Processes in Innate Immunity

[1] Recognize the presence of infection and sound the alarm.

[2] Recruitment effector functions to kill pathogen, prevent its replication.

[3] Recruit the adaptive immune response if needed.

Pathogen damage human cells in different ways

	Mechanisms of tissue damage by pathogens			
	Exotoxin release	Endotoxin release	Direct cytopathic effect	
Pathogenic mechanism				
Infectious agent	Vibrio cholerae	Yersinia pestis	Influenza virus	
Disease	Cholera	Plague	Influenza	

Figure 2.1 The Immune System, 3ed. (© Garland Science 2009)

Pathogens exploit different cellular and tissue environments

	Extracellular		Intracellular	
	Interstitial spaces, blood, lymph	Epithelial surfaces	Cytoplasmic	Vesicular
Site of infection		0000		
Organisms	Viruses Bacteria Protozoa Fungi Worms	Neisseria gonorrhoeae Candida albicans Worms	Viruses <i>Listeria</i> Protozoa	Mycobacteria Trypanosomes Cryptococcus neoformans
Defense mechanism	Complement Macrophages Neutrophils	Antimicrobial peptides	NK cells	Activated macrophages

Figure 2.2 The Immune System, 3ed. (© Garland Science 2009)

Complement: a system of serum proteins that tags pathogens to facilitate their destruction.

Phagocytosis of bacteria by macrophages

Figure 1.17 The Immune System, 3ed. (© Garland Science 2009)

Toll-like receptors recognize microbe-specific macromolecules

Specificities of Toll-like receptors

Recognition of microbial products through Toll-like receptors					
Receptor	Ligands	Microorganisms recognized	Cells carrying receptor	Cellular location of receptor	
TLR1:TLR2 heterodimer	Lipopeptides GPI	Bacteria Parasites e.g., trypanosomes	Monocytes, dendritic cells,	Plasma membrane	
TLR2:TLR6 heterodimer	Lipoteichoic acid Zymosan	Gram-positive bacteria Yeasts (fungi)	mast cells	Plasma membrane	
TLR3	Double-stranded viral RNA	Viruses e.g., West Nile virus	NK cells	Endosomes	
TLR4:TLR4 homodimer	Lipopolysaccharide	Gram-negative bacteria	Macrophages, dendritic cells, mast cells, eosinophils	Plasma membrane	
TLR5	Flagellin	Motile bacteria having a flagellum	Intestinal epithelium	Plasma membrane	
TLR7	Single-stranded viral RNAs	Viruses e.g., human immunodeficiency virus (HIV)	Plasmacytoid dendritic cells, NK cells, eosinophils, B cells	Endosomes	
TLR8	Single-stranded viral RNAs	Viruses e.g., influenza	NK cells	Endosomes	
TLR9	Unmethylated CpG-rich DNA	Bacteria Viruses e.g., herpes viruses	Plasmacytoid dendritic cells, B cells, eosinophils, basophils	Endosomes	
TLR10 homodimer and heterodimers with TLR1 and 2	Unknown		Plasmacytoid dendritic cells, basophils, eosinophils, B cells	Unknown	

Figure 2.21 The Immune System, 3ed. (© Garland Science 2009)

Figure 2.22 The Immune System, 3ed. (© Garland Science 2009)

On detecting infection macrophages orchaestrate a state of inflammation

Figure 2.27 The Immune System, 3ed. (© Garland Science 2009)

Neutrophils are stock-piled in the bone marrow awaiting the call for inflammation

Figure 1.16 The Immune System, 3ed. (© Garland Science 2009)

Recruitment of neutrophils from blood to the infected tissue

Figure 2.31 The Immune System, 3ed. (© Garland Science 2009)

Recognition, endocytosis and destruction of bacteria by neutrophils

Figure 2.32 The Immune System, 3ed. (© Garland Science 2009)

Neutrophils are potent, short lived and die on the battlefield

Figure 2.33 The Immune System, 3ed. (© Garland Science 2009)

Recruitment of natural killer (NK) cells to sites of infection

Figure 2.27 The Immune System, 3ed. (© Garland Science 2009)

NK cells are active in defense against virus infection

Figure 2.45 The Immune System, 3ed. (© Garland Science 2009)

Figure 2.47 The Immune System, 3ed. (© Garland Science 2009)

NK cells recognize perturbation in HLA class I

NK cell receptors for HLA class I are encoded in two genomic complexes

Figure 10.33 The Immune System, 3ed. (© Garland Science 2009)

Inhibitory NK-cell receptors for MHC class I		
Receptor	Ligand	
CD94:NKG2A	Complexes of HLA-E with peptides derived from the leader peptides of HLA-A, -B, and -C	
KIR2DL1	HLA-C allotypes having lysine at position 80	
KIR2DL2/3	HLA-C allotypes having asparagine at position 80	
KIR3DL1	HLA-A and HLA-B allotypes having the Bw4 serological epitope determined by sequence motifs at positions 77–83	
KIR3DL2	Complexes of HLA-A3 and HLA-A11 with a specific peptide from Epstein–Barr virus	
LILRB1	All HLA class I	

Figure 10.37 The Immune System, 3ed. (© Garland Science 2009)

Killer cell immunoglobulin-like receptors (KIR)

Figure 10.35 The Immune System, 3ed. (© Garland Science 2009)

Functions of Natural Killer (NK) cells

Immune system 🎽

Reproductive system

Functions of Natural Killer (NK) cells

Immune system

Kill virus-infected cells and cancerous cells. Co-operate with dendritic cells

Reproductive system

Functions of Natural Killer (NK) cells

Immune system

Kill virus-infected cells and cancerous cells. Co-operate with dendritic cells

Reproductive system

Maternal uterine NK cells co-operate with fetal extra-villous trophoblast to widen maternal arteries supplying blood to the placenta.

Interactions between fetal trophoblast and maternal uterine NK cells remodel the spiral arteries

after Ashley Moffett

Preeclampsia and other disorders of pregnancy are associated with insufficient remodeling of the spiral arteries

What happens when a person lacks NK cells?