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MLSI - (Log-Sobolev type) Entropy Ineq.

Let (Ω,P, π): ergodic reversible Markov chain on finite state
space Ω, with transition matrix P, and stationary distribn. π.

Let −L = I − P. For f , g : Ω→ R, define

E(f , g) := −Eπ(f Lg) := −
∑
x∈Ω

f (x)Lg(x)π(x) .

For f > 0, let

Entπf := Eπ(f log f )− (Eπf ) log(Eπf ).

Following [Dai Pra, Paganoni, Posta ’02], [Gao-Quastel ’03],
[Bobkov-T. ’03], [Goel, ’04]: let α > 0 be the opt. const. in

αEntπ(f ) ≤ 1

2
E(f , log f ),

over positive f on Ω.
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MOTIVATION: Rate of decay of entropy

For a probab. measure µ on Ω, absolut. cont. wrt π, recall

D(µ‖π) =
∑
x∈Ω

µ(x) log
µ(x)

π(x)
,

the relative entropy (or informational divergence) of µ wrt π.
Letting Pt = etL; µt = µ0Pt , ft = µt

π , one gets, for all t > 0,

d

dt
D(µt‖π) = −E(ft , log ft) ≤ −2αEntπ(ft) = −2αD(µt‖π)

⇒ D(µt‖π) ≤ D(µ0‖π)e−2αt , t ≥ 0,

where µ0: initial distribution.

Prasad Tetali Modified LSI



Outline
MLSI: Basics, Examples

MLSI and Decomposition
MLSI and Subgaussian Concentration

MODIFIED LOG-SOBOLEV INEQUALITIES

Recall (using reversibility)

E(f , g) =
1

2

∑
x,y

(f (x)− f (y))(g(x)− g(y))P(x , y)π(x)

In a graph setting one may define:

E(f , g) =
∑
x∈V

∑
y :(y ,x)∈E

(f (x)− f (y))(g(x)− g(y))π(x)

where G = (V ,E ) is the graph with π: probab. distribution on V .
Alternately, one may work with a discrete gradient:

∇f (x) =

{
1√
2

(f (x)− f (y))
√
P(x , y)

}
y∈Ω

or
∇f (x) = {f (x)− f (y)}y :(y ,x)∈E

depending if one works with a Markov kernel or a graph.
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MODIFIED LOG-SOBOLEV (Contd.)

Classical Log-Sob:
ρEntπf

2 ≤ 2E(f , f )

Entropy Ineq (MLSI):

αEntπf ≤
1

2
E(f , log f )

Modified L-S using gradients: (a la Bobkov-Ledoux)

ρ1Entπ(ef ) ≤ 1

2
Eπ(|∇f |2ef )

ρ2Entπ(ef ) ≤ 1

2
Eπ(|∇ef |2e−f )

or equivalently ρ2Entπ(f ) ≤ 1
2Eπ

(
|∇f |2

f

)
, over f > 0.

Theorem (B-T ’03)

For reversible Markov kernels, ρ ≤ α ≤ ρ1 ≤ ρ2 ≤ λ .
Prasad Tetali Modified LSI
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Log-Sob ρ versus Modified Log-Sob α

Proposition

If f ≥ 0, then
2E(
√
f ,
√
f ) ≤ E(f , log f ) .

Proof. A bit of calculus:

a(log a− log b) = 2a log

√
a√
b
≥ 2a

(
1−
√
b√
a

)
= 2
√
a(
√
a−
√
b) ,

the inequality from the relation log c ≥ 1− 1
c . Hence

E(f , log f ) =
∑
x,y

f (x)(f (x)− f (y))P(x , y)π(x)

≥ 2
∑
x,y

√
f (x)(

√
f (x)−

√
f (y))P(x , y)π(x)

= 2E(
√
f ,
√
f ) .
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α versus λ

Proposition

α ≤ 2λ .

Proof. More calculus: Apply the MLSI to functions f = 1 + εg , with
g ∈ L2(π), with Eπg = 0. Assume ε� 1 so that f > 0. Then using
Taylor: log(1 + εg) = εg − (1/2)ε2g2 + o(ε2), we get to

Entπf =
1

2
ε2π(g2) + o(ε2), and

E(f , log f ) =− εEπ
(

(Lg) log(1 + εg)
)

= ε2E(g , g) + o(ε2) ,

giving: ε2E(g , g) ≥ (α/2)ε2Eπ(g2) + o(ε2). Cancel ε2 and let ε ↓ 0. �
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The main “constants” and Mixing times

Poincare constant (spectral gap):

λ(P) := inf
Varπ(f ) 6=0

EP(f , f )

Varπ(f )
, tmix(P, ε) ≤

1

λ(P)

(
log

1

πmin
+ log

1

ε

)

log-Sobolev constant (Diaconis and Saloff-Coste, 1996):

ρ(P) := inf
Entπ(f )6=0

EP(
√
f ,
√
f )

Entπ(f )
, tmix(P, ε) ≤

1

4ρ(P)

(
log log

1

πmin
+ log

1

2ε2

)
modified log-Sobolev constant (formalized by B-T., 2006):

α(P) := inf
Entπ(f ) 6=0

EP(f , log f )

Entπ(f )
, tmix(P, ε) ≤

1

α(P)

(
log log

1

πmin
+ log

1

2ε2

)

2λ(P) ≥ α(P) ≥ 4ρ(P) (formalized B-T., 2006)

ρ(P) ≤
1

log π−1
min

(folklore, D-SC)
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Kn: the complete graph

For a simple r.w. on Kn,

λ = 1 , α ≥ 1, but ρ = O(1/ log n) .

Let π be arbitrary on the vertices of Kn, with π∗ := minx π(x) > 0.
Consider the kernel P(x , y) = π(y). Then by Jensen’s,

Entπ(f ) ≤ E(f log f )− Ef E log f = Covπ(f , log f ) = E(f , g) ,

and so α ≥ 1.
And λ = 1, since E(f , f ) = Varπf . OTOH, tedious calculus gives:

ρ =
(p − q)

log p − log q
,

where p = µ∗ and q = 1− p.

Prasad Tetali Modified LSI
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General two-state Example

Proposition

For 0 ≤ a, b ≤ 1, with a + b > 0, let

P =

[
1− a a
b 1− b

]
, with π =

( b

a + b
,

a

a + b

)
.

Then λ(P) = a + b, and

α(P) ∈ [a + b, (a + b) + 2
√
ab], ρ(P) =

{
a−b

log a−log b if a 6= b

a if a = b

Note. ρ(P) ≥ min(a, b), since |a− b| ≥ min(a, b)| log a− log b|.

Prasad Tetali Modified LSI
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Ωn,k: k-slice of the n-cube

For n > 1 integer, consider slices of the discrete cube

Ω(n, k) = {x ∈ {0, 1}n : x1 + · · ·+ xn = k}, 1 ≤ k ≤ n − 1 ,

equipped with µ = µn,k assigning mass µ({x}) = 1
C k
n

= k!(n−k)!
n! ,

to each x ∈ Ω(n, k).
Every point x ∈ Ω(n, k) has k(n − k) neighbors {sijx}i∈I (x), j∈J(x)
parameterized by

I (x) = {i ≤ n : xi = 1}, J(x) = {j ≤ n : xj = 0}.

Namely, (sijx)r = xr , for r 6= i , j , and (sijx)i = xj = 0,
(sijx)j = xi = 1.

Prasad Tetali Modified LSI
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k-slice of the n-cube (contd.)

The canonical associated Dirichlet form (for the graph version) is
given by

E(f , g) =
1(n
k

) ∑
x∈Ω(n,k)

∑
i∈I (x)

∑
j∈J(x)

(f (x)− f (sijx))(g(x)− g(sijx)),

where f , g are arbitrary functions on Ω(n, k).

Theorem

For every f > 0 on Ω(n, k), with respect to the uniform measure µ,

Entµ(f ) ≤ 1

n + 2
E(f , log f ).

Prasad Tetali Modified LSI
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Markov chain version

The Dirichlet form for the Markov kernel version simply involves an
extra factor of 1/[2k(n − k)] on the right hand side –
P(x , y) = 1/[k(n− k)] for neighbors x , y , and the extra half is due
to the above definition of the Dirichlet form in the Markov case.

Thus the Markov chain version gives

α ≥ 2(n + 2)

k(n − k)
.

Prasad Tetali Modified LSI
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Random Transpositions on Sn

Here the state space is Sn, the set of n! permutations of {1, . . . , n} and
in each step of the Markov chain, a transposition is uniformly randomly
chosen (from the

(
n
2

)
possible ones) and applied to the current state.

For 1 ≤ i < j ≤ n, let sij : Sn → Sn denote the transpositions; i.e., for
x ∈ Sn, we have sij(x) = y , where yk = xk , for k 6= i , j , and yj = xi and
yi = xj . Thus the associated Dirichlet form is given by

E(f , log f ) =
1

2

∑
x∈Sn

∑
1≤i<j≤n

R(f (x), f (sij(x)))P(x , sij(x))µ(x)

=
1

n(n − 1)

∑
x∈Sn

∑
1≤i<j≤n

R(f (x), f (sij(x)))µ(x),

where, R(a, b) = (a− b)(log a− log b) and µ(x) ≡ 1/(n!).
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Convexity of R(·, ·)

It is now useful to notice that the function R is convex in the quadrant
a, b > 0. Indeed,

∂2R(a, b)

∂a2
=

a + b

a2
,

∂2R(a, b)

∂b2
=

a + b

b2
,

∂2R(a, b)

∂a ∂b
= −a + b

ab
.

Consequently, by Jensen’s inequality,

R(ϕ(i), ϕ(j)) = R
(∫

f (x) dµi (x),

∫
f (sijx) dµi (x)

)
≤

∫
R(f (x), f (sijx)) dµi (x) .

Prasad Tetali Modified LSI
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Random Transpositions on Sn

Theorem

For every f > 0 on Sn, with respect to the uniform measure µ,

Entµ(f ) ≤ 2(n − 1)E(f , log f ).

Proof Sketch. Uses conditional relative entropy and the convexity of
R(a, b) a la [Lee-H.T.Yau], where for the continuous-time process the
usual log-Sobolev constant ρ was estimated. Proof by induction on n in
estimating the optimal constant Cn in

Entµ(f ) ≤ Cn E(f , log f ) ,

over all f on Sn. The relevant recurrence to target is

Cn ≤ Cn−1 + 2
(n − 1)

n
, (2.1)

which implies the theorem.
Prasad Tetali Modified LSI
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Random Transpositions on Sn

Proof contd. Observe that there are n ways to partition Sn into n
classes, so that each class is isomorphic to Sn−1. For each 1 ≤ t ≤ n, let

Sn = ∪nk=1S
(t)
k , where S

(t)
k = {x ∈ Sn : x(t) = k}, for k = 1, . . . , n.

Let µ
(t)
k ≡ 1/(n− 1)! denote the (conditional) measure on S

(t)
k . Also, for

each t, let µ(t) denote the uniform measure on the n classes. That is,

µ(t)(k) =
∑
x∈S(t)

k

µ(x) = 1/n, for k = 1, . . . , n.

Prasad Tetali Modified LSI
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Random Transpositions on Sn

Using the chain rule for relative entropy (or as can easily be verified
directly), for every f ≥ 0 with Eµf = 1, we have

Entµf =
n∑

k=1

µ(t)(k)Ent
µ

(t)
k

(f |k) + Entµ(t) f̄ (t) , (2.2)

where f |k = f |(t)
k = f 1

S
(t)
k

, is f restricted to the class S
(t)
k , and

f̄ (t) =
∑
x∈S(t)

k

f (x)
µ(x)

µ(t)(k)
, is simply the average (with respect to the

conditional measure) of f |k over the class S
(t)
k .

Summing (2.2) over t, we get

nEntµf =
n∑

t=1

n∑
k=1

µ(t)(k)Ent
µ

(t)
k

(f |k) +
∑
t

Entµ(t) f̄ (t). (2.3)
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Random Transpositions on Sn

By induction, we may say, for each t and k ,

Ent
µ

(t)
k

(f |k) ≤ Cn−1

(n − 1)(n − 2)

∑
x∈Sn
x(t)=k

∑
1≤i<j≤n

i,j 6=t

R(x , sij(x))
µ(x)

µ(t)(k)
. (2.4)

Multiplying the above by µ(t)(k) and summing over k and t, we get

n∑
t=1

n∑
k=1

µ(t)(k)Ent
µ

(t)
k

(f |k) ≤ Cn−1

(n − 1)

∑
x∈Sn

∑
1≤i<j≤n

R(f (x), f (sij(x)))µ(x)

≤ nCn−1E(f , log f ) , (2.5)

since when summed over t, each pair (x , sij(x)) is counted exactly (n− 2)
times – in the partitions corresponding to 1 ≤ t ≤ n, with t 6= i , j .
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Random Transpositions on Sn

To bound the second term of the right hand side of (2.2), we will use
Jensen’s inequality twice. (Equivalently, we can think of using the MLSI
for the r.w. on the complete graph!) Indeed, by Jensen’s inequality,

Entµ(t) f̄ (t) ≤ 1

n2

∑
1≤k<l≤n

R
(
f̄ (t)(k), f̄ (t)(l)

)
. (2.6)

To bound the term involving R(., .), observe that there is a natural

bijection (namely, the restriction of skl) between S
(t)
k and S

(t)
l , for

1 ≤ k < l ≤ n, such that P(x , y) for x ∈ S
(t)
k and y ∈ S

(t)
l is positive

only when y = skl(x).
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Random Transpositions on Sn

This helps us in writing:

R
(
f̄ (t)(k), f̄ (t)(l)

)
= R

( ∑
x∈S(t)

k

f (x)µ
(t)
k (x),

∑
x∈S (t)

k

f (skl(x))µ
(t)
k (skl(x))

)
≤

∑
x∈S (t)

k

R(f (x), f (skl(x)))µ
(t)
k (x) ,

where the inequality was using Jensen’s, based on the convexity of R(·, ·).
Plugging this into (2.6), we get

Entµ(t) f̄ (t) ≤ 1

n

∑
1≤k<l≤n

∑
x∈S(t)

k

R(f (x), f (skl(x)))µ(x) (2.7)
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Random Transpositions on Sn

Summing the above over t, we get

n∑
t=1

Entµ(t) f̄ (t) ≤ 2

n

∑
x∈Sn

∑
1≤k<l≤n

R(f (x), f (skl(x))µ(x)

= 2(n − 1)E(f , log f ), (2.8)

since when summed over t, each pair (x , skl(x)) was counted twice –
once each for t = k and t = l .
Finally, (2.3), (2.5), and (2.8) together imply the recurrence,

Cn ≤ Cn−1 + 2
(n − 1)

n
(2.9)

which, together with the initial condition C2 ≤ 2 gives the bound
Cn ≤ 2(n − 1), completing the proof of the theorem. �
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Remarks

This implies an upper bound of O(n log n) on the total
variation mixing time, which is known to be tight (see
[D-Sh]). Note that the usual log-Sobolev constant only yields
O(n log2 n) (see [D-SC’96] and [L-Y’98]). Key difference is
that recurrence for the inverse of the log-Sobolev constant has
an extra factor of log n in the second term on the r.h.s. This
is because ρ for the random walk on the complete graph is of
the order of 1/(log n), whereas 1/2 ≤ ρ0 ≤ 1.

Theorem 2.2 implies a lower bound of 1/2(n − 1) on the
spectral gap. The truth is 2/(n − 1) (see [Diaconis’88])
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Random Catalan Transpositions

Problem. How about random transpositions of (’s and )’ over the
space of n pairs of balanced parentheses?

For n = 5:

((())) (()()) (())() ()(()) ()()()()

More generally, Cn = 1
(n+1)

(2n
n

)
, the nth Catalan number many.

Many challenges - 214 Catalan structures! Few tight results :-/

[Cohen-T.-Yeliussizov’15]. ρ, λ ≥ 1/(2n2), hence O(n2 log n)
mixing time.
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Matroid

A matroid M = (E , I) consists of a finite ground set E and a
collection I of subsets of E (independent sets) such that:

∅ ∈ I;

if S ∈ I, T ⊆ S , then T ∈ I (downward closed);

if S ,T ∈ I and |S | > |T |, then there exists an element
i ∈ S \ T such that T ∪ {i} ∈ I (augment axiom).

Maximum independent sets are the bases.
For any two bases, there is a sequence of exchanges of ground set
elements that take one basis to the other.
Let n = |E | and r be the rank, namely the size of any basis.
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Bases-exchange walk

The following Markov chain PBX,π converges to a “homogeneous
SLC” π:

1 remove an element uniformly at random from the current
basis (call the resulting set S);

2 add i 6∈ S with probability proportional to π(S ∪ {i}).

The implementation of the second step may be non-trivial.
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MLSI for Matroid Basis Exchange

Theorem (Mary Cryan-Heng Guo-Giorgos Mousa)

For any f : Ω→ R≥0,

EPBX,π
(f , log f ) ≥ 1

r
· Entπ(f ) ,

where r is the rank of the matroid.
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General Decomposition Theorems

Let (Ω,P, π) be the usual triple, with P being reversible with respect to
π on Ω.

Consider a partition Ω = ∪i∈IΩi . We may introduce a
projection chain P̂ on I and restriction chains Pi on Ωi .

P̂(i , j) :=
1

π̂(i)

∑
x∈Ωi

∑
y∈Ωj

π(x)P(x , y), and π̂(i) :=
∑
x∈Ωi

π(x) .

Clearly, P̂ is reversible w.r.t. π̂ on the space I:

π̂(i)P̂(i , j) = π̂(j)P̂(j , i) ,

for all i , j ∈ I.
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Decomposition (contd.)

Restriction Pi is defined so that it is a Markov generator within Ωi , for
each i ∈ I:

Pi (x , y) = P(x , y) ,

for x , y ∈ Ωi , with diagonal entries suitably adjusted. Easy to see that

πi (x) :=
π(x)

π̂(i)

is reversible under Pi .
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Decomposition (contd.)

Suppose for each i , j with P̂(i , j) > 0, we have
couplings κij : Ωi × Ωj → [0, 1] of probab. distributions πi and πj .Let the
“quality” of the coupling be:

χ := min
{ π(x)P(x , y)

π̂(i)P̂(i , j)κij(x , y)

}
,

where the min. runs over tuples s.t. the denom. is positive. Then

Lemma (Hermon-Salez, 2019)

α(P) ≥ min
{
χα(P̂),min

i
α(Pi )

}
.

Note: Also holds for ρ and λ, implicit in [Jerrum-Son-T.-Vigoda’04].
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MASS TRANSPORT (Monge-Kantorvich)

Let G = (V ,E ) be a graph, with distance d . Given µ, ν: probab.
measures on V , we have

W1(µ, ν) = inf
Γ→(µ,ν)

∑
x ,y

d(x , y)Γ(x , y)

(Γ: coupling of µ and ν)
Dual Version:

sup
f ∈Lip(G)

∑
x∈V

f (x)(µ(x)− ν(x)),

where f ∈ Lip(G )⇔ |f (x)− f (y)| ≤ d(x , y), ∀ x , y ∈ V .

Prasad Tetali Modified LSI



Outline
MLSI: Basics, Examples

MLSI and Decomposition
MLSI and Subgaussian Concentration

Subgaussian and Transport-Entropy

For a probab. measure µ on Ω, absolut. cont. wrt π, recall

D(µ‖π) =
∑
x∈Ω

µ(x) log
µ(x)

π(x)
,

the relative entropy (or informational divergence) of µ wrt π.

Proposition (Bobkov-Götze ’99)

Let c > 0. Then TFAE:

1. Eπ[et(f−Eπf )] ≤ ect
2/2,

for all f ∈ Lip(G ), t ∈ R.

2. W 2
1 (µ, π) ≤ 2cD(µ‖π),

for every µ absolut. cont. wrt π.

(Follow up by Otto-Villani ’00, Bobkov-Gentil-Ledoux ’01, ...)
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Entropy Inequality implies Transport Ineq.

Theorem (Sammer-T ’05, ’09)

Given G = (V ,E ) and a prob. meas. π on V . Let L = P − I , with
supp(P) on E . Let d : V × V → R+ be the graph distance. Suppose L
and d satisfy: ∑

y

d2(x , y)L(x , y) ≤ 1, ∀ x ∈ V .

Then
2αEntπ(f ) ≤ E(f , log f ),

for all densities wrt π

⇒W 2
1 (µ, π) ≤ 2

(
1

2α

)
D(µ‖π),

for all µ: absolut. cont. wrt π.
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Proof (a la Otto-Villani)

Let νt = νPt where Pt = etL, and let ft = νt/π . Let gt be a
solution to Kantorovich’s problem wrt νt and π for each t ≥ 0.

First show that

d+

dt
W (νt , π) ≥

∑
x∈V

gt(x)Lft(x)π(x) = −E(gt , ft).

And then that −E(gt , ft) ≥ − 1√
2

√
E(ft , log ft).
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Proof (contd.)

To prove −E(gt , ft) ≥ − 1√
2

√
E(ft , log ft) requires:

(i) Lipschitz property of gt ;

(ii) E(ef /2, ef /2) ≤ 1
4E(ef , f ); and

(iii)
∑

x

∑
y 2(ft(x) + ft(y))d2(x , y)L(x , y)π(x) ≤ 4,

(which in turn uses the hypo. that
∑

y d
2(x , y)L(x , y) ≤ 1).
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Proof (contd.)

Then one may proceed as in [O-V]:

d

dt

√
D(νt‖π)

α
= −

1
2E(ft , log ft)√
αD(νt‖π)

≤ − 1√
2

√
E(ft , log ft) ≤ d+

dt
W (νt , π).

Letting φ(t) =
√

D(νt‖π)
α −W (νt , π), the above asserts that

d+

dt φ(t) ≤ 0. Hence

0 = lim
t→∞

φ(t) ≤ φ(0) = −W (ν0, π) +

√
D(ν0‖π)

α

⇒W 2(ν0, π) ≤ 1

α
D(ν0‖π).

�
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LSI versus MLSI

Note: Log-Sobolev implies (sub)gaussian tails, but

ρ(P) ≤ min
x∈Ω

{
log

1

π(x)

}
,

and RHS could be arbitrarily small without some assumption on π.
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Concentration a la Herbst

Theorem (J. Hermon - J. Salez’19)

Let P be a reversible Markov generator with respect to π on Ω.
Then

π
(
f ≥ Eπf + a

)
≤ exp

(
−α(P)a2

4v(f )

)
,

for all f : Ω→ R and all a ≥ 0, where

v(f ) := max
x∈Ω

{∑
y∈Ω

P(x , y)[f (y)− f (x)]2+

}
.
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Proof

(Standard) Recall that E
[
et(f−Ef )

]
≤ ect

2
implies (by

Chebyshev/Chernoff?) for all a ≥ 0,

π
(
f ≥ Eπf + a

)
≤ ect

2−at .

So if we prove the hypothesis above for all t ≥ 0 and choose
t = a/(2c), we get

π
(
f ≥ Eπf + a

)
≤ exp

(
−ca2

4

)
.

So we will derive, for all t ≥ 0,

E
[
et(f−Ef )

]
≤ ect

2
,

with c := v(f )/α(P) to prove the theorem.
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Proof (contd)

(Herbst, ..., Hermon-Salez) For t ∈ (0,∞) and x ∈ Ω, let

Ft(x) := etf (x)−ct2

,

where the choice of c > 0 is no longer a secret! By reversibility,

E(Ft , log Ft)

=
t

2

∑
x,y∈Ω

π(x)P(x , y)
(
Ft(x)− Ft(y)

)
(f (x)− f (y))

= t
∑
x,y∈Ω

π(x)P(x , y)Ft(x)
(

1− e−t(f (x)−f (y))
)

[f (x)− f (y)]+

≤ t2
∑
x,y∈Ω

π(x)P(x , y)Ft(x)[f (x)− f (y)]2
+ (using 1− e−u ≤ u)

≤ t2v(f )E(Ft) .
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Proof (contd)

By the definition of α(P), we deduce:

Ent(Ft) ≤
v(f )

α(P)
t2E[Ft ] .

OTOH, for t > 0, by computation,

d

dt

{ logE[Ft ]

t

}
≤ Ent(Ft)− ct2E[Ft ]

t2E[Ft ]
.

So the choice of c := v(f )/α(P), ensures that t → log E[Ft ]
t is

non-increasing on (0,∞), yielding:

logE[Ft ]

t
≤ lim

h→0

logE[Fh]

h
= E[f ] ,

by taking the limit appropriately. This establishes as desired:

E[etf ] ≤ etE[f ]+ct2

. �
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