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SIR Compartmental Epidemic Model

Simple model for influenza

S, I,R : number susceptible, infectious, recovered at time t
β: transmission coefficient between I and S, mass action βSI
1
α

: mean infectious time f : fraction of I recovering

dI
dt

= βSI − αI

Disease free equilibrium (DFE): S = S0, I = 0, R = 0
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dI
dt

= βSI − αI

DFE is locally asymptotically stable (LAS) if R0 =
βS0

α
< 1

unstable if R0 > 1

R0 is the basic reproduction number
= (transmission coefficient)(mean infectious time) S0

R0 : expected number of secondary infections caused by
a primary case introduced into a susceptible population

Dynamical behavior:
R0 < 1⇒ number of infectious individuals decreases

monotonically to 0

R0 > 1⇒ number first increases (before→ 0) : an epidemic
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Estimated Mean Values of R0 from Data

smallpox Indian subcont. (1968-73) 4.5 [Anderson, May 1991]
poliomyelitis Europe (1955-60) 6 [Anderson, May 1991]
measles Ghana (1960-68) 14.5 [Anderson, May 1991]
SARS epidemic (2002-03) 3.5 [Gumel et al. 2004]
1918 Spanish flu in Geneva

spring wave 1.5 [Chowell et al. 2006]
fall wave 3.8 [Chowell et al. 2006]

H2N2 flu pandemic US (1957) 1.68 [Longini et al. 2004]
H1N1 flu Mexico City (2009) 1.7 [Cruz-Pacheco et al. 2009]
H1N1 flu South Africa (2009) 1.33 [White et al. 2013]
H1N1 flu India (2009) 1.37 [Kadi, Avaradi 2014]
Ebola West Africa (2014) 2.1 [Althaus et al. 2014]
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SEIR Compartmental Epidemic Model

In many infectious diseases there is an exposed period after the
transmission of infection from susceptibles but before infected
individuals can transmit infection
If this exposed period is relatively long then an exposed
compartment E should be included to give an SEIR model with
mean exposed period 1

κ , input A, natural death rate d > 0

dS
dt

= A− dS − βSI

dE
dt

= βSI − (d + κ)E

dI
dt

= κE − (d + α)I

dR
dt

= αI − dR

with nonnegative initial conditions
DFE (S0,E , I,R) = (A

d ,0,0,0). How to find R0 for this system?
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Computing R0 for Compartmental Models

[Diekmann et al. 1990, vdD, Watmough 2002]

x = (x1, x2, . . . , xn)T gives number of individuals in each compartment
First m < n compartments contain infected individuals
Assume DFE x0 exists and is stable in absence of disease
Assume the linearized equations for x1, . . . , xm decouple from the other
equations

Consider dxi
dt = Fi(x)− Vi(x) for i = 1,2, . . . ,m

Fi(x) is rate of appearance of new infections in compartment i
Vi(x) is rate of other transitions between compartments
Here Fi and Vi ∈ C2, Fi = 0 if i > m . . .

Define F =

[
∂Fi(x0)

∂xj

]
, V =

[
∂Vi(x0)

∂xj

]
for 1 ≤ i , j ≤ m
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F is entrywise non-negative (F ≥ 0)

V is a non-singular M-matrix, V ∈M

Let ψ(0) be the number of initially infected individuals

Then FV−1ψ(0) is expected number of new infections

FV−1 ≥ 0 and has (i , j) entry equal to the expected number of
new infections in compartment i produced by infected individual
introduced in compartment j

FV−1 is the next generation matrix

R0 = ρ(FV−1)

where ρ denotes the spectral radius
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Linear stability of DFE determined by s(F − V )
where s is the maximum real part of the eigenvalues

Theorem
If x0 is a DFE, then x0 is LAS if R0 = ρ(FV−1) < 1, but unstable if
R0 > 1, i.e. sign s(F − V ) = sign (R0 − 1)

Proof: Matrix V − F has Z sign-pattern (off-diagonals - or 0)

s(F − V ) < 0 ⇔ V − F ∈M
⇔ I − FV−1 ∈M
⇔ ρ(FV−1) < 1

Also s(F − V ) = 0 ⇔ ρ(FV−1) = 1
Thus s(F − V ) > 0 ⇔ ρ(FV−1) > 1

Therefore x0 is LAS if s(F − V ) < 0, equivalently R0 < 1, and x0 is
unstable if s(F − V ) > 0, equivalently R0 > 1.
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Computation of R0 for SEIR Model

dS
dt

= A− dS − βSI

dE
dt

= βSI − (d + κ)E

dI
dt

= κE − (d + α)I

dR
dt

= αI − dR

The infected compartments are E and I
At DFE matrices F and V are

F =

[
0 βS0
0 0

]
, V =

[
d + κ 0
−κ d + α

]

FV−1 =

[
κβS0

(d+κ)(d+α)
βS0
d+α

0 0

]
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FV−1 =

[
κβS0

(d+κ)(d+α)
βS0
d+α

0 0

]
FV−1 has eigenvalues 0 and R0 where

R0 =
κβS0

(d + κ)(d + α)

βS0 is infection rate of one person in a population of S0 susceptibles

κ/(d + κ) is the fraction progressing from E to I
i.e. probability of surviving the E period and progressing to I

1/(d + α) is the mean time in I

The (1,1) entry of FV−1 is the expected number of secondary
infections produced by an infected person originally in E

If R0 < 1 then solutions tend to the DFE, the disease dies out
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Extension of the SEIR Model

Suppose that individuals in E are mildly infectious at a reduced rate
εβSE with 0 < ε < 1

Show that
R0 =

κβS0

(d + κ)(d + α)
+

εβS0

(d + κ)

and interpret the result
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A Vector-Host Model

Some disease, e.g., Dengue fever, malaria, West Nile virus, are
transmitted through a vector
Simple vector-host model is SIS for the hosts and SI for the vector

Susceptible hosts Sh become infectious hosts Ih at rate βvhShIv
by bites from infectious vectors Iv

Susceptible vectors Sv become infectious vectors at a rate βhv Sv Ih
by biting infectious hosts

Let Ah,Av be recruitment rates, dh,dv be removal rates
γ be recovery rate of Ih where Iv are assumed to be infectious for life
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dSh

dt
= Ah − dhSh − βvhShIv + γIh

dIh
dt

= βvhShIv − (dh + γ)Ih

dSv

dt
= Av − dv Sv − βhv Sv Ih

dIv
dt

= βhv Sv Ih − dv Iv

Infected compartments are Ih , Iv
DFE is Sh0 = Ah/dh,Sv0 = Av/dv , Ih = Iv = 0

F =

[
0 βvhSh0

βhv Sv0 0

]
, V =

[
dh + γ 0

0 dv

]

FV−1 =

[
0 βvhSh0

dv
βhv Sv0
dh+γ

0

]
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The entries of FV−1 are interpreted as the number of secondary
infections produced by infected vectors and hosts during
the course of their infections
Note the cross infection between vectors and hosts

R0 =

√
βvhβhv Sh0Sv0

dv (dh + γ)

This is a geometric mean of
(vector→ host) βvhSv0

dv
and (host→ vector) βhv Sh0

(dh+γ)

The square root indicates that it takes two generations for infected
hosts to produce new infected hosts

In practise the √. is often omitted giving the same threshold at 1

If R0 < 1 then solutions tend to the DFE, the disease dies out in host
and vector
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Disease control

The form of R0 can be used to help guide policy for disease control
by suggesting control measures that reduce it to below 1

R0 =

√
βvhβhv Sh0Sv0

dv (dh + γ)

with Sh0 = Ah/dh,Sv0 = Av/dv

Qualitative measures:
reduce Sv0 by spraying, reduce βvh by bed nets.....

Quantitative measures:
compute elasticity indices ΓR0

p = ∂R0
∂p x p

R0
measuring the

proportional perturbation that changes in parameter p have on R0

Examples: ΓR0
βvh

= 0.5; ΓR0
γ = −γ

2(dh+γ)

So R0 is useful!
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