

Overview of Nuclear Physics Programmes Pelletron Linac Facility, Mumbai

Prof. R. G. Pillay Department of Nuclear and Atomic Physics Tata Institute of Fundamental Research





#### Advances in Nuclear Physics

#### International Centre for Theoretical Sciences

Tata Institute of Fundamental Research

Major Accelerator Centres in India RRCAT, Indore (DAE) Electron synchrotron storage rings Indus-1 & Indus-2 450MeV 61Å, 2.5GeV 2Å VECC, Kolkata (DAE) Variable energy cyclotron K-100 Superconducting cyclotron K-500 Low energy RIB 400keV/u BARC, Mumbai (DAE) Folded 6MV Tandem High current proton driver development for ADS TIFR, Mumbai (DAE) 14MV Tandem & heavy ion SLinac booster IUAC, New Delhi (UGC, DST) 15MV Tandem & heavy ion SLinac booster



#### At our lab (DNAP, TIFR & NPD, BARC)

14 MV UD Pelletron accelerator + LINAC booster

#### Nuclear Reaction Studies

- o Fission Dynamics
- o Sub-barrier Fusion & Transfer reactions
- o Reactions with weakly bound nuclei

#### Nuclear Structure Studies

- o Discrete γ-ray spectroscopy
- o High energy γ-ray (GDR) studies
- o Heavy ion resonances
- > Hyperfine interaction studies
- > Atomic, Molecular and Cluster dynamics

#### > Applications

- o Medicine: Tracer packets for radionuclide delivery
- o Accelerator mass spectroscopy
- o Track etched membranes: submicron pore filters
- o Radiation damage: materials, electronic components, etc.

- > Nuclear Theory
- > Hadron Physics
- Neutrino-less Double Beta Decay (Indian Neutrino Observatory)
- > Developmental activities (Si Detectors, electronics, DAQ etc.)
- > Spiral 2 (Exogam, Gaspard, Paris, ..)
- FAIR (Nustar: HiSpec, DeSpec, R3B, ..)

### Heavy Ion induced fission

#### Fission Dynamics Understanding the fission mechanism in heavy ion collisions

- Fragment mass, energy and angular correlations
- Pre-equilibrium fission
- Transfer induced fission
- Mass resolved FAD using recoil catcher technique
- Fission hindrance
- Pre-fission Neutron, Light Charged Particles and GDR Gamma rays



#### Heavy Ion induced fission

Role of entrance channel mass asymmetry ( $\alpha$ ) on fission fragment anisotropy  $\Rightarrow$ Memory of the entrance channel is retained for  $\alpha < \alpha_{BG}$ 

(Businaro-Gallone Critical point)

V.S. Ramamurthy et al., PRL 65, 25 (1990)

Shell effects reduce the effective moment of Inertia at saddle point  $\Rightarrow$  Larger fission fragment anisotropies.

A. Shrivastava *et al.*, PRL 82, 699 (1999)

#### Fusion- Fission Time scales

Pre-scission neutron multiplicities A. Saxena *et al.*, PRC 49, 932(1994)  ${}^{16}\text{O}+{}^{232}\text{Th} \& {}^{11}\text{B}+{}^{237}\text{Np} \Rightarrow$  Difference in the formation time Pre-scission charged particle multiplicities A. Chatterjee *et al.*, PRC 52, 3167 (1995)

Fission time scale from pre-scission neutron, proton, and  $\alpha$  particle multiplicities in  $^{28}\text{Si}\text{+}^{175}\text{Lu}$ 

K.Ramachandran,.., V.Nanal, R.G.Pillay,.. et al., PRC 73, 064609 (2006)

#### Fusion- Fission Time scales Fission time delay from particle emission measurements $p, \alpha$ $p, \alpha$

- Neutron measurements: Entrance Channel Effects : Role of formation Time Phys. Rev. C49, 932 (1994)
- Simultaneous Measurement of neutrons and charged Particles: Neutron emission favoured towards larger deformation compared to charged particles Phys.Rev. C73, 064609 (2006)

#### Study of GDR in excited nuclei

*Evolution of nuclear properties as a function of temperature and angular momentum* Measurement of GDR strength function and angular distribution

- Systematic studies in A~80 and A~ 200
- Angular momentum dependence of GDR in <sup>28</sup>Si+<sup>124</sup>Sn at E(<sup>28</sup>Si)~150, 188 MeV Results consistent with liquid drop behaviour D.R. Chakrabarty, V. Nanal, *et al.*, Nuclear physics A770, 126 (2006)
- Resonant dipole strengths built on 15.1 MeV, T=1 state in <sup>12</sup>C Isobaric Analog State of <sup>12</sup>B & <sup>12</sup>N, different from ground state GDR in <sup>12</sup>C D.R. Chakrabarty, ..V. Nanal,.. *et al.*, PRC 77, 051302R (2008)
- Search for rare shape-phase transitions in nuclei around mass A~190
   I. Mazumdar *et al.*, Acta.Phys. Polonica, 38, 1463 (2007)

### Nuclear level density (NLD)

- Fundamental property of the nucleus
- Key input to the statistical model calculation of CN

Very little experimental data on  $E_x$  and J for diff. Mass regions



 $^{12}C+^{89}Y,^{93}Nb, ^{16}O+^{89}Y$ 

#### Study of Nuclear Level Density

*NLD* – an important physical quantity very little experimental data on  $E_x$  and J for diff. Mass regions  ${}^{12}C(E_{lab} = 40 \text{ MeV}) + {}^{93}\text{Nb} \rightarrow {}^{105}\text{Ag}^* \rightarrow p + {}^{104}\text{Pd}^*$ 

*First step* proton spectra measured with 3 NaI(Tl) (@backward angles) in coincidence with

8 Clovers (residue identification) & 14 -BGO multiplicity setup (Angular momentum)

Bumps at high fold  $\rightarrow E_x$ , J dependent enhancement in NLD due to J induced deformation



plastic detectors

A. Mitra et al. Nucl. Phys. A 707, 343 (2002)



A. Mitra *et al.* NPA 707 (2002) 343 NPA 765 (2006) 277 J. Phys. G 36 (2009) 95103

SM fit to  ${}^{12}C + {}^{93}Nb$ With E,J dependent level density



#### Alpha cluster states in <sup>8</sup>Be Direct observation of $4^+$ to $2^+ \gamma$ - transition

Low lying states in <sup>8</sup>Be are  $\alpha$ -cluster states with dumbbell-like shape

No electromagnetic evidence was available so far

Large E2 collectivity predicted (75 W.u. for  $2^+ \rightarrow 0^+$ , 19 W.u. for  $4^+ \rightarrow 2^+$ )

Still: extremely low (<10<sup>-7</sup>) branching ratios



Stepping stone to larger linear  $\alpha$  cluster states

#### $4_1^+$ to $2_1^+$ gamma transition in <sup>8</sup>Be

**Motivation** 

➤ Collective enhancement expected ( ~ 19 W.U.)

 $\Rightarrow \gamma$  branch ~1.3×10<sup>-7</sup>

> Stepping stone to larger linear  $\alpha$  cluster states

Method



- > 22.4 & 26.5 MeV α beams from Mumbai Pelletron on 0.8 bar He gas target
- > γ-α-α coincidences using 2 × 7 BGO arrays with  $\varepsilon_{\gamma} \sim 0.24$ , 6 Si PINs at forward angles 15°-35° with  $\varepsilon_{\alpha\alpha} \sim 0.15$  for L<sub>eff</sub> (He target) ~ 1 cm



Observed cross-section provides the first crucial evidence for the alpha cluster structure of <sup>8</sup>Be.

V.M. Datar, .., V. Nanal ,.. et al., Phys. Rev. Lett. 94, 122502(2005)

- > 22.4 & 26.5 MeV  $\alpha$  beams from 0.8 bar He gas target
- $\succ$  γ-α-α coincidences using 2 × 7 BGO arrays with  $\varepsilon_{\gamma}$  ~ 0.24, 6 Si PINs at forward angles 15°-35° with  $\varepsilon_{\alpha\alpha}$  ~ 0.15 for L<sub>eff</sub> (He target) ~ 1 cm



 $\alpha + {}^{4}\text{He} \rightarrow {}^{8}\text{Be}^{**} \rightarrow \gamma + {}^{8}\text{Be}^{*} \rightarrow \gamma + \alpha + \alpha$ 

Reduction of systematic errors Higher statistics Resonance scan

2

#### Reactions at near barrier energies

Interplay of Structure & Dynamics

 Relation between fusion excitation function & <ℓ> in <sup>96</sup>Ru compound nucleus M. Dasgupta *et al.* PRL 66, 1414 (1991)

Weakly bound projectiles (<sup>7</sup>Li, <sup>9</sup>Be)

- σ & <l> for complete fusion <sup>7</sup>Li + <sup>165</sup>Ho ⇒ coherent coupling to projectile breakup channel
   V. Tripathi *et al.* PRL 88, 172701 (2002)
- Exclusive Charged particle measurements <sup>7</sup>Li + <sup>65</sup>Cu ⇒ neutron transfer followed by breakup

A. Shrivastava,...V. Nanal,.. et al. Phys. Letts. B 633, 463 (2006)

- <sup>6,8</sup>He + <sup>63,65</sup>Cu @GANIL
- p-γ coincidence ⇒Large cross section for transfer as compared to breakup for <sup>6</sup>He
   A. Navin, ..., V. Nanal, ..., R.G. Pillay,.. *et al.* PRC 70, 044601 (2004)
- Energy & Angular correlations (p-n-γ) ⇒ 2n transfer > 1n transfer, implying di-neutron dominant in <sup>6</sup>He
   A Chatteria: V Nanal B C Billow at al BBL 101, 032701 (2008)
  - A. Chatterjee,...V. Nanal,.. R.G. Pillay,.. et al. PRL 101, 032701 (2008)

#### Weakly bound nuclei



Reactions around the Coulomb barrier INDO-FRENCH collaboration
<sup>6,7</sup>Li + <sup>60</sup>Ni, <sup>65</sup>Cu, <sup>198</sup>Pt @ PLF, Mumbai -- <sup>9</sup>Be, <sup>7</sup>Li+<sup>197</sup>Au, <sup>9</sup>Be +<sup>89</sup>Y
<sup>6,8</sup>He + <sup>65</sup>Cu @ GANIL, France

A. Navin *et al.* PRC **70**, 044601 (2004)
A. Chatterjee *et al.* PRL **101**, 032701 (2008)
A. Lemasson *et al* Phys. Rev. Letts **103**(2009) 232701

#### Exclusive Charged particle measurements <sup>7</sup>Li+<sup>65</sup>Cu 25 MeV



# Fusion with weakly bound nuclei at deep sub-barrier energies

To study phenomenon of fusion hindrance

<sup>6</sup>Li +<sup>198</sup>Pt (~ 1 mg/cm<sup>2</sup>, 95.7 % enriched)  $\rightarrow$  <sup>205</sup>Tl (CN) Positive Q value (+8.5MeV)

First measurement with weakly bound projectile at 0.68<E/Vb<1.3

New sensitive off-beam gamma spectroscopy Technique: coincidence between characteristic KX rays and gamma rays of daughter nuclei NIM **598**, 445 (2009)

# 2 HPGe inside low background setup



#### **Evaporation residue cross-sections**



Lowest x-sec up to 20 nb

Statistical model calculations (PACE) with shell corrected level densities.



#### Discrete γ-ray spectroscopy

- Structure of high spin states of nuclei close to shell closure N~50 & Z~50 : identical bands, rigid rotation, magnetic rotation and non-axial shapes.
- Study of gamma soft nuclei around A ~ 80 : shape coexistence, shape evolution and signature inversion.
- > Measurements of ground state hexadecupole deformation ( $\beta_4$ ) in the rare earth nuclei



 $^{124}$ Sn +  $^{16}$ O  $\rightarrow$   $^{136}$ Ce + 4n *INGA* @ TIFR (2001) Clear evidence of magnetic rotation in A~ 130 S. Lakshmi et al., Phys. Rev. C66, 41303R (2002)





#### Data Acquisition System



## Welcome & Thank you