm = 0} for some m ≤ n. Such an embedding is

guaranteed by H. Hironaka’s work on resolution of singularities.

If H0(V, n(KV +D)) = (0) for n for n ≥ 1 then we write κ(X) = −∞.

Otherwise H0(V, n(K + D)) 6= (0) for some n ≥ 1. We can prove that

dimkH
0(V, n(K + D)) is O(nr) for some r with 0 ≤ r ≤ n. Then we write

κ(X) = r.

κ(X) is called the logarithmic Kodaira dimension of X.

Iitaka proved the following basic results.

1. If f : V → W is a dominating, generically finite map between smooth

(irreducible) varieties then κ(V ) ≥ κ(W ).

2. If f is étale and proper then κ(V ) = κ(W ).

3. If κ(V ) ≥ 0 then any dominant morphism f : V→V is étale. (There

are examples when such an f is not proper.)

If κ(V ) = dimV then any dominant morphism V → V is an isomor-

phism. Further, Aut (V ) is finite.

4. If f : V → W is a surjective morphism with connected general fiber

then κ(V ) ≤ dimW + κ(F ), where F is a “general” fiber of f . This is

called the “Easy” addition formula of Iitaka.

Our main interest is the case of surfaces, where the theory has so far been

most developed and effective.

Some results of Y. Kawamata ([23], [24], [25]).
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(1) Let V be a smooth surface and f : V → B a morphism onto a smooth

curve such that a general fiber F of f is irreducible. Then κ(V ) ≥
κ(B) + κ(F ). This is a special case of Iitaka’s conjecture. It is a

very useful inequality. To state the next result and subsequent work,

we explain the notion of Zariski - Fujita decomposition. Assume that

| n(KX + D) |6= φ for some n ≥ 1. Then there exists Q−divisors P,N

on X satisfying the following properties.

(i) (KX +D) ≈ P +N(≈ means numerical equivalence).

(ii) P is nef, i.e. P.C ≥ 0 for every curve C on X

(iii) N =
∑̀
i=1

aiCi where all ai are non-negative rational numbers and Ci are

irreducible curves.

(iv) The intersection form on ∪`iCi is negative definite.

(v) P.Ci = 0 ∀i.

Kawamata, Fujita, Miyanishi, Tsunoda have given a clear recipe for find-

ing this decomposition. For details, see [3].

(2) Kawamata proved that if κ(V ) = 0 then nP ≈ 0 for some n (the

converse is also true and easy). In this case Kawamata considered the

quasi-Albanese map f : V→A where A is a quasi-Albenese variety (this

is an algebraic group which is an extension of the algebraic torus by an

abelian variety). Kawamata proved important properties of this map

in [25].

(3) If κ(V ) = 1 then there is a morphism f : V → B such that a general

fiber of f is either an elliptic curve or C∗. In this case P 2 = 0. The map

f is natural. This is quite useful in some considerations. In particular,
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if V is affine then f is a C∗-fibration. In [32] Miyanishi has described all

the possible singular fibers of a C∗-fibration on a smooth affine surface.

(4) If k(V ) = 2 then the ring R = ⊕n≥0H
0(X,n(KX + D)) is finitely

generated. Define Vc = Proj R. Vc is called the quasi-canonical

model of V .

Now assume that κ(V ) = 2.

There is a birational morphism V→Vc given by the linear system |nP | for

large n.

If Γc is the image of D on Vc then the pair (Vc,Γc) has so called log canonical

singularities. This means the following.

(i) n(KVc + Γc) is a Cartier divisor for some integer n.

(ii) If f : Y → Vc is a minimal resolution of singularities then KY +4 =

f ∗(Vc + Γc) +
n∑

j=1

ajEj where aj ∈ Q and −1 ≤ aj ≤ 0.

Here 4 is the proper transform of Γc in Y and E1, . . . , En are the irre-

ducible exceptional curves for f .

A complete classification of dual graphs of log canonical singularities is

possible by Kawamata’s work. ([31]).

The Kobayashi - Nakamura -Sakai inequality.

With the above notation, let LCS(Vc,Γc) be the set of all log canonical

singularities of Vc which are not quotient singular points and not contained

in Supp (Γc).

Define Vc,0 = Vc − Γc − LCS(Vc,Γc).

If p is a quotient singularity of Vc let Gp be the local fundamental group of

a germ Vc,p and | Gp | its order. Then we have

0 < (KVc + Γc)
2 ≤ 3{χtop(Vc,0) +

∑
p

(
1

| Gp |
− 1)},
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where p ranges over all quotient singular points of Vc,0. The proof of this is

differential geometric. ([26]). A very important consequence of this for our

purpose is the following result.

Corollary. Let V be a smooth affine surface with k(V ) = 2. Then χtop(V ) >

0.

Remarks. (1) In the projective case, the analogous result is a famous re-

sult of Castelnuovo. Its proof is much simpler than the above theorem.

(2) A.J. Parameswaran and R.V. Gurjar have generalized this to arbitrary

smooth surfaces which are connected at infinity, e.g. for all smooth affine

surfaces.

The case κ = −∞ .

Here the fundamental result proved by Miyanishi - Sugie - Fujita and by

P. Russell is as follows. (see [18]).

Theorem. Let X be a smooth projective surface and D a connected

normal crossing divisor on X. Then κ(X −D) = −∞ iff X −D contains a

Zariski - open set isomorphic to B ×C, where B is a curve.

When D is not connected and k(X − D) = −∞, we have the following

important result due to Miyanishi - Tsunoda ([38]) and Keel - Mckernan

([27]).

Theorem. There is a smooth algebraic surface Ṽ with a dominant mor-

phism Ṽ → V such that Ṽ contains a cylinder-like open set B×C, where B

is a smooth curve.

The proof of this is quite involved. It should be remarked that in [38]

and [27] ideas from Mori theory have been used.
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Fujita’s work.

In an influential paper [3], T. Fujita studied the topology of non-complete

surfaces. Especially important in this paper is his classification of NC-

minimal affine surfaces with κ = 0 which are Q-homology planes (defined

below). Fujita listed all possible boundary divisors of a smooth NC-minimal

affine surface with κ = 0. A striking consequence of this work is the result

that there are no Z-homology planes V with κ(V ) = 0. A direct proof of

this result was given by R.V. Gurjar.

C.P. Ramanujam’s characterization of C2.

Around 1970, C.P. Ramanujam gave a beautiful topological characteri-

zation of C2 as an affine variety. Recall the definition of the fundamental

group at infinity, π∞1 (V ), for a normal affine surface V . Let V ⊂ X be a

projective embedding such that X is smooth outside V and D := X \ V is a

divisor with simple normal crossings. For a suitable neighborhood U of D in

X the fundamental group of ∂U is well-defined. It is called the fundamen-

tal group at infinity of V .

The characterization of C2 due to C.P. Ramanujam is the following:

Theorem. A smooth affine surface which is simply-connected at infinity is

isomorphic to C2.

The proof of this used Mumford’s method in his famous paper on topology

of normal singular surfaces. This result can be considered as the first major

result in the theory of open algebraic surfaces. Ramanujam’s method was
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in turn used by R.V. Gurjar, A.R. Shastri, tammo Tom Dieck, Ted Petrie,

and others. Ramanujam also constructed the first example of a smooth con-

tractible surface which is not isomorphic to C2. This example has κ = 2.

Later, all possible Q-homology planes with κ = 1 were constructed as C∗-

fibrations over P1. ([10]). Some of these surfaces were shown to be hyper-

surfaces in C3 by tammo Tom Dieck and Ted Petrie. They also constructed

some Q-homology planes starting from suitable line arrangements in P2.

A formula of Suzuki.

M. Suzuki proved an important formula for the Euler-Poincaré charac-

teristic of a smooth affine surface fibered over a curve in ([41]). There is a

useful improvement of this by Zaidenberg in ([42]).

Theorem. Let f : V→B be a surjective morphism from a smooth affine

surface onto a smooth curve B such that a general fiber F of f is irreducible.

Let p1, p2, . . . , pm be all the points in B such that f is not C∞-locally trivial

in a neighborhood of pi. Then

χtop(V ) = χtop(B) · χtop(F ) + Σm
1 (χtop(Fi)− χtop(F ))

where Fi = f−1(pi). Further, every difference in any bracket on the right

hand side of this equality is non-negative. If equality holds for some i then

F is isomorphic to either C or C∗ and Fired is isomorphic to F .

The proof of this uses plurisubharmonic functions. An algebraic geomet-

ric proof was given by R.V. Gurjar in [5].

§3. Recent results.
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Most of the results we are going to describe deal with Q-homology planes,

log del Pezzo surfaces and actions of the additive group (C,+) on affine va-

rieties. For a more exhaustive list of papers in Affine Algebraic Geometry

and an overview of the subject, see ([34]).

A smooth affine surface V is a Q-homology plane if Hi(V ;Q) = (0) for

i > 0. A normal projective surface X is called a log del Pezzo surface if X

has at most quotient singularities and −KX is ample. We begin with some

new results about Q−homology planes.

Theorem 1. ([39], [42]).

Let V be a Q−homology plane with κ(V ) = 2. Then V does not contain

any contractible curve.

Roughly speaking, if such a curve C exists then κ(V − C) = 2, χtop(V −
C) = 0. This contradicts the corollary of Kobayashi-Nakamura-Sakai in-

equality mentioned earlier.

Theorem 2. Let V be a Q−homology plane. If κ(V ) = 1 then V contains

at least one and at most two contractible curves. ([10], [36]). If κ(V ) = 0

then V contains at most two contractible curves. (The actual result in this

case is more precise. ([13]).

Theorem 3. Let V be a Z-homology plane with κ(V ) = 2. If V has a

C∗∗− fibration then P 2 < 2, where P is the nef part in the Zariski - Fujita

decomposition of KX +D. ([37]).

Theorem 4. New proofs of Abhyankar - Moh - Suzuki and Lin - Zaidenberg

theorems, viz. any irreducible contractible curve C ⊂ C2 has the equation

{ZP
1 = Zq

2} in some coordinates Z1, Z2 on C2. ([11]).
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In the new proof of the Lin-Zaidenberg theorem one uses the observation

that χtop(C
2 − C) = 0 and hence κ(C2 − C) ≤ 1.

Theorem 5. New Topological proof of Cancellation Theorem for C2, viz.

V ×C ≈ C3 ⇒ V ≈ C2. ([4])

This proof uses the method of D. Mumford and C.P. Ramanujam of

studying the tubular neighborhood of a normal crossing divisor on a smooth

surface.

Theorem 6. Let V be a Q−homology plane with κ(V ) = 1. If f : V → V

is an étale map then f is an isomorphism. ([12]).

In this paper a counter example is found for an analogous result when

κ(V ) = 0. When κ(V ) = −∞ then except possibly for V = C2 and two

more cases same result is true.

Theorem 7. A Q−homology plane is rational. ([40]), ([13]), ([16]).

The proof of this is very long and involved. The proof uses the Kobayashi-

Nakamura-Sakai inequality in a very useful way.

Theorem 8. Let C∗ act on C3 algebraically such that dim C3//C∗ = 2.

Then C3//C∗ ≈ C2/G,G a finite group of automorphisms of C2. ([28]).

The proof of this is quite long and technical and uses the inequality of

Kobayashi-Nakamura-Sakai. It is an important step in the proof by Koras -

Russell- Kaliman- Makar Limanov of the following important result.

‘Any algebraic action of C∗ on C3 is linearizable’.

Using similar ideas as in the proof of Theorem 8, Koras-Russell proved

the following important result about contractible surfaces. ([29]).
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Theorem 9. Let V be a normal contractible affine surface such that V has

at most quotient singularities. Assume that a resolution of singularities Ṽ of

V has κ(V ) = −∞. Then κ(V − Sing V ) = −∞.

Using this result R.V. Gurjar proved the following result about 2-dimensional

quotients of Cn modulo reductive algebraic groups. ([6])

Theorem 10. Let G be a reducible algebraic group acting regularly on Cn

such that Cn//G is 2-dimensional. Then Cn//G is isomorphic to C2/Γ,

where Γ is a finite group of automorphisms of Cn.

Now we turn to log del Pezzo surfaces.

Theorem 11. The fundamental group of the smooth locus of a log del

Pezzo surface is finite. ([18]), ([2]).

The proof in ([18]) is long and technical. The proof in ([2]) uses differential

geometric methods and is short.

Additive group actions It is a standard result that a regular action of

(C,+) on an affine variety V is equivalent to the existence of a locally nilpo-

tent derivation δ on the coordinate ring of V .

One of the big successes of the use of such an action is the result due to L.

Makar-Limanov that the Russell 3-fold {x+x2y+ z2 + t3 = 0} is not isomor-

phic to C3. ([35]). The notion of Makar-Limanov invariant of a normal affine

variety arose out of this work. This measures essentially how many different

(C,+) actions exist on a normal affine variety. Of particular interest are

normal affine surfaces V which admit two independent (C,+)-actions. Such

a surface is called an ML0-surface. There are several papers dealing with
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the structure of these surfaces. For example, it is proved in ([7]) that the

fundamental group at infinity for V is finite cyclic. This is equivalent to the

statement that V has a normal projective completion X such that the curve

D : X − V is a linear chain of smooth rational curves and the intersection

form on D has non-zero determinant.

It is proved in ([1]) that if a smooth ML0 surface V is either a UFD or a

complete intersection then V is isomorphic to the hypersurface {xy = p(z)},
where p(z) has no repeated roots.

There are still some mysteries about the structure of ML0 surfaces.

Another important result about (C,+) actions is the following result due

to S. Kaliman. ([22]).

Theorem 12. Any (C,+) action on C3 without fixed points is conjugate

to a translation.

The proof of this result uses algebraic topology in a nice way.

Miscellaneous results.

Theorem 13. Let V be a smooth affine surface with χ(V ) < 0. Then there

is a morphism f : V → B such that B is a smooth curve with k(B) = 1 and

a general fiber of f is C. ([14]).

This result generalizes Castelnuovo’s characterization of ruled surfaces. We

can classify all smooth affine surfaces with χ(V ) ≤ 0.

Recently, S. Kaliman has proved an important result in connection with

a generalization of the Abhyankar-Moh-Suzuki theorem in higher dimension.

([21]).
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Theorem 14. Let f(X, Y, Z) be an irreducible polynomial in three vari-

ables over C. If {f = λ} is isomorphic to C2 for all but finitely many

constants λ ∈ C then there exist polynomials g(X, Y, Z), h(X, Y, Z) such

that C[X, Y, Z] = C[f, g, h].

Theorem 15. An Affine Mumford Theorem. Let V be a normal affine

contractible surface such that V − Sing V is simply-connected. Then V is

smooth.

The proof of this result, and the next one, depend essentially on the the-

ory of open algebraic surfaces (and some topology) described earlier. ([8]).

Theorem 16. Let V be a normal affine Z-homology plane such that κ(V −
Sing V ) = 2. Then V has at most one singular point and it is a cyclic quo-

tient singularity.

The proof of this result is highly technical and long. It uses almost the

whole theory of non-complete algebraic surfaces described earlier. ([9]).

Theorem 17. Recently Alok Maharana classified all smooth Q-homology

planes of the form {zn = f(x, y)}.
Gurjar-Maharana classified smooth surfaces S := {zn − f(x, y) = 0} such

that κ(S) ≤ 1.

Gurjar-Shameek Paul classified all factorial affine surfaces V such that κ(V −
Sing V ) ≤ 1.

These three results make essential use of the theory of open algebraic surfaces.
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Log del Pezzo surfaces.

The study of normal projective surfaces with at most quotient singulaities

arises naturally. Considering the log Kodaira dimension of the smooth locus

of such a surface and using the classification due to Kawamata mentioned

earlier one can get valuable information about these surfaces. Among them,

log del Pezzo surfaces play a special role. If X is a log del Pezzo surface

then it is easy to see that X is rational. Using Kawamata-Mori theory one

can often reduce the study of these surfaces to log del Pezzo surfaces of rank

1. There are important papers about log del Pezzo surfaces by Demazure,

Gurjar-Pradeep-Zhang, Hidaka-Watanabe, Miyanishi-Zhang and Zhang. We

will not go into any details of the results proved in these papers.

Complements of plane curves.

Let C ⊂ P2 be an irreducible curve of degree d > 1. It is clear that if C is

smooth and d > 3 the κ(P2 \C) = 2. Hence the classification of C such that

κ(P2 \ C) ≤ 1 is a significant problem. There are many papers dealing with

this by Iitaka, Kishimoto, Kojima, Sakai-Matsuoka, Tsunoda, Wakabayashi,

Yoshihara, and others.

It is easy to construct plane curves of arbitrary genus with maximum (per-

missible by the genus formula) number of ordinary double points but finding

rational curves which have at most unibranch singular points is not an easy

task. Here the geometry of P2 plays an important role. The inequality of

Kobayashi-Nakamura-Sakai puts a strong restriction about the number and

types of such singular points but the final word on this problem has not been

said.
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§4. Some Open Problems

(1) Let X be a smooth projective rational surface and C ⊂ X a smooth

irreducible curve. Is π1(X − C) finite?

This is true if k(X − C) ≤ 1. ([19]). If this result has an affirmative

answer then we get a striking consequence.

‘Let X be as above. If ϕ : X → P1 is a morphism with connected

fibers, then ϕ has at most one multiple fiber’.

(2) Let X be a normal projective, rational surface with a unique singular

point p. If p is a quotient singular point, is π1(X − p) finite?

This is true if k(X − p) ≤ 1. ([19]).

(3) Let V := {X2 + Y 3 + Z5 = 0}. Is every étale map V → V an isomor-

phism?

Miyanishi - Masuda have proved this for all surfaces {Xa + Y b +Zc = 0}
with a, b, c pairwise coprime integers > 1, except for {a, b, c} = {2, 3, 5}.
([30]).

More generally, Miyanishi has raised the question whether any étale self-

map of a quotient C2/G (G a finite group of automorphisms) is an isomor-

phism. This problem can be reduced to the case when G is either Z/(2)

or the binary icosahedral group of order 120. The answer is not known for

either of these groups.

A tantalising open problem is the following:

Question. Is there a smooth affine surface V with an étale self map whose

image misses a non-empty finite subset?
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(4) Classify all smooth affine surfaces V with a proper self-map of degree

> 1.

Gurjar and Zhang have found the answer if either κ(V ) ≥ 0, or if π1(V ) is

infinite.

It is not known if the affine surface {x2 + y2 + z2 = 1} has a proper self-

morphism of degree > 1.

(5) Let W be a smooth affine 3-fold with a Ga := (C,+) action, V := W//Ga

and π : W→V the quotient morphism. It is not known if every irreducible

component of any fiber of π is isomorphic to A1. This is not known even for

W = C3.

Similarly, are the singularities of V quotient singularities?

(6) Let W be a smooth affine contractible 3-fold which admits three inde-

pendent locally nilpotent derivations. Is W isomorphic to C3?

We have listed only few of the interesting results due to lack of time and

space. It is clear that this theory will continue to play an important role for

a long time.

Similarly, the study of normal singular points of surfaces (particularly ratio-

nal singularities) is very useful for surface theory. Because of lack of time we

have not touched upon this theory.
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