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� Brief Facts About Influenza
The disease was first described in the 16th century in Italy
Thought to be due to the influence (influenza in Italian) of the moon
and the stars

Influenza (flu) is a respiratory infection that occurs in humans,
other mammals (e.g. pigs) and birds (e.g. chickens)
Symptoms include fever, aches, fatigue...

It is caused by an RNA virus with 3 main types in humans:
A (most important), B and C
Subtypes of A are distinguished by differences in two proteins
abbreviated as HA and NA, e.g H1N1, H3N2
Subtypes are further divided into antigenically distinct strains

An annual influenza epidemic during winter in the N. Hemisphere
during the rainy season June to August in India
caused by drift, i.e. the virus continually evolving and giving new
strains
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In addition there are infrequent influenza pandemic outbreaks
(due to major antigenic shifts in virus)

In the 20th Century there were at least 3 major pandemics
1918-19: H1N1 influenza caused an estimated 50m deaths
worldwide
1957-58: H2N2 influenza caused over 2m deaths worldwide
1968-69: H3N2 influenza caused over 1m deaths worldwide

Since 1997 avian influenza H5N1 has caused large outbreaks in
chickens, and these can directly infect humans

Starting in April 2009 pandemic influenza H1N1 (swine flu) swept from
Mexico to over 214 countries and caused over 18,366
laboratory-confirmed deaths [WHO data]

Starting in March 2013 influenza H7N9 started in China...
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Transmission of influenza virus can be airborne or by droplets
Incubation period is 1-3 days, so model should include an
exposed (latent) compartment (are infected but not yet infectious)
Infectiousness can begin about 1 day before symptoms, so model
should include an asymptomatic compartment (no symptoms but
can infect others)
Infectious period is 3-6 days
Most individuals recover and are thought to have lifelong immunity
to strains closely related to the infecting strain
Influenza causes or contributes to death mostly among
elderly people and young children
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Since the 1960s vaccine has been available each year for seasonal flu
and it contains strains of A: H1N1, H3N2, and B

Since about 1999 antiviral drugs have been available (NA inhibitors)
and they can also be used prophylactically

Data limitations: Influenza has no reporting requirement and is easily
confused with other respiratory diseases (e.g. common cold,
respiratory syncytial virus (RSV))

So there are many modeling challenges!

Pauline van den Driessche (UVic) Case Study: Influenza Modeling 5 / 19



uviclogo

"All models are wrong, but some are useful" George E.P. Box

"A scientific theory should be as simple as possible,
but no simpler" Albert Einstein

Some aims of influenza modeling are:

Understanding the important parameters that influence
influenza spread

Quantifying strategies to control influenza, both seasonal and
pandemic
e.g. vaccination, antivirals, isolation
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� SIR Compartmental Epidemic Model

S: susceptible I: infectious R: recovered compartments (classes)
β: transmission coefficient between I and S
Mass action incidence assumes homogeneous mixing
each individual has the same probability of meeting another individual
1
α

: mean infectious time f : fraction of I recovering

Write down the 3 ODEs describing the dynamics
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System ODEs

dS
dt

= −βSI

dI
dt

= βSI − αI

dR
dt

= fαI

Initial conditions: S(0) = S0 > 0, I(0) > 0,R(0) = 0

Note that the system is well posed and solutions remain nonnegative

Disease free equilibrium (DFE): S = S0, I = 0, R = 0
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We can work with the infected equation

dI
dt

= βSI − αI

DFE is locally asymptotically stable (LAS) if R0 =
βS0

α
< 1

unstable if R0 > 1

R0 is the basic reproduction number
= (transmission coefficient)(mean infectious time) S0

R0 : average number of secondary infections caused by introducing
one infectious individual into a susceptible population

R0 < 1⇒ infectious number decreases monotonically to 0

R0 > 1⇒ infectious number first increases (before→ 0)
i.e. an epidemic, so R0 is a disease threshold parameter
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� Influenza Model: Latent and Asymptomatic People
[Arino, Brauer, vdD, Watmough, Wu 2006]

L: latent (infected not yet infectious)
A: asymptomatic but infectious
δ: reduction in infectiousness of A
1/κ: mean latent time
p: fraction of L developing symptoms
1/η: mean asymptomatic time
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Write down the 5D ordinary differential equations describing this
model

Find the DFE (if it exists)

Identify the infected compartments

Linearize the infected compartment equations about the DFE to
find matrices F and V

Compute R0 and interpret biologically

Does influenza die out or is there an epidemic?
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System ODEs

dS
dt

= −βS(I + δA)

dL
dt

= βS(I + δA)− κL

dA
dt

= (1− p)κL− ηA

dI
dt

= pκL− αI

dR
dt

= fαI + ηA

DFE: S = S0, L = A = I = R = 0

The infected compartments are L, A, I
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Linearizing about the DFE: −κ βδS0 βS0
(1− p)κ −η 0

pκ 0 −α

 = F − V

The DFE is locally stable if all eigenvalues have negative real parts

Need determinant = −κηα+ βδS0(1− p)κα+ βS0ηpκ < 0

How is this related to R0?

Aside: Note that local stability does not in general imply global stability
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For this influenza model: R0 = ρ(FV−1)

F =

 0 βδS0 βS0
0 0 0
0 0 0

 V =

 κ 0 0
−(1− p)κ η 0
−pκ 0 α


new infections transitions

F has rank 1, so need just (1,1) entry of FV−1

R0 = βS0

[
p
α
+
δ(1− p)

η

]
=
βS0

α
k

where k is correction factor accounting for asymptomatics

From influenza data [Longini et al. 2004] k ≈ 0.8

Note: R0 < 1⇐⇒ previous inequality holds (i.e. matrix stable)

If R0 < 1 then influenza dies out, if R0 > 1 then there is an epidemic
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� Influenza Model with Treatment

[Arino. Brauer, vdD, Watmough, Wu, 2008]
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Q = β[I + σI IT + δA + δσAAT ]

DFE: S = (1− γ)S0, ST = γS0
where γ is fraction of susceptibles vaccinated before outbreak

F = βS0

 0 0 (1− γ) (1− γ)σI (1− γ)δ (1− γ)σAδ
0 0 γσS γσSσI γσSδ γσSσAδ

0


has rank 1. Let D = diag(1, σS) with σS reduction in susceptibility

V =

 VL 0 0
−VLI VI 0
−VLA 0 VA

 VL,VI contain
treatment rates

φL, φI

Control reproduction number Rc = (1− γ)Ru + γRv

[Ru,Rv ] = βS0

(
[1, σI ]V−1

I VLIV−1
L D + δ[1, σA]V−1

A VLAV−1
L D

)
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Special Cases: Rc = (1− γ)Ru + γRv

(i) Pre-epidemic treatment only (annual flu vaccinations)

Ru = βS0

[
p
α
+
δ(1− p)

η

]
as before

Rv = σSβS0

[
σIpτ
αT

+
δσA(1− pτ)

ηT

]
< Ru

To control the epidemic, vaccinate a large enough fraction γ to
make Rc < 1, possible if Rv < 1 in particular σS small
(susceptibility to infection sufficiently reduced by vaccination)

(ii) Treatment with no pre-epidemic vaccination
as for a new strain of influenza with no vaccine
In this case γ = 0 so Rc = Ru
Various combinations of treatment rates φL and φI can bring
Rc < 1
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Note that Rc is a linear function of β, which is a product of the
average infectiousness of I and the number of contacts of I per day

Thus if I take precautions to prevent infecting or contacting
(e.g. isolation) and S take precautions to prevent becoming infected
(e.g. improved hygiene, vaccination, antivirals)
Rc can be lowered below one

To quote Chowell from a lecture on the 1918/19 influenza epidemic in
Geneva:

“Get your shots, wash your hands,
and steer clear of those who don’t."
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Cautions

Smallest Rc by letting treatment rate of infectious individuals
φI →∞, but probably φI < 2 in practise (corresponds to < 1/2
day between developing symptoms and treatment)
With parameters from 1957 data Longini et al. [2004 ] calculate
that treatment of 80% of infectious individuals within 1.15 days
would be required to bring Rc < 1
Number of doses needed to bring Rc < 1 depends strongly on the
number of infectious individuals introduced initially
Model includes many assumptions, e.g.
homogeneous mixing (mass action incidence), spatial homogeneity,
no drug resistance, no age structure, no social structure...

To adddress some of these we should consider
� a metapopulation model
and
� a network model
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