Optimal Control and Stabilization of Wake Flows

Bartosz Protas

Department of Mathematics & Statistics
McMaster University
Hamilton, ON, Canada

URL: http://www.math.mcmaster.ca/bprotas

Collaborators: A. Elcrat, D. Pelinovsky

Funded by NSERC-Discovery (Canada) and CNRS (France)

December 12, 2012

Optimal Open-Loop Control

PDE–Constrained Optimization Determination of the Gradient $\nabla \mathcal{J}$ via Adjoint System Results

Feedback Stabilization of Wake Flows

Models of Inviscid Wake Flows Linear Feedback Control of the Föppl System Results Higher–Order Föppl Systems

Vortex Design Problem

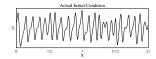
Vortex Design as an Inverse Problem Shape Differentiation, Perturbation & Adjoint Systems Computational Results

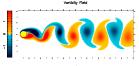
Motivation — Applications of Flow Control

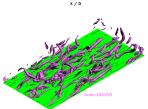
Wake Hazard

Fluid–Structure Interaction

Model Problems







Objectives:

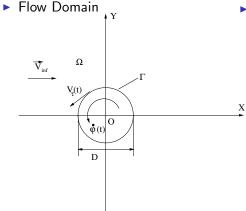
- Control fluid flow with the least amount of energy possible
- Estimate flow based on incomplete and/or noisy measurements
- ► The Navier–Stokes system

$$\begin{cases} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} + \nabla p - \mu \Delta \mathbf{v} = \phi, & \text{in } \Omega \times (0, T) \\ \nabla \cdot \mathbf{v} = 0, & \text{in } \Omega \times (0, T) \\ \text{Initial condition} & \text{on } \Gamma \times (0, T) \\ \text{Boundary condition} & \text{in } \Omega \text{ at } t = 0 \end{cases}$$

Inverse problems

PART I OPTIMAL OPEN-LOOP CONTROL VIA ADJOINT-BASED OPTIMIZATION

Statement of the Problem I



- ► Assumptions:
 - viscous, incompressible flow
 - plane, infinite domain
 - ► Re = 150

Statement of the Problem II

ightharpoonup Find $\dot{\varphi}_{opt} = \operatorname{argmin}_{\dot{\varphi}} \mathcal{J}(\dot{\varphi})$, where

$$\begin{split} \mathcal{J}(\dot{\varphi}) &= \frac{1}{2} \int_0^T \left\{ \left[\begin{array}{c} \text{power related to} \\ \text{the drag force} \end{array} \right] + \left[\begin{array}{c} \text{power needed to} \\ \text{control the flow} \end{array} \right] \right\} \, dt \\ &= \frac{1}{2} \int_0^T \oint_{\Gamma_0} \left\{ \left[p(\dot{\varphi}) \mathbf{n} - \mu \mathbf{n} \cdot \mathbf{D} (\mathbf{v}(\dot{\varphi})) \right] \cdot \left[\dot{\varphi} \left(\mathbf{e}_\mathbf{z} \times \mathbf{r} \right) + \mathbf{v}_\infty \right] \right\} \, d\sigma dt \end{split}$$

Subject to:

$$\begin{cases} \left[\begin{array}{c} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v} - \mu \Delta \mathbf{v} + \boldsymbol{\nabla} p \\ \boldsymbol{\nabla} \cdot \mathbf{v} \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] & \text{in } \Omega \times (0, T), \\ \mathbf{v} = 0 & \text{at } t = 0, \\ \mathbf{v} = \dot{\varphi}_{opt} \tau & \text{on } \Gamma \end{cases}$$

Abstract Framework I

Constrained optimization problem

$$\begin{cases} \min_{(x,\varphi)} \tilde{\mathcal{J}}(x,\varphi) \\ S(x(\varphi),\varphi) = 0 \end{cases}$$

▶ Equivalent UNCONSTRAINED optimization problem (note that $x = x(\varphi)$)

$$\min_{\varphi} \tilde{\mathcal{J}}(x(\varphi), \varphi) = \min_{\varphi} \mathcal{J}(\varphi)$$

► First–Order OPTIMALITY CONDITIONS (\mathcal{U} - Hilbert space of controls) $\forall_{\varphi' \in \mathcal{U}} \ \mathcal{J}'(\varphi; \varphi') = (\nabla \mathcal{J}, \varphi')_{\mathcal{U}} = 0,$

with the GÂTEAUX DIFFERENTIAL

$$\mathcal{J}'(\varphi;\varphi') = \lim_{\epsilon \to 0} \frac{1}{\epsilon} [\mathcal{J}(\varphi + \epsilon \varphi') - \mathcal{J}(\varphi)].$$

Abstract Framework II

Minimization of $\mathcal{J}(\varphi)$ with a DESCENT ALGORITHM in \mathcal{U} \Longrightarrow solution to a STEADY STATE of the ODE in \mathcal{U}

$$\begin{cases} \frac{d\varphi}{d\tau} = -\mathcal{Q}\nabla_{\varphi}\mathcal{J}(\varphi) & \text{on } \tau \in (0,\infty) \text{ (pseudo-time)}, \\ \varphi = \varphi_0 & \text{at } \tau = 0. \end{cases}$$

- Typically well-behaved (quadratic) cost functionals
- ► Typically ill-behaved constraints: THE NAVIER-STOKES SYSTEM
 - nonlinear, nonlocal, multiscale, evolutionary PDE,
- ▶ Dimensions:
 - ▶ state: $10^6 10^7$ DoF $\times 10^2 10^3$ time levels
 - ightharpoonup control: $10^4 10^5$ DoF $imes 10^2 10^3$ time levels
- ▶ No hope of using "matrix" formulation ...
- Formulation equivalent to Lagrange Multipliers

Differential of the Cost Functional

▶ The cost functional:

$$\begin{split} \mathcal{J}(\dot{\varphi}) &= \frac{1}{2} \int_0^T \left\{ \left[\begin{array}{c} \text{power related to} \\ \text{the drag force} \end{array} \right] + \left[\begin{array}{c} \text{power needed to} \\ \text{control the flow} \end{array} \right] \right\} \, dt \\ &= \frac{1}{2} \int_0^T \oint_{\Gamma_0} \left\{ \left[p(\dot{\varphi}) \mathbf{n} - \mu \mathbf{n} \cdot \mathbf{D} (\mathbf{v}(\dot{\varphi})) \right] \cdot \left[\dot{\varphi} \left(\mathbf{e}_z \times \mathbf{r} \right) + \mathbf{v}_{\infty} \right] \right\} \, d\sigma \, dt, \end{split}$$

Expression for the Gâteaux differential:

$$\mathcal{J}'(\dot{\varphi};h) = \frac{1}{2} \int_{0}^{T} \oint_{\Gamma_{0}} \left\{ \left[p'(h)\mathbf{n} - \mu\mathbf{n} \cdot \mathbf{D} \left(\mathbf{v}'(h) \right) \right] \cdot \left[\dot{\varphi} \left(\mathbf{e}_{z} \times \mathbf{r} \right) + \mathbf{v}_{\infty} \right] + \right.$$

$$\left[p(\dot{\varphi})\mathbf{n} - \mu\mathbf{n} \cdot \mathbf{D} (\mathbf{v}(\dot{\varphi})) \right] \cdot \left(\mathbf{e}_{z} \times \mathbf{r} \right) h \right\} d\sigma dt = \mathbf{B}_{1}$$

$$= (\nabla \mathcal{J}(t), h)_{L_{2}([0, T])}$$

The fields $\{\mathbf{v}'(h), p'(h)\}$ solve the linearized perturbation system.

▶ How to calculate the GRADIENT $\nabla \mathcal{J}$?

Sensitivities and Adjoint States

The linearized perturbation system

$$\begin{cases} \mathcal{N} \left[\begin{array}{c} \mathbf{v}' \\ p' \end{array} \right] = \left[\begin{array}{c} \frac{\partial \mathbf{v}'}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v}' + (\mathbf{v}' \cdot \nabla)\mathbf{v} - \mu \Delta \mathbf{v}' + \nabla p' \\ -\nabla \cdot \mathbf{v}' \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] & \text{in } \Omega \times (0, T), \\ \mathbf{v}' = 0 & \text{at } t = 0, \\ \mathbf{v}' = h\tau & \text{on } \Gamma \times (0, T) \end{cases}$$

Duality pairing defining the adjoint operator

$$\left\langle \mathcal{N} \left[\begin{array}{c} \textbf{v}' \\ \textbf{p}' \end{array} \right], \left[\begin{array}{c} \textbf{v}^* \\ \textbf{p}^* \end{array} \right] \right\rangle_{L_2(0,T;L_2(\Omega))} = \left\langle \left[\begin{array}{c} \textbf{v}' \\ \textbf{p}' \end{array} \right], \mathcal{N}^* \left[\begin{array}{c} \textbf{v}^* \\ \textbf{p}^* \end{array} \right] \right\rangle_{L_2(0,T;L_2(\Omega))} + \underline{\textbf{B}_1} + \underline{\textbf{B}_2}$$

► The adjoint system (TERMINAL VALUE PROBLEM !!)

$$\begin{cases} \mathcal{N}^* \begin{bmatrix} \mathbf{v}^* \\ p^* \end{bmatrix} = \begin{bmatrix} -\frac{\partial \mathbf{v}^*}{\partial t} - \mathbf{v} \cdot [\nabla \mathbf{v}^* + (\nabla \mathbf{v}^*)^T] - \mu \Delta \mathbf{v}^* + \nabla p^* \\ -\nabla \cdot \mathbf{v}^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} & \text{in } \Omega \times (0, T), \\ \mathbf{v}^* = \mathbf{0} & \text{at } t = T, \\ \mathbf{v}^* = \mathbf{r} \times (\dot{\varphi} \mathbf{e}_z) + \mathbf{v}_{\infty} & \text{on } \Gamma \times (0, T) \end{cases}$$

Cost Functional Gradient

► The ADJOINT STATE and DUALITY PAIRING can now be used to re—express the cost functional differential as:

$$\mathcal{J}'(\dot{\varphi};h) = \frac{1}{2} \int_0^T \oint_{\Gamma} \left\{ \mu R \mathbf{n} \cdot \mathbf{D}(\mathbf{v}^*) \cdot \tau + \mu \mathbf{n} \cdot \mathbf{D}(\mathbf{v}(\dot{\varphi})) \cdot (\mathbf{e}_z \times \mathbf{r}) \right\} \ h \, d\sigma \, dt$$

▶ Identification of the COST FUNCTIONAL GRADIENT

$$\mathcal{J}'(\dot{arphi};h) = (\nabla \mathcal{J}(t),h)_{L_2([0,T])} = \int_0^T \nabla \mathcal{J}(t) h dt$$

$$\nabla \mathcal{J}(t) = \frac{1}{2} \oint_{\Gamma} \{ \mu R \mathbf{n} \cdot \mathbf{D}(\mathbf{v}^*) \cdot \tau + \mu \mathbf{n} \cdot \mathbf{D}(\mathbf{v}(\dot{\varphi})) \cdot (\mathbf{e}_z \times \mathbf{r}) \} d\sigma$$

Optimality (KKT) system

▶ Complete optimality system for $\dot{\varphi}_{opt}$, $[\mathbf{v}_{opt}, p_{opt}]$, and $[\mathbf{v}^*, p^*]$

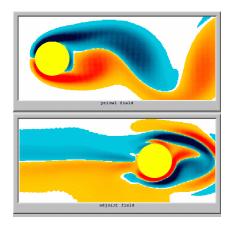
$$\begin{cases} \frac{1}{2} \oint_{\Gamma} \left\{ \mu R \mathbf{n} \cdot \mathbf{D}(\mathbf{v}^*) \cdot \tau + \mu \mathbf{n} \cdot \mathbf{D}(\mathbf{v}(\dot{\varphi}_{opt})) \cdot (\mathbf{e}_z \times \mathbf{r}) \right\} d\sigma = 0 \\ \begin{cases} \left[\begin{array}{c} \frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} - \mu \Delta \mathbf{v} + \nabla \rho \\ \nabla \cdot \mathbf{v} \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] & \text{in } \Omega \times (0, T), \\ \mathbf{v} = 0 & \text{at } t = 0, \\ \mathbf{v} = \dot{\varphi}_{opt} \tau & \text{on } \Gamma \end{cases} \\ \begin{cases} \mathcal{N}^* \left[\begin{array}{c} \mathbf{v}^* \\ \rho^* \end{array} \right] = \left[\begin{array}{c} -\frac{\partial \mathbf{v}^*}{\partial t} - \mathbf{v} \cdot \left[\nabla \mathbf{v}^* + (\nabla \mathbf{v}^*)^T \right] - \mu \Delta \mathbf{v}^* + \nabla \rho^* \\ -\nabla \cdot \mathbf{v}^* \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] & \text{in } \Omega \times (0, T), \\ \mathbf{v}^* = 0 & \text{at } t = T, \\ \mathbf{v}^* = \mathbf{r} \times (\dot{\varphi}_{opt} \mathbf{e}_z) + \mathbf{v}_{\infty} & \text{on } \Gamma \end{cases}$$

- A counterpart of the Euler–Lagrange equation
- Solved with an iterative Gradient Algorithm (e.g., Conjugate Gradients, quasi-Newton, etc.)

An Iterative Optimization Procedure

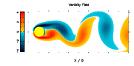
- 0. provide initial guess $\dot{\varphi}^0$
- 1. Solve for $\{\mathbf{v}(\dot{\varphi}^i); p(\dot{\varphi}^i)\}$ on [0, T]
- 2. Solve for $\{\mathbf{v}^*(\dot{\varphi}^i); p^*(\dot{\varphi}^i)\}$ on [0, T]
- 3. Use $\{\mathbf{v}(\dot{\varphi}^i); p(\dot{\varphi}^i)\}$ and $\{\mathbf{v}^*(\dot{\varphi}^i); p^*(\dot{\varphi}^i)\}$ to compute $\nabla \mathcal{J}^i(t)$ on [0, T]
- 4. update control according to $\dot{\varphi}^{i+1}(t) = \dot{\varphi}^{i}(t) \alpha_{i}\gamma_{i}(\nabla \mathcal{J}(t))$
- 5. iterate 1. through 4. until convergence, i.e. until $\mathbf{\nabla}J^{i}\left(t\right)\simeq0$

Primal and Adjoint Simulations for Cylinder Rotation as Control

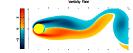


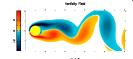
Results

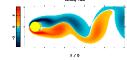
No Control



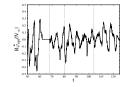
Flow Pattern Modifications due to Control (T = 6)

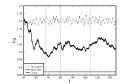


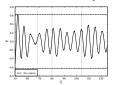




▶ Optimal Control $\dot{\varphi}_{opt}$, drag coefficient c_D , transverse velocity v



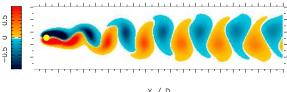




PART II FEEDBACK STABILIZATION OF LAMINAR WAKE FLOWS

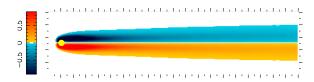
Navier-Stokes Equation, Re = 75

Stable Solution

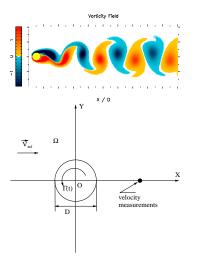


X / D

Unstable Solution

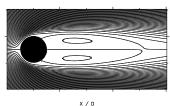


Wake Stabilization Problem



- Objectives Given:
 - cylinder rotation $\Gamma(t)$ as FLOW ACTUATION,
 - ▶ pointwise velocity measurements $[u(x_m), v(x_m)]$ as SYSTEM OUTPUT,
- ► Determine the OPTIMAL STABILIZING FEEDBACK CONTROL LAW
- Assumptions:
 - incompressible flow
 - plane, infinite domain
 - ► Re = 75

► Steady symmetric solution as the target flow Streomlines



- ► For simplicity, let us focus on EULER FLOWS
- Steady state Euler equations in 2D:

$$\boldsymbol{\nabla} \times [(\mathbf{v} \cdot \boldsymbol{\nabla}) \mathbf{v} + \boldsymbol{\nabla} \boldsymbol{p} = 0] \quad \Rightarrow \quad \frac{d\omega}{dt} = 0 \quad \Rightarrow \quad \begin{cases} \Delta \psi = f(\psi) & \text{in } \Omega, \\ \psi = 0 & \text{on } \partial \Omega, \\ \psi \to U_{\infty} \boldsymbol{y} & \text{for } |(\boldsymbol{x}, \boldsymbol{y})| \to \infty \end{cases}$$

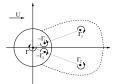
Arbitrariness of $f(\Psi)$ reflects NONUNIQUENESS of solutions

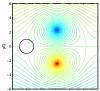
Family of SADOVSKII FLOW solutions (Elcrat et al., JFM 409) Constant–vorticity vortex (parametrized by α) embedded in irrotational flow

$$f(\psi) = \begin{cases} -\omega, & \psi \leq \alpha, \\ 0, & \psi > \alpha, \end{cases} \overset{\alpha}{\underset{>}{\sim}} \frac{1}{2}$$

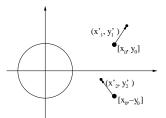
- Continuous families of solutions parametrized by $\Gamma = \iint_{\Delta} \omega \, dA$
- ▶ For $\alpha \to -\infty$ (or, $|\omega| \to \infty$), FÖPPL'S (1913) POTENTIAL—FLOW SOLUTION

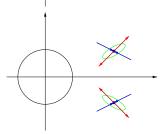
$$\begin{cases} (r^2 - R^2)^2 = 4r^2y^2, \\ \Gamma = 2\pi \frac{(r^2 - R^2)^2(r^2 + R^2)}{r^5} \end{cases}$$





Linearized Föppl Model — Open-Loop Stability





► Linearization with respect to the perturbation variables **X**′

$$\begin{bmatrix} x_1 \\ y_1 \\ x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_{10} \\ y_{10} \\ x_{20} \\ y_{20} \end{bmatrix} + \epsilon \begin{bmatrix} x_1' \\ y_1' \\ x_2' \\ y_2' \end{bmatrix}$$

► The linear system:

$$\frac{d}{dt}\mathbf{X}' = \mathcal{A}\mathbf{X}', \text{ where } \mathcal{A} = \frac{D\mathcal{F}}{D\mathbf{X}}\Big|_{0}$$

► Eigenvalues:

$$\lambda_1 = \lambda > 0$$
 $\lambda_3 = i \lambda_{lm}$
 $\lambda_2 = -\lambda < 0$ $\lambda_4 = -i \lambda_{lm}$

Linearized Föppl Model & Vortex Shedding

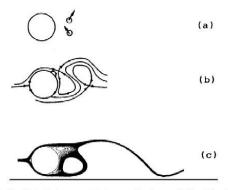


FIG. 13. Similarity between (a) the unstable eigenmode V_1 of the low-dimensional model, (b) the sketch plotted by Perry *et al.*, ¹⁰ and (c) the instantaneous streamlines obtained in this paper by direct numerical simulation at Reynolds number Re=100 at time t=255.

S. Tang & N. Aubry, *Physics of Fluids* **9**, 2550-2561, (1997)

Controllability & Observability

CONTROLLABILITY — starting from an arbitrary initial state, can the control drive the state to zero?

$$\mathsf{rank} \left[\mathcal{B} \ \mathcal{A} \mathcal{B} \ \mathcal{A}^2 \mathcal{B} \ \mathcal{A}^3 \mathcal{B} \right] = 2 \neq 4 \ (\mathsf{not} \ \mathsf{controllable!})$$

OBSERVABILITY — starting from an arbitrary initial guess, can one reconstruct the state of the system based on available measurements?

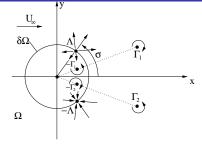
$$\mathsf{rank}\left[\mathcal{C}^{\mathsf{T}} \ \ \mathcal{A}^{\mathsf{T}}\mathcal{C}^{\mathsf{T}} \ \ (\mathcal{A}^{\mathsf{T}})^2\mathcal{C}^{\mathsf{T}} \ \ (\mathcal{A}^{\mathsf{T}})^3\mathcal{C}^{\mathsf{T}}\right] = \mathsf{4} \text{ (fully observable)}$$

MINIMAL REPRESENTATION — the smallest subsystem that is both CONTROLLABLE and OBSERVABLE $(x_{c/o} = \frac{x_1 - x_2}{2}, y_{c/o} = \frac{y_1 + y_2}{2})$

$$\frac{d}{dt} \underbrace{\mathcal{T}_{c/o} \mathbf{X}'}_{c/o} = \underbrace{\mathcal{T}_{c/o} \mathcal{A} \mathcal{T}_{c/o}^{\mathsf{T}}}_{0} \underbrace{\mathbf{X}' + \underbrace{\mathcal{T}_{c/o} \mathcal{B}}_{c/o}}_{0} \underbrace{u + \underbrace{\mathcal{T}_{c/o} \mathcal{G}}_{c/o}}_{0} \underbrace{w}, \text{ where } \mathcal{T}_{c/o} = \begin{bmatrix} 1/2 & 0 & -1/2 & 0 \\ 0 & 1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 & 0 \\ 0 & 1/2 & 0 & -1/2 \end{bmatrix}$$

Singular Solutions — a Paradigm for Studying Controllability & Observability

► Wall Blowing & Suction



► Actuation modeled as a SINK & SOURCE pair with the induction

∧ / 1 1 1

$$V_{\Lambda}(z) = \frac{\Lambda}{2\pi} \left(\frac{1}{z - e^{i\sigma}} - \frac{1}{z - e^{-i\sigma}} \right),$$

The linearized systems is completely controllable

The Control (Stabilization) Problem

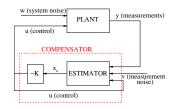
▶ Find a stabilizing feedback control $u = -\mathcal{K} X'$, such that

$$\mathcal{J}(u) = E\left[\int_0^\infty (\mathbf{y}^* \mathbf{Q} \mathbf{y} + u \mathcal{R} u) dt\right] = \min, \text{ with } \begin{cases} \frac{d}{dt} \mathbf{X}' = \mathcal{A} \mathbf{X}' + \mathcal{B} u + \mathcal{G} w \\ \mathbf{y} = \mathcal{C} \mathbf{X}' + \mathcal{D} u + \mathcal{H} w + \mathbf{v} \end{cases}$$

$$\mathbf{Q} = \begin{bmatrix} q_{11} & 0 \\ 0 & q_{22} \end{bmatrix}, \ \mathcal{R} > 0, \ w - \text{system noise (uncertainty)}, \ v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} - \text{measurement noise}$$

- System noise w may reflect the effect of (small) nonlinearities
- ► Linear-Quadratic-Gaussian (LQG) compensation approach

SEPARATION PRINCIPLE — independent solution of the control and estimation problems



Controller — Linear–Quadratic Regulator (LQR)

A STABILIZING FEEDBACK CONTROL which minimizes the cost functional

$$\mathcal{J}(u) = E\left[\int_0^\infty \left(\mathbf{y}^* \mathbf{Q} \mathbf{y} + u \mathcal{R} u\right) dt\right]$$

is given by

$$u = \mathcal{K} \mathbf{X}' = \mathcal{R}^{-1} \mathcal{B}^* \mathcal{S} \mathbf{X}',$$

where \mathcal{S} is a symmetric and positive–definite solution to the ALGEBRAIC RICCATI EQUATION

$$SA + A^{T}S - SBR^{-1}B^{T}S + \mathbf{Q} = 0$$

The **CLOSED-LOOP** system is thus:

$$\begin{cases} \frac{d}{dt} \mathbf{X}' = (\mathcal{A} - \mathcal{BK}) \mathbf{X}' + \mathcal{G} w \\ \mathbf{y} = (\mathcal{C} - \mathcal{DK}) \mathbf{X}' + \mathcal{H} w + \mathbf{v} \end{cases}$$

Estimator — Kalman Filter

The OPTIMAL estimate \mathbf{X}_e' of the state \mathbf{X}' which minimizes THE ERROR COVARIANCE

$$E\left[\int_0^\infty (\mathbf{X}' - \mathbf{X}'_e)^T (\mathbf{X}' - \mathbf{X}'_e) dt\right]$$

is given by solutions of the following **ESTIMATOR SYSTEM**:

$$\begin{cases} \frac{d}{dt} \mathbf{X}_{e}' = (\mathcal{A} - \mathcal{LC}) \mathbf{X}_{e}' + (\mathcal{B} - \mathcal{LD})u - \mathcal{L}\mathbf{y} \\ \mathbf{y}_{e} = \mathcal{C} \mathbf{X}_{e}' + \mathcal{D} u, \end{cases}$$

where \mathcal{L} is a symmetric and positive–definite solution to the ALGEBRAIC RICCATI EQUATION

$$\mathcal{A}\mathcal{L} + \mathcal{L}\mathcal{A}^{\mathsf{T}} - \mathcal{L}\mathcal{C}^{\mathsf{T}}\mathcal{R}^{-1}\mathcal{C}\mathcal{L} + \mathcal{G}\mathbf{Q}\mathcal{G}^{\mathsf{T}} = 0$$

Center Manifold in the Closed-Loop Nonlinear System

► The nonlinear Föppl system with closed—loop control

$$\frac{d}{dt} \begin{bmatrix} \boldsymbol{\xi} \\ \boldsymbol{\eta} \end{bmatrix} = \begin{bmatrix} \mathcal{A}_{11} & 0 \\ 0 & \mathcal{A}_{22} - \mathcal{BK} \end{bmatrix} \begin{bmatrix} \boldsymbol{\xi} \\ \boldsymbol{\eta} \end{bmatrix} + \begin{bmatrix} \mathbf{g}_1(\boldsymbol{\xi}, \boldsymbol{\eta}) \\ \mathbf{g}_2(\boldsymbol{\xi}, \boldsymbol{\eta}) \end{bmatrix}$$

where η are the MINIMAL REPRESENTATION (STABLE MANIFOLD) coordinates and ξ are the CENTER MANIFOLD coordinates

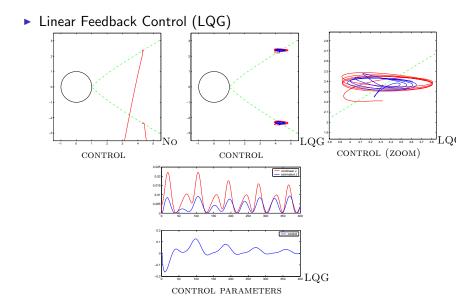
- ► A₁₁ has PURELY IMAGINARY EIGENVALUES

 ⇒ neutral linear stability INCONCLUSIVE for the nonlinear system
- ► THEOREM: There exists an invariant manifold given by $\eta = \Phi(\xi) = 0$ Proof — via a direct calculation of an invariant manifold reduction
- ► THEOREM: Periodic solutions of the REDUCED SYSTEM

$$\frac{d}{dt}\boldsymbol{\xi} = A_{11}\boldsymbol{\xi} + \mathbf{g}_1(\boldsymbol{\xi},0)$$

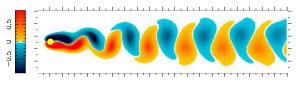
are STABLE for small initial data

Proof — by examining the Hamiltonian reduced to the center manifold



LQG stabilization of vortex shedding at Re = 75

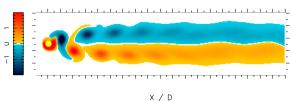
Vorticity Field



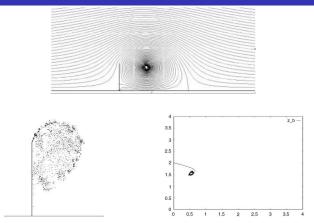
X / D

▶ LQG Control

Vorticity Field

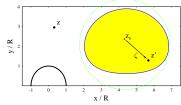


Stabilization of Trapped Vortices



Wall suction stabilization of trapped vortices Zannetti & Iollo, *Theor. Comp. Fluid Dyn.* **16**, (2003)

OBJECTIVE — Construct a singular (potential flow) solution approximating for large |x| the finite-vortex solution of Euler equations



▶ Potential induced by a VORTEX PATCH

$$\begin{split} \tilde{W}_P(z) &= (\varphi + i\psi)(z) = \frac{1}{2\pi i} \int_P \ln(z - z')\omega(z') \, dA(z') \\ &= \frac{\Gamma_0}{2\pi i} \ln(z - z_s) + \frac{1}{2\pi i} \int_P \ln\left(1 - \frac{\zeta}{z - z_s}\right) \omega(z_s + \zeta) \, dA(\zeta) \\ &= \frac{\Gamma_0}{2\pi i} \ln(z - z_s) - \frac{1}{2\pi i} \sum_{n=1}^\infty \frac{c_n}{n} (z - z_s)^{-n}, \quad |z - z_s| > \zeta_m, \end{split}$$

where

$$c_n(z_s) = \int_{\mathbb{R}} \omega(z_s + \zeta) \zeta^n dA(\zeta)$$

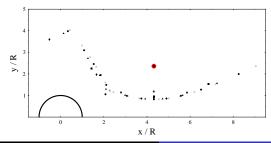
► Use the CIRCLE THEOREM to enforce the boundary conditions & truncate

$$\begin{split} W_{N}(z) &= W_{C}(z) + W_{F,N}(z) = W_{C}(z) + \tilde{W}_{P,N}(z) + \tilde{W}_{Q,N}(z) + \overline{\tilde{W}}_{P,N}\left(\frac{R^{2}}{z}\right) + \overline{\tilde{W}}_{Q,N}\left(\frac{R^{2}}{z}\right) \\ &= U_{\infty}\left(z + \frac{R^{2}}{z}\right) - \frac{\Gamma_{0}}{2\pi i}\left[\ln(z - z_{s}) - \ln\left(z - \frac{R^{2}}{\overline{z}_{s}}\right) - \ln(z - \overline{z}_{s}) + \ln\left(z - \frac{R^{2}}{z_{s}}\right)\right] - \\ &\frac{1}{2\pi i}\sum_{n=1}^{N} \frac{1}{n}\left[\frac{c_{n}}{(z - z_{s})^{n}} - (-1)^{n}\frac{\overline{c}_{n}}{\left(z - \frac{R^{2}}{\overline{z}_{s}}\right)^{n}}\left(\frac{z}{\overline{z}_{s}}\right)^{n} - \frac{\overline{c}_{n}}{(z - \overline{z}_{s})^{n}} + (-1)^{n}\frac{c_{n}}{\left(z - \frac{R^{2}}{z_{s}}\right)^{n}}\left(\frac{z}{z_{s}}\right)^{n}\right], \end{split}$$

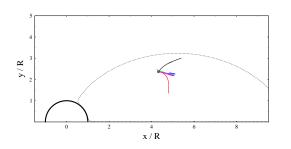
Nonlinear dynamical system — looking for fixed points

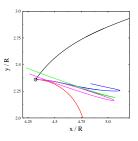
$$\hat{V}_{N}(z_{N}) = U_{\infty} \left(1 - \frac{R^{2}}{z_{N}^{2}} \right) - \frac{\Gamma_{0}}{2\pi i} \left[-\frac{1}{\left(z_{N} - \frac{R^{2}}{\overline{z}_{N}} \right)} - \frac{1}{\left(z_{N} - \overline{z}_{N} \right)} + \frac{1}{\left(z_{N} - \frac{R^{2}}{z_{N}} \right)} \right] + \frac{1}{2\pi i} \sum_{n=1}^{N} \left[(-1)^{n+1} \frac{R^{2} \overline{c}_{n}}{\left(z_{N} - \frac{R^{2}}{\overline{z}_{N}} \right)^{n+1}} \frac{z_{N}^{n-1}}{\overline{z}_{N}^{n+1}} - \frac{\overline{c}_{n}}{\left(z_{N} - \overline{z}_{N} \right)^{n+1}} - (-1)^{n+1} \frac{R^{2} c_{n}}{\left(z_{N} - \frac{R^{2}}{\overline{z}_{N}} \right)^{n+1}} \frac{1}{z_{N}^{2}} \right] = 0$$

- ► Higher–Order Föppl systems form a TWO–PARAMETER family depending on:
 - 1. the truncation order *N*
 - 2. the area A of the vortex region desingularizing the classical Föppl solution
- ► THEOREM: for A = 0, the classical Föppl equilibrium z_0 is also a solution of higher–order systems of arbitrary order N
- ► Additional SPURIOUS ROOTS appearing for higher truncation orders *N* (their number can be estimated from Bézout's theorem)

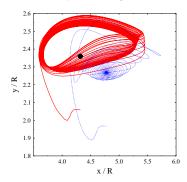


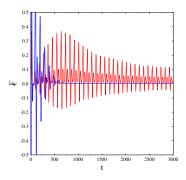
- ► THEOREM: For a vortex region with a "small" area A, the N—th order Föppl system admits an equilibrium z_N that is "close" to z₀, i.e., the classical Föppl equilibrium Proof via an application of the Fundamental Continuity Theorem to intersections of algebraic curves
- ► The LOCUS of the HIGHER—ORDER FÖPPL EQUILIBRIA corresponding to A increasing from 0 to A_{max} for different N





- Presence of the Center Manifold is structurally unstable
 - ▶ The Center Manifold disappears upon perturbation of the operator $\tilde{\mathcal{A}} = \mathcal{A} + \sum_{k}^{N} \mathcal{A}_{k}$ with terms corresponding to higher–order Föppl equilibria (unless \mathcal{A}_{k} have special structure which is not the case)
 - the uncontrollable modes in the higher-order Föppl system are now exponentially stable

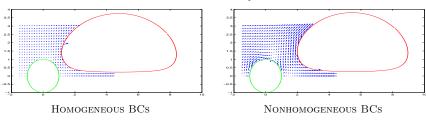




PART III INVERSE PROBLEM OF VORTEX DESIGN

Vortex Design as an Inverse Problem

► Euler Flows with different Boundary Conditions



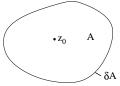
▶ Statement of the Inverse Problem — Determine the boundary streamfunction ψ_b (equivalently, normal velocity $\frac{\partial \psi_b}{\partial s} = \mathbf{v} \cdot \mathbf{n} \big|_{\partial \Omega}$) to obtain a flow with a prescribed shape of the vortex region

Possible formulations

Minimize the area of the region $\Delta A(\psi_b)$ between the prescribed and actual patch boundaries, i.e.,

$$\mathcal{J}(\psi_b) = \frac{1}{2} \iint_{\Delta A(\psi_b)} dx dy$$

• Characterization of the domain shape via MOMENTS n = 1, ...



$$M_n = \int_A (z-z_0)^n dA = \frac{i}{2(n+1)} \oint_{\partial A} (z-z_0)^{n+1} d\overline{z}$$

$$(M_0 - \text{area}, M_1 - \text{centroid}, M_2 - \text{ellipticity}, ...)$$

Cost Functional

$$\mathcal{J}(\psi_b) = \frac{1}{2} \sum_{n=1}^{N} \alpha_n \left[M_n(\psi_b) - \tilde{M}_n \right]^2$$

 $\{\tilde{M}_n\}_{n=1}^N$ — moments of prescribed vortex boundary (given)

lacktriangle Optimal Boundary Condition $\hat{\psi}_b$ determined by

$$\nabla \mathcal{J}(\hat{\psi}_b) = 0$$

▶ 2D steady Euler equation is a FREE-BOUNDARY PROBLEM

$$\begin{cases} |A(\psi_b)|\Delta\psi_{in} = \Gamma & \text{in } A(\psi_b), \\ \Delta\psi_{out} = 0 & \text{in } \Omega \backslash A(\psi_b), \\ \psi_{in} = \psi_{out} = \alpha & \text{on } \partial A(\psi_b), \\ \frac{\partial\psi_{in}}{\partial n} = \frac{\partial\psi_{out}}{\partial n} & \text{on } \partial A(\psi_b), \\ \psi_{out} = \psi_b & \text{on } \partial \Omega \end{cases}$$

- ▶ Differentiation of free-boundary problems requires tools of SHAPE-DIFFERENTIAL CALCULUS (Sokolowski & J.-P. Zolésio, 1992)
- Linear perturbation system obtained for $\psi_b + \epsilon \psi_b'$ (weak form)

$$\begin{cases} \mathcal{L}\psi' \triangleq |A(\psi_b)|\Delta\psi' - \frac{\Gamma}{\frac{\partial \psi}{\partial n}} \bigg|_{\partial A(\psi_b)} \delta\left(\mathbf{x} - \mathbf{x} \big|_{\partial A(\psi_b)}\right) \psi' \\ + \frac{\Gamma}{|A(\psi_b)|} \left(\oint_{\partial A(\psi_b)} \frac{\psi'}{\frac{\partial \psi}{\partial n}} \bigg|_{\partial A(\psi_b)} d\sigma \right) H(\psi - \alpha) = 0, & \text{in } \Omega \\ \psi' = \psi'_b & \text{on } \partial\Omega \end{cases}$$

► ADJOINT SYSTEM derived using the identity

$$\langle \mathcal{L}\psi', \psi^* \rangle = \langle \psi', \mathcal{L}^*\psi^* \rangle + b$$

$$\begin{cases} \mathcal{L}^* \psi^* \triangleq |A(\psi_b)| \Delta \psi^* + \\ + \frac{\Gamma}{\frac{\partial \psi}{\partial n}\Big|_{\partial A(\psi_b)}} \left(\frac{\int_{A(\psi_b)} \psi^* d\Omega}{|A(\psi_b)|} + \psi^* \right) \delta \left(\mathbf{x} - \mathbf{x} \Big|_{\partial A(\psi_b)} \right) \\ = \frac{|A(\psi_b)|}{\frac{\partial \psi}{\partial n}\Big|_{\partial A(\psi_b)}} \delta \left(\mathbf{x} - \mathbf{x} \Big|_{\partial A(\psi_b)} \right), & \text{in } \Omega \\ \psi^* = 0 & \text{on } \partial \Omega \end{cases}$$

► Gradient

$$oxed{oldsymbol{
abla} \mathcal{J}(\psi_b) = rac{\partial \psi^*}{\partial oldsymbol{n}}igg|_{\partial \Omega}}$$

Numerical Solution

▶ Noting that $\Delta \psi^* = 0$ in A and $\Omega \setminus A$, we have

$$\psi^*(z) = \frac{1}{2\pi} \oint_{\partial A(0)} \gamma^*(\zeta) \ln|z_0 - \zeta| ds_{\zeta} + \text{Image Terms}$$

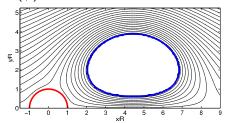
 γ^* — density of the single–layer potential (defined on ∂A)

Adjoint systems reduces to BOUNDARY INTEGRAL EQUATION

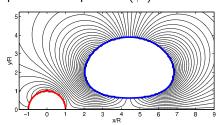
$$\frac{\partial \psi}{\partial n}\Big|_{\partial A(0)} \gamma^*(z_0) + \omega \oint_{\partial A(0)} \gamma^*(\zeta) s_1(z_0, \zeta) ds_{\zeta} + \omega \sum_{k=2}^4 \oint_{\partial A(0)} \gamma^*(\zeta) s_k(z_0, \zeta) ds_{\zeta} =
= \sum_{n=1}^N \alpha_n \left\{ \Re[M_n(\psi_b) - \tilde{M}_n] \Re[(z - z_0)^n] + \Im[M_n(\psi_b) - \tilde{M}_n] \Im[(z - z_0)^n] \right\}$$

► Solved using spectral interpolation with analytic treatment of the singularity (Kreiss, 1999)

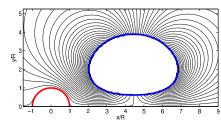
• direct problem (ψ)



• perturbation problem (ψ')

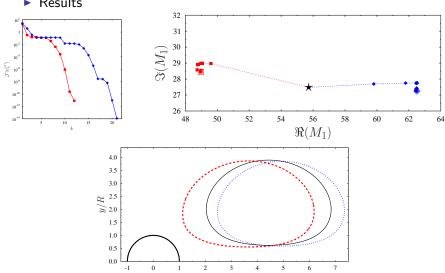


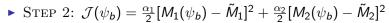
• adjoint problem (ψ^*)

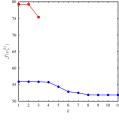


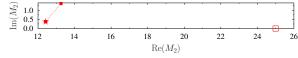
• STEP 1:
$$\mathcal{J}(\psi_b) = \frac{1}{2}[M_1(\psi_b) - \tilde{M}_1]^2$$

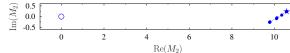
Results

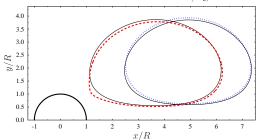






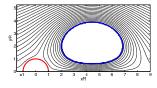


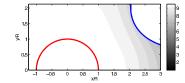




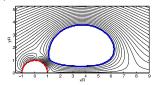
Vortex Design as an Inverse Problem Shape Differentiation, Perturbation & Adjoint Systems Computational Results

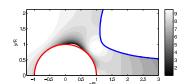
▶ No Control ($\psi_b \equiv 0$)



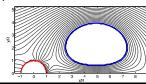


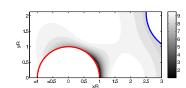
► Step 2, Case A





▶ Step 2, Case B





Conclusions

- Formulation of PDE control and estimation problems as constrained optimization
 - ▶ PDE-constrained gradients via Adjoint Equations
 - Vorticity form of the adjoint equations
 - Optimization of free boundary problems via shape—differential calculus
- ► Closed-Loop (Feedback) Control:
 - Control of singular solutions of Euler equations
 - Success of the linear (LQG) stabilization
 - Insights from the Nonlinear (Center Manifold) Analysis
- Vortex Design Problem:
 - Formulated an optimal control (design) problem for Euler flows with distributed vorticity
 - Key Enabler: shape-differentiation

► REFERENCES PART I — OPEN-LOOP CONTROL:

- B. Protas and W. Liao, "Adjoint-Based Optimization of PDEs in Moving Domains", Journal of Computational Physics 227 2707–2723, 2008.
- B. Protas, T. R. Bewley and G. Hagen, "A comprehensive framework for the regularization of adjoint analysis in multiscale PDE systems", *Journal* of Computational Physics 195(1), 49-89, 2004.
- B. Protas, "On the "Vorticity" Formulation of the Adjoint Equations and its Solution Using Vortex Method", Journal of Turbulence 3, 048, 2002.
- B. Protas and A. Styczek, "Optimal Rotary Control of the Cylinder Wake in the Laminar Regime", *Physics of Fluids* 14(7), 2073–2087, 2002.
- B. Protas, "Vortex Design Problem", Journal of Computational and Applied Mathematics 236, 1926–1946, 2012.

► References Part II — Closed-Loop (Feedback) Control:

- B. Protas, "Vortex Dynamics Models in Flow Control Problems", Nonlinearity 21, R203–R250 (invited paper), 2008.
- B. Protas, "Center Manifold Analysis of a Point-Vortex Model of Vortex Shedding with Control", Physica D 228 (2), 179–187, 2007.
- B. Protas, "Higher-order Föppl models of steady wake flows", Physics of Fluids 18(11), 117109, 2006.
- B. Protas, "Linear Feedback Stabilization of Laminar Vortex Shedding Based on a Point Vortex Model", *Physics of Fluids* 16(12), 4473-4488, 2004.