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Basic models considered:

Deterministic compartmental models suitable for the
spread of infectious diseases among humans

Simple models that leave out a lot of the biology
but give some observed qualitative behavior

"A scientific theory should be as simple as possible
but no simpler" Albert Einstein

Concentrate on models formulated as ordinary differential equations
starting with a simplified version of the model introduced by
Kermack, McKendrick 1929, and use the modeling framework
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Susceptible-Infectious-Recovered plus demographics

1. Biological Problem: Will measles become endemic in the
population?

Currently measles is a leading cause of death among young children
in India

2. Assumptions: Measles is a viral disease, so SIR model

appropriate
Include demographics, but ignore death due to measles
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3. Formulation of Model:

S, 1, R denote the number of susceptible, infectious, recovered
people

with N =S + | + R as the total population

A denotes the rate of input into S

d denotes the natural death rate

~ denotes the rate of recovery

A denotes the number of contacts in unit time by an infectious
person
called the transmission parameter

Assume standard incidence, and all parameters are positive
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Initial conditions are S(0) > 0

~ N, [(0)>0small, R(0)=0
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4. Analysis of Model:

The model is well posed, solutions remain nonnegative and are
bounded

There is a disease free equilibrium (DFE):
S=4, 1=0, R=0

Linearizing about the DFE gives

dl

= (= () = (d+7)(Ro— 1)

where Ry = d%ﬂ

There is also an endemic equilibrium /* > 0 with
A 1

= —(01- =
d+’y( Ro

)

provided the bracket is positive, i.e. Rg > 1
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5. Interpret Solution:

Ry = d%rv is the basic reproduction number
and is the product of the contact rate A

and the average death adjusted infectious time 1/(d + 7)
If Ro < 1 then the DFE is (locally) stable, measles dies out

If Ro > 1 then there is an endemic equilibrium /*, R* = ~v/*/d
and | — I* as t — 0o so measles is endemic in the population

Ro determines a sharp threshold with a forward bifurcation at
Ro=1
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6. Validate Model:

Sometimes measles and other viral diseases die out quickly but
other times they give rise to an endemic situation

Data for Rg in countries where measles is endemic confirms that
Ro>1
but data is confounded by vaccination
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7. Use Model Results:

If a fraction p of the population is vaccinated so that (1 —p)Rg < 1
then measles will be eradicated

1

p>(1_R70)

is the fraction needed to give herd immunity

For example:
if Rog = 5 then need to vaccinate 80%
if Ro = 10 then need to vaccinate 90%

In some regions of India measles has Ry of about 15

so need to vaccinate over 93%

WHO estimate for 2013: 87% — 90% of Indian children
received at least 1 measles vaccination

Since 2010 a second dose is recommended in high-risk states
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Susceptible-Infectious-Recovered without demographics

Influenza is usually a short epidemic so demographics can be
ignored

If demographics are ignored, A = d = 0, then the previous analysis
fails!

Putting this assumption into the previous model gives

ds_ Al d_ASI_ AR
a N dt  nN g7

Thus | = 0 is the only equilibrium and /(t) — 0 as t — oo
To see how the dynamics evolve consider

dl ~vN

- - 14

s~ s
integrating gives

N
1+5- 1Y 10gs=C

A [wiess)

where C is a constant



N
I+S— 77 logS = C
Initial conditions are S(0) > 0 ~ N, 1(0)>0small, R(0)=0
so C is finite, giving S(o0) #
The parameter Rg = % still acts as a threshold

If Rg < 1, then I — 0 monotonically, influenza dies out
If Rg > 1, then [/ first increases to a peak, then | — 0

Approximating: /(0) =0, /(oo) = 0 the final size equation can be

written 5(0) 5(00)
00
log ———~ = 1—————=
% §(o) LT Ty )
The total number of people infected is /(0) + S(0) — S(o0)
Not everyone becomes infectious, S(co) escape infection

5(0)

The attack ratio, i.e. fraction of people infected is approx. 1 — =5~
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Simulation of the influenza SIR model showing the number of
infectious people against time, with

A=05,v=025N=1,000/0)=5
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For small time /(t) = /(0) exp{y(Ro — 1)t}
can be used to estimate Rg from data

The maximum number of infectious people can be found from
di
da _q

dt
and /(t) can be fitted to data on influenza epidemics
For seasonal influenza Ry is usually 1.4 to 2.4

Herd immunity applies: p > 1 — %0 giving around 50% vaccination
needed to eliminate influenza

BUT there are many strains of influenza, the virus mutates, some

people are asymptomatic, some are latently infected, age structure
is important...

In November 2014, influenza subtype B was predominant in India
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