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The Goal, The Motivation

F The Goal

G Try to derive the string dual ("spacetime") to the 0-dimensional ("without scat-
tering") Gaussian Matrix Model (in the large N ’t Hooft limit).

Z[tk] =

∫
[dM ]N×Ne

−NTrM2+
∑
k tkNTrM2k

F The Motivation

G Understand the "inner workings" of AdS/CFT in a model which keeps enough
structural complexity as well as analytic tractability.

G Could describe a simple subsector of the string theory on AdS5 × S5 describing
half BPS Wilson Loops in N = 4 Super Yang-Mills theory.
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The Thread of Logic

F Describe the suggestive combinatorics of correlators 〈
∏n
i=1 TrM2ki〉g=0 in a Gaus-

sian matrix model - in terms of counting branched holomorphic covers from P1 →
P1 with three branching points (Belyi Maps).

F Realisation of this picture in terms of gluing together Feynman diagrams ("open-
closed string duality") and explicit Belyi maps.

F Identify target P1 with the Riemann Surface associated to the Gaussian matrix
model (y2 = x2 − 4) and see a skeletal version of AdS/CFT.

F Connect this string description to the conventional A-model topological string the-
ory on P1, by comparing with correlators 〈

∏
i σ2ki(Q)〉g=0 :

G Obtain the right selection rule for the degree = k =
∑
i ki.

G Matching of explicit answers on both sides for arbitrary ki and any n−point
function (at genus zero).
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1 Belyi Maps



The Importance of Three Permutations

F Gaussian Matrix model correlators can be expressed in terms of three sets of per-
mutations. (Itzykson et.al., de Mello Koch and Ramgoolam)

F Nn〈
∏n
i TrM2ki〉g =

∑
α,γ∈S2k

δ(α · β · γ)N2−2g(α,β,γ).

F (α, β, γ) are conjugacy classes in S2k where 2k = 2
∑
i ki is the total number of

half-edges in the diagram. Related to vertices, edges and faces.

F VERTICES: β ∈ (2k1)(2k2) . . . (2kn) captures the cyclic information in the half edges
at each vertex.

F EDGES: α ∈ [2k] consists only of two cycles (transpositions) and captures the vari-
ous possible Wick contractions amongst the half-edges (edge information).

F FACES: γ = β−1α−1 captures the arrangement of half-edges around a face.
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Permutations and Branched Coverings

F Permutations can be naturally associated with branching structure of holomorphic
maps of Riemann surfaces Σ

(WS)
g → Σ

(T )
G . (Riemann)

F Cycle structure (l1)(l2) . . . (ln) ∈ Sd associated to each branch point. Branching
number b =

∑
i(li − 1) = d− n. (d is the degree of the covering).

F Riemann-Hurwitz relation: 2− 2g = d(2− 2G)−B. (B =
∑
br.pts. b)
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Three Permutations and Belyi Maps

F Associate (α, β, γ) ∈ S2k with three branchings in a degree 2k cover of P1 by Σ
(WS)
g .

F bβ = 2k − n; bα = 2k − k; bγ = 2k − F ⇒ B = 5k − n− F.

F 2d(2− 2× 0)−B = n− k + F = 2− 2g.

F Satisfies Riemann-Hurwitz relation with G = 0. Moreover, need α · β · γ = 1 for
three branch points on a sphere.

F Thus, combinatorics of the matrix model correlators suggests one is simply count-
ing a sum over holomorphic maps (of degree 2k) from Σ(WS) → P1 with branching
over (0, 1,∞) - Belyi Maps. (Itzykson et.al., de Mello Koch-Ramgoolam)

F Can we see this as some kind of realization of AdS/CFT? Relate it to known facts
about this matrix model? Is there a conventional description of this dual string
theory?
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2 Belyi Maps and Open-Closed String

Duality



Belyi Maps and Arithmetic Surfaces

F Belyi’s Theorem: Belyi maps are admissible at special points in the moduli space of
riemann surfaces - arithmetic Riemann surfaces.

F An arbitrary Riemann surface can be obtained by gluing together strips of varying
width (Strebel).

F Underlying mechanism for open-closed string duality converting Feynman-’tHooft
diagrams (strips) to world sheets (R.G. 2003-05).

F Arithmetic surfaces are those where the width is a positive integer (Mulase-Penkava).

F In fact, natural in the open-closed string duality of matrix models to consider inte-
ger width strips (Razamat).

F Use this to give an explicit realization of Belyi maps from the world sheet of the
matrix model to a target P1.
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Triangulated Riemann Surfaces

F Gaussian matrix model generates equilaterally triangulated Riemann surfaces - dual
edges (i.e. width of double lines) are of unit length.

F Earlier Intuition: A discrete approximation to a Riemann surface.

F NOW: They are special (interior) points in the moduli space of Riemann surfaces.

F Can explicitly define Belyi maps from these special Riemann surfaces to P1.
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Explicit Belyi Map

F First, give the Belyi Map for each strip (Feynman-’t Hooft fat graph edge) and then
show how this is compatible with the gluing of strips.

0 10 1

X(z)

X(z) = sin2 πz

2
.

Each strip of width one is mapped once onto a P1. (0, 1)→ (0, 1).
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Gluing at the Faces

F At each p-gonal face of Feynman graph, (i.e. dual vertex of order p ) the gluing is
through w = z

2
p ("closing up holes").

F Composing with X(z) = sin2 πz
2 → X(w) ∝ wp.

F There is a branch point of order p at the centre of each face.
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Gluing at the Vertices

F At each 2k-fold vertex of the Feynman graph (2k-gonal dual face) the gluing is
through u ∝ e 2πiz

2k . Here the vertex is at z = i∞.

F Composed with X(z) = sin2 πz
2 → X(u) ∝ u−k.

F There is a branch point of order k at each vertex (insertion of TrM2k).
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Relation to the Combinatorics

F Therefore, we have a branched cover of P1 with a branching (k1)(k2) . . . (kn) at∞
of degree k =

∑
i ki.

F We have branching at (0, 1) as well determined by the faces. Only three branch
points on the target P1.

F Consider now the further map Y 2 = 4X(1−X) - a double cover of the above P1.

F X = 0, 1→ Y = 0 and X = 1
2 → Y = 1.

F Now we have a branched cover of degree 2kwith branching β = (2k1)(2k2) . . . (2kn)

at Y =∞, α ∈ [2k] at Y = 1 and γ determined by the faces at Y = 0.

F Thus open-closed string duality as implemented by the above gluing, gives a com-
plete realization of the combinatoric picture of Belyi maps.
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3 Skeletal AdS/CFT



The Skeleton continued

F The target space P1 given by Y 2 = 4X(1 − X) (which is covered k times by the
worldsheet) is nothing but the Riemann surface associated to the Gaussian matrix
model.

F The branch cut at (0, 1) is the usual cut corresponding to the Wigner semi-circle
law.

0 1
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The Skeleton continued

F External Vertex operator insertions Oki ↔ TrM2ki at infinity ("UV") each have a
branching number ki.

F Different Feynman graphs → sum over holomorphic maps with fixed branching
data at infinity: (k1) . . . (kn).

F Leads to additional branching at 0 and 1 ("IR"), the two endpoints of the holograph-
ically emergent "space" of eigenvalues.

F The spatial slices of the worldsheet (the interval [0, 1] on each strip) mapped onto
the eigenvalue cut [0, 1] (the "emergent space").

F Basically the strings coming in from infinity split and join at these specific points
(cf. Gross-Mende, Eynard-Orantin).

F These holomorphic maps are stringy Witten diagrams in the target space P1.
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4 Relation to the A-Model Topological

String



A Conventional Worldsheet Description ?

F Many features of the dual string seem to suggest a topological character.

F In particular, there is a conventional string theory which "counts" holomorphic
maps to a target space - the A-Model topological string theory.

F The theory with target P1 has basically two sets of observables σm(P ), σm(Q), (m =

0, 1, . . .) - "gravitational descendants" of the two nontrivial cohomology classes.

F We make the natural identification σ2ki(Q) ↔ TrM2ki and explicitly compare cor-
relators.

F Consider correlators 〈σ2k1−1(Q)σ2k2−1(Q)
∏n
i=3 σ2ki(Q)〉g=0. They obey a selection

rule for the degree:

n∑
i=1

2ki − 2 = 2(G− 1) + c1(ΣG)d = −2 + 2d⇒ d =
n∑
i=1

ki = k.
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Comparing Correlators
F Thus the topological string gets a non-zero contribution only from holomorphic

maps of the same degree as in the Belyi map picture. Important check.

F So try to compute the answers explicitly on both matrix model and string theory
side and compare.

F

4〈σ2k1−1(Q)σ2k2−1(Q)〉g=0 =
2k1!

(k1!)2
2k2!

(k2!)2
1

k1 + k2
= 〈 1

k1
TrM2k1

1

k2
TrM2k2〉g=0.

F

4〈σ2k1−1σ2k2−1σ2k3〉g=0 =
2k1!

(k1!)2
2k2!

(k2!)2
2k3!

(k3!)2
= 〈 1

k1
TrM2k1

1

k2
TrM2k2

1

k3
TrM2k3〉g=0.

F So two and three point functions agree very nicely.
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Comparing Correlators continued

F The general n-point string correlator at genus zero given by:

4〈σ2k1−1(Q)σ2k2−1(Q)
n∏
i=3

σ2ki(Q)〉g=0 = (
n∑
i=1

ki)
n−3

n∏
i=1

2ki!

(ki!)2
.

F The general matrix model planar connected n-point correlator given by:

〈
n∏
i=1

1

ki
TrM2ki〉g=0 =

(
∑n
i=1 ki − 1)!

(
∑n
i=1 ki − n+ 2)!

n∏
i=1

2ki!

(ki!)2
.

F There appears to be a slight mismatch for n > 3. Note that (k−1)!
(k−n+2)! = kn−3 +

ckn−2 + . . ..

F There is agreement in the large k limit (BMN type regime).

F Actually, there appears to be an attractive interpretation of the finite k corrections.
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Comparing Correlators continued

F In fact, in the string correlator on the LHS: 〈σ2k1−1(Q)σ2k2−1(Q)
∏n
i=3 σ2ki(Q)〉g=0

we have for (for n > 3) contact contributions when two of the operators collide
(Dijkgraaf, Verlinde and Verlinde).

F This corresponds in our language to two branch points on the worldsheet (with cy-
cle structure (k3)(k4)) coming together and giving a single branchpoint with cycle
structure (k3 + k4).

F So the string correlator also includes contributions from matrix model correlators
where TrM2k3TrM2k4 → TrM (2k3+2k4).

F Use the identity kn−3 =
∑n
m=3 S̃

(m)
n−2

(k−1)!
(k−m+2)! where S̃(m)

n−2 is the number of ways of
partitioning a set of (n− 2) elements into m non-empty subsets.

F Then one can write the string correlator exactly as a sum of all the matrix model
correlators which include bringing together various subsets of operators into colli-
sion.
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To Conclude....To Continue

F Matrix models can give a hands on picture of gauge-string duality with some un-
usual features.

F A dual topological string with amplitudes localised at special points on the moduli
space which counts holomorphic maps to P1 with three branchpoints.

F Arises in a precise way from an implementation of open-closed string duality via
gluing of Feynman-’tHooft fatgraphs.

F The target space: Riemann surface associated with the matrix model eigenvalues.

F The holomorphic (Belyi) maps describe the stringy Witten diagrams in the target
space P1.

F Seems to give striking agreement with conventional A-model topological string
correlators.

F Can we find the A-model topological string by localization of the IIB string theory
on AdS5 × S5?
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"This discovery, which is technically so simple, made a very strong impression on me,
and it represents a decisive turning point in the course of my reflections....I do not
believe that a mathematical fact has ever struck me quite so strongly as this one, nor
had a comparable psychological impact."

- A. Grothendieck (on Belyi maps and the Belyi theorem)


	Belyi Maps
	Belyi Maps and Open-Closed String Duality
	Skeletal AdS/CFT
	Relation to the A-Model Topological String

