Computation of \mathcal{R}_0 for Models of Infectious Disease

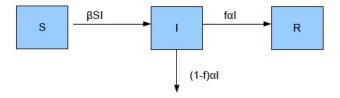
Pauline van den Driessche

Department of Mathematics & Statistics Department of Computer Science University of Victoria Victoria, B.C., Canada

pvdd@math.uvic.ca

Thanks to NSERC, Mprime, collaborators...

SIR Compartmental Epidemic Model



Simple model for influenza

S, I, R : number susceptible, infectious, recovered at time t β : transmission coefficient between I and S, mass action β SI $\frac{1}{\alpha}$: mean infectious time f: fraction of I recovering

$$\frac{dI}{dt} = \beta SI - \alpha I$$

Disease free equilibrium (DFE): $S = S_0$, I = 0, R = 0

$$\frac{dI}{dt} = \beta SI - \alpha I$$

- DFE is locally asymptotically stable (LAS) if $\mathcal{R}_0 = \frac{\beta S_0}{\alpha} < 1$ unstable if $\mathcal{R}_0 > 1$
- \mathcal{R}_0 is the *basic reproduction number* = (transmission coefficient)(mean infectious time) S_0
- \mathcal{R}_0 : expected number of secondary infections caused by a primary case introduced into a susceptible population

Dynamical behavior:

 $\mathcal{R}_0 < 1 \Rightarrow$ number of infectious individuals decreases monotonically to 0

 $\mathcal{R}_0 > 1 \Rightarrow$ number first increases (before $\rightarrow 0$) : an epidemic

Estimated Mean Values of \mathcal{R}_0 from Data

- smallpox Indian subcont. (1968-73) poliomyelitis Europe (1955-60) measles Ghana (1960-68) SARS epidemic (2002-03) 1918 Spanish flu in Geneva spring wave fall wave
- H2N2 flu pandemic US (1957)
- H1N1 flu Mexico City (2009)
- H1N1 flu South Africa (2009)
- H1N1 flu India (2009)
- Ebola West Africa (2014)

- 4.5 [Anderson, May 1991]
- 6 [Anderson, May 1991]
- 14.5 [Anderson, May 1991]
- 3.5 [Gumel et al. 2004]
- 1.5 [Chowell et al. 2006]
- 3.8 [Chowell et al. 2006]
- 1.68 [Longini et al. 2004]
- 1.7 [Cruz-Pacheco et al. 2009]
- 1.33 [White et al. 2013]
- 1.37 [Kadi, Avaradi 2014]
- 2.1 [Althaus et al. 2014]

SEIR Compartmental Epidemic Model

In many infectious diseases there is an *exposed period* after the transmission of infection from susceptibles but before infected individuals can transmit infection

If this exposed period is relatively long then an exposed compartment E should be included to give an SEIR model with mean exposed period $\frac{1}{\kappa}$, input *A*, natural death rate d > 0

$$\frac{dS}{dt} = A - dS - \beta SI$$
$$\frac{dE}{dt} = \beta SI - (d + \kappa)E$$
$$\frac{dI}{dt} = \kappa E - (d + \alpha)I$$
$$\frac{dR}{dt} = \alpha I - dR$$

with nonnegative initial conditions DFE $(S_0, E, I, R) = (\frac{A}{d}, 0, 0, 0)$. How to find \mathcal{R}_0 for this system?

Computing \mathcal{R}_0 for Compartmental Models

[Diekmann et al. 1990, vdD, Watmough 2002]

 $x = (x_1, x_2, ..., x_n)^T$ gives number of individuals in each compartment First m < n compartments contain infected individuals Assume DFE x_0 exists and is stable in absence of disease Assume the linearized equations for $x_1, ..., x_m$ decouple from the other equations

Consider
$$\frac{dx_i}{dt} = \mathcal{F}_i(x) - \mathcal{V}_i(x)$$
 for $i = 1, 2, ..., m$

 $\mathcal{F}_i(x)$ is rate of appearance of new infections in compartment *i* $\mathcal{V}_i(x)$ is rate of other transitions between compartments Here \mathcal{F}_i and $\mathcal{V}_i \in C^2$, $\mathcal{F}_i = 0$ if $i > m \dots$

Define
$$F = \left[\frac{\partial \mathcal{F}_i(x_0)}{\partial x_j}\right]$$
, $V = \left[\frac{\partial \mathcal{V}_i(x_0)}{\partial x_j}\right]$ for $1 \le i, j \le m$

F is entrywise non-negative ($F \ge 0$)

V is a non-singular M-matrix, $V \in \mathcal{M}$

Let $\psi(0)$ be the number of initially infected individuals

Then $FV^{-1}\psi(0)$ is expected number of new infections

 $FV^{-1} \ge 0$ and has (i, j) entry equal to the expected number of new infections in compartment *i* produced by infected individual introduced in compartment *j*

 FV^{-1} is the *next generation matrix*

$$\mathcal{R}_0 = \rho(FV^{-1})$$

where ρ denotes the spectral radius

Linear stability of DFE determined by s(F - V)where *s* is the maximum real part of the eigenvalues

Theorem

If
$$x_0$$
 is a DFE, then x_0 is LAS if $\mathcal{R}_0 = \rho(FV^{-1}) < 1$, but unstable if $\mathcal{R}_0 > 1$, i.e. sign $s(F - V) = sign (\mathcal{R}_0 - 1)$

Proof: Matrix V - F has Z sign-pattern (off-diagonals - or 0)

$$\begin{split} \boldsymbol{s}(F-V) < 0 & \Leftrightarrow \quad V-F \in \mathcal{M} \\ & \Leftrightarrow \quad I-FV^{-1} \in \mathcal{M} \\ & \Leftrightarrow \quad \rho(FV^{-1}) < 1 \\ \text{Also } \boldsymbol{s}(F-V) = 0 & \Leftrightarrow \quad \rho(FV^{-1}) = 1 \\ \text{Thus } \boldsymbol{s}(F-V) > 0 & \Leftrightarrow \quad \rho(FV^{-1}) > 1 \end{split}$$

Therefore x_0 is LAS if s(F - V) < 0, equivalently $\mathcal{R}_0 < 1$, and x_0 is unstable if s(F - V) > 0, equivalently $\mathcal{R}_0 > 1$.

Computation of \mathcal{R}_0 for SEIR Model

$$\frac{dS}{dt} = A - dS - \beta SI$$
$$\frac{dE}{dt} = \beta SI - (d + \kappa)E$$
$$\frac{dI}{dt} = \kappa E - (d + \alpha)I$$
$$\frac{dR}{dt} = \alpha I - dR$$

The infected compartments are E and I At DFE matrices F and V are

$$F = \begin{bmatrix} 0 & \beta S_0 \\ 0 & 0 \end{bmatrix}, \quad V = \begin{bmatrix} d + \kappa & 0 \\ -\kappa & d + \alpha \end{bmatrix}$$
$$FV^{-1} = \begin{bmatrix} \frac{\kappa\beta S_0}{(d+\kappa)(d+\alpha)} & \frac{\beta S_0}{d+\alpha} \\ 0 & 0 \end{bmatrix}$$

$$FV^{-1} = \left[egin{array}{cc} rac{\kappaeta S_0}{(d+\kappa)(d+lpha)} & rac{eta S_0}{d+lpha} \ 0 & 0 \end{array}
ight]$$

 FV^{-1} has eigenvalues 0 and \mathcal{R}_0 where

$$\mathcal{R}_0 = rac{\kappa eta S_0}{(d+\kappa)(d+lpha)}$$

 βS_0 is infection rate of one person in a population of S_0 susceptibles

 $\kappa/(d + \kappa)$ is the fraction progressing from E to I i.e. probability of surviving the E period and progressing to I

 $1/(d+\alpha)$ is the mean time in I

The (1,1) entry of FV^{-1} is the expected number of secondary infections produced by an infected person originally in E

If $\mathcal{R}_0 < 1$ then solutions tend to the DFE, the disease dies out

Suppose that individuals in E are mildly infectious at a reduced rate $\epsilon\beta SE$ with 0 < ϵ < 1

Show that

$$\mathcal{R}_{0} = \frac{\kappa\beta S_{0}}{(\boldsymbol{d}+\kappa)(\boldsymbol{d}+\alpha)} + \frac{\epsilon\beta S_{0}}{(\boldsymbol{d}+\kappa)}$$

and interpret the result

Some disease, e.g., Dengue fever, malaria, West Nile virus, are transmitted through a vector Simple vector-host model is SIS for the hosts and SI for the vector

Susceptible hosts S_h become infectious hosts I_h at rate $\beta_{vh}S_hI_v$ by bites from infectious vectors I_v

Susceptible vectors S_v become infectious vectors at a rate $\beta_{hv}S_vI_h$ by biting infectious hosts

Let A_h , A_v be recruitment rates, d_h , d_v be removal rates γ be recovery rate of I_h where I_v are assumed to be infectious for life

$$\begin{aligned} \frac{dS_h}{dt} &= A_h - d_h S_h - \beta_{vh} S_h I_v + \gamma I_h \\ \frac{dI_h}{dt} &= \beta_{vh} S_h I_v - (d_h + \gamma) I_h \\ \frac{dS_v}{dt} &= A_v - d_v S_v - \beta_{hv} S_v I_h \\ \frac{dI_v}{dt} &= \beta_{hv} S_v I_h - d_v I_v \end{aligned}$$

Infected compartments are I_h , I_v DFE is $S_{h0} = A_h/d_h, S_{v0} = A_v/d_v, I_h = I_v = 0$

$$F = \begin{bmatrix} 0 & \beta_{vh} S_{h0} \\ \beta_{hv} S_{v0} & 0 \end{bmatrix}, \quad V = \begin{bmatrix} d_h + \gamma & 0 \\ 0 & d_v \end{bmatrix}$$
$$FV^{-1} = \begin{bmatrix} 0 & \frac{\beta_{vh} S_{h0}}{d_v} \\ \frac{\beta_{hv} S_{v0}}{d_h + \gamma} & 0 \end{bmatrix}$$

Pauline van den Driessche (UVic)

The entries of FV^{-1} are interpreted as the number of secondary infections produced by infected vectors and hosts during the course of their infections

Note the cross infection between vectors and hosts

$$\mathcal{R}_{0} = \sqrt{\frac{\beta_{vh}\beta_{hv}S_{h0}S_{v0}}{d_{v}(d_{h}+\gamma)}}$$

This is a geometric mean of

(vector \rightarrow host) $\frac{\beta_{\nu h} S_{\nu 0}}{d_{\nu}}$ and (host \rightarrow vector) $\frac{\beta_{h\nu} S_{h0}}{(d_{h}+\gamma)}$

The square root indicates that it takes two generations for infected hosts to produce new infected hosts

In practise the $\sqrt{.}$ is often omitted giving the same threshold at 1

If $\mathcal{R}_0 < 1$ then solutions tend to the DFE, the disease dies out in host and vector

Disease control

The form of \mathcal{R}_0 can be used to help guide policy for disease control by suggesting control measures that reduce it to below 1

$$\mathcal{R}_0 = \sqrt{rac{eta_{m{v}h}eta_{m{h}m{v}}m{S}_{m{h}0}m{S}_{m{v}0}}{m{d}_{m{v}}(m{d}_{m{h}}+\gamma)}}$$

with $S_{h0} = A_h/d_h$, $S_{v0} = A_v/d_v$

Qualitative measures:

reduce S_{v0} by spraying, reduce β_{vh} by bed nets....

Quantitative measures:

compute *elasticity indices* $\Gamma_p^{\mathcal{R}_0} = \frac{\partial \mathcal{R}_0}{\partial p} \times \frac{p}{\mathcal{R}_0}$ measuring the proportional perturbation that changes in parameter *p* have on \mathcal{R}_0

Examples:
$$\Gamma_{\beta_{vh}}^{\mathcal{R}_0} = 0.5; \quad \Gamma_{\gamma}^{\mathcal{R}_0} = \frac{-\gamma}{2(d_h + \gamma)}$$

So \mathcal{R}_0 is useful!