Infosys-ICTS Chandrasekhar Lectures

- I. Classical Lagrangian Elasticity
 - A. Introduction
 - B. Deformation and Strain
 - C. Elastic energy
 - 1. Isotropic and uniaxial energies
 - 2. Voigt Notation
 - D. Forces and stresses
 - E. Coupling to external fields
 - F. Affine and Non-affine response
- II. Elastic Waves and Elastic Response
 - A. Linearized sound waves
 - B. Response and thermal fluctuations
 - C. Elastic membranes
- III. Lattice Models
 - A. Central-force models
 - B. Linearized limit
 - C. Continuum limit
- IV. Maxwell-Calladine relations and marginally coordinated lattices
 - A. The Maxwell count of "floppy" lmodes
 - B. States of self stress
 - C. Equilibrium and compatibility matrices and the Calladine index theorem
 - D. Periodic "Maxwell" lattices
 - E. States of self stress and elasticity
 - F. Guest-Hutchinson modes
 - G. Kagome and twisted kagome lattices:
 - 1. States of self-stress and bulk zero modes
 - 2. Fully gapped bulk bands and zero-energy surface states
- V. Topological mechanics
 - A. Introduction
 - B. The Su-Schrieffer-Heeger (SSH) model: topological invariants and surface states
 - 1. Electronic states of polyacetylene
 - 2. A mechanical SSH system
 - C. Topological phonons
 - 1. Generalized kagome lattices
 - 2. Mechanical Graphene: Weyl modes
 - 3. Square and pyrochlore lattices
- VI. Other topics
 - A. Rubbers and strongly non-linear elasticity
 - B. Nematic elastomers: broken symmetry and Goldston modes
 - C. Filamentous networks
 - D. Effective medium theory for random networks.