Targets in Nuclear Reaction Studies

P. K. Pujari

Radiochemistry Division,

Bhabha Atomic Research Centre, Trombay, Mumbai-400 085 India Acknowledgement

R. Palit

R. Tripathi

S. Sodaye

Colleagues at RCD

Structure of the talk

- Target preparation methods
- Our studies
- Special targets with specific science motivations
 - Fission cross section with neutrons Special emphasis on transmutaion, Nuclear astrophysics, Th fuel cycle
 - Nuclear spectroscopy
 - Synthesis of heavy actinides (SHE)
 - Radioactive ion beam
- Summary

Nuclear Reaction

- Projectile (particle and energy, beam intensity)
- Target (elemental composition, thickness, homogeneity thermo-mechanical, morphology & chemical properties)

Combination : What physics and chemistry we want to do.

Actinide as well as long lived radioactive nuclei as targets with stable beam help achieve exotic reaction channels

Target Preparation methods

- (1) Vacuum evaporation, cold work
- (2) Electrodeposition/molecular plating
- (3) Painting
- (4) Polymer assisted deposition

For actinide/radioactive targets, the purity is ascertained and if needed Chemical separation is carried out. Facility for handling alpha-activity!

	<u>Target</u> <u>Thicknesses</u>	<u>Homogeneity</u>	<u>Efficiency</u>	<u>Contamination</u>
Molecular Plating / Electro- deposition ¹	0.1-2 mg/cm ²	Granular growth at 1-3 mg/cm²	20-90%	Minimal
Vacuum Deposition ¹	Thin targets	Homogeneous	1% for a 1mm circular target	Significant
Painting ¹	Up to 8 mg/cm ²	Homogeneous	>90%	Minimal

Heavy ion reaction studies at Radiochemistry Div.

Nuclear fission

Non-compound nucleus fission Role of entrance channel mass asymmetry, target deformation by measuring fission fragment angular distribution 160+1880s, 19F+197Au, 28Si+176Yb, 11B+243Am Phys. Rev. C 71, 044616 (2005), 75, 024609 (2007), 79, 064607 (2009)

Mass distribution and saddle to scission dynamics Phys. Rev. C 69, 024613 (2004); 74, 014610 (2006)

Incomplete fusion reactions

Dependence on beam energy and entrance channel mass asymmetry Phys. Rev. C 79, 064604 (2009); J. Phys. G 35, 025101 (2008)

Localization in angular momentum window Phys. Rev. C 69, 027603 (2004)

Projectile structure effect J. Phys. G 29, 1011 (2003); Nucl. Phys. A 739, 229 (2004)

Experimental measurements

On-line Measurement of fission fragment angular distribution, projectile like fragments using Si detector telescopes

Off-line radiochemical measurement of formation cross sections using recoil catcher technique followed by off-line gamma-ray spectrometry, recoil range distribution

Target requirements

- Targets ~100 μg/cm2- ~3mg/cm2
- Thin targets required for on-line measurements to minimize energy loss of the ejectiles in the target
- Targets of a few hundreds of $\mu g/cm2$ used for fission fragment angular distribution measurement
- Targets prepared by electrodeposition / vacuum evaporation

Target preparation by electrodeposition

Targets

α -Sources

- ^{235, 238}U, ²³⁷Np, ²⁴³Am
- ^{144, 152}Sm, ¹⁶⁹Tm, ¹⁷⁶Yb

²²⁹Th, ²³⁹Pu, ²⁴¹Am

Preparation of targets with very thin backing ~ 100 μ g/cm²

Use of two layer foil Ni-Cu Ni: thin ~100 μ g/cm², Cu: ~ mg/cm² Etching of Cu layer after electro deposition using tri chloro acetic acid

Targets used for fission fragment folding angle measurement \rightarrow Mass distribution

Actinide targets for transmutation studies

- It is planned to study the burning of minor actinides in fast reactors
- A few long-lived fission products have been selected for the determination of fission rate
- Exploratory studies have been carried out to determine fission cross sections using long-lived fission products in fission of ²⁴¹Am

Schematic of the target mounting for transmutation studies in fast reactor

Determination of fission rate

Characterization of neutron spectrum: Using threshold detectors

Detector	Energy (MeV)	Half Life
¹¹⁵ In (n, n') ^{115m} In	0.5	4.5 hrs
⁵⁸ Ni (n, p) ⁵⁸ Co	1.9	70.9 days
64Zn(n,p)64Cu	2.0	12.7 hrs
27 Al (n, α) 24 Na	4.9	15.02 hrs
⁵⁶ Fe(n, p) ⁵⁶ Mn	4.9	2.56 hrs
⁵⁹ Co(n, α) ⁵⁶ Mn	5.2	2.56 hrs
¹⁹⁷ Au (n, 2n) ¹⁹⁶ Au	8.6	6.18 days
⁶⁵ Cu (n, 2n) ⁶⁴ Cu	11.9	12.7 hrs
⁵⁸ Ni (n, 2n) ⁵⁷ Ni	13.0	36 hrs

In this context fission cross sections of the minor actinides are important over a wide energy range of neutron energy

- Neutron TOF technique (very well defined neutron energy)
- Surrogate reaction

Advantages

- Need not have the nuclide of interest (say shortlived)
- Production of various residues possible- diff. transfer channels \implies One projectile-target combo : σ for different nuclei
- Excitation energy (CN) follows a broad probability distribution Tag the KE and angle of the ejectile for EE which can be translated to neutron energy En

 $E^{*}=B_{n}+A.E_{n}/(A+1)$

Determine cross section over a broad neutron energy range

²³³Pa (27 d) - n capture as well as fission cross section (0-1 MeV) using ²³²Th(³He,p)²³⁴Pa

^{242,243}Cm, ²⁴¹Am Fission cross section ²⁴³Am+³He

- 100 µg/cm² on 80 µg/cm² C backing
- Purity, thickness and backing materials are to be taken care of
- •Fission cross section of minor actinides of interest (transmutation) ²³⁷Np, ^{240,241,242,243}Am, ^{242,243,244,245}Cm
- Th-U cycle : Neutron capture crossection ²³²Th, ²³³U plus ²³¹Th, ^{231,233}Pa, ^{232,233,234,235}U

Nuclear astrophysics:

Theories of nucleosynthesis are tested by calculating isotopic abundances with stellar models: require reliable neutron and proton capture crossection

s-process : demand for radioactive targets to measure σ_n especially at branching points i.e. half-life comparable to neutron capture time scales (300 ev-several keV n)

⁷⁹Se, ⁸⁵Kr, ¹⁴⁷ Pm, ¹⁵¹Sm, ¹⁶³Ho, ^{170,171}Tm, ¹⁷⁹Ta (129 d to 10⁷ years)

Nuclear Spectroscopy:

Transfer reaction to produce heavy nuclei

60

18O + 238U @ 200 MeV

FIG. 1. (Color online) $E \cdot \Delta E$ plot of scattered nuclei measured by a Si $\Delta E \cdot E$ detector in the reaction of a 200-MeV ¹⁸O beam with a ²³⁸U target. The dashed line represents a calculated energy loss for ²⁰Ne nuclei. See the caption of Fig. 2 for the enclosed areas (a) and (b).

(a)

FIG. 2. γ -ray spectra obtained by setting the gates on ²⁰Ne whose kinetic energies correspond to E_{π} of (a) 5–11 and (b) 17–23 MeV, respectively. These gates are depicted as the regions (a) and (b) in Fig. 1, respectively. γ peaks labeled by energies in the spectra of (a) and (b) are the transitions in ²³⁶Th and ²³⁴Th, respectively.

20 mm dia, 80 μ Δ E Si detectors

T. Ishii, et al., PRC76, 011303(R) 2007

Structure of ²³⁴U with ICF

Experimental Condition: 52 MeV 9Be beam 1 mg/cm2 self supporting 232Th target 4 x 10^6 a-g-g coincidence 6 CS-HPGe (25%) Coincidence with CPD array ICF ER: 10 mb ER: ~ 5 mb

FIGURE 4. Sum of spectra with gates on the E2 transitions between the 4⁺ and 14⁺ excited states in the ground-state baad of ²³⁰U.

High spin structure of ²³⁵Np

116Sn + 237Np @ 801 MeV

FIG. 9. Aligned angular momentum as a function of rotational frequency for (a) the $\pi i_{13/2}$ [642]5/2⁺ bands in ²³⁷Np (ground state) and ²⁴¹Am (excited quasiproton), and the observed band in ²³⁵Np and (b) the $\pi h_{9/2}$ [523]5/2⁻ bands in ²³⁷Np (excited quasiproton) and ²⁴¹Am (ground state) and the yrast ($\alpha = 0$) bands in the even-even nuclei ²³⁴U [12,30], ²³⁶U [12], and ²³⁸U [11,31]. For all data points, a reference configuration with the Harris parameters [32] $J_0 = 65 \text{ MeV}^{-1}\hbar^2$ and $J_1 = 365 \text{ MeV}^{-3}\hbar^4$ has been subtracted.

Structure of heavy nuclei using 7Li induced reaction with heavy (stable & radioactive) targets

- ⁷Li + ²³⁰, ²³²Th at 45 MeV (^{235,236}Np) better resolution for gammas
- Clover array with 2 LEPS
- CsI(Tl) particle array
- Trigger g-g-g or g-g-particle
- Future with CE measurements & other radioactive targets
 ²³⁰Th, ²³⁷Np, ²⁴¹Am and ²⁴³Am.

R. Palit(TIFR) TIFR, BARC(RCD), BARC(NPD), ANL, VECC, PU, GNDU, DU, IUAC, UGC-DAE-CSIR, And others

Study of nuclear and chemical properties of Super Heavy Nuclei

- Very challenging to the low production cross section and 'single atom chemistry'
- Placement of SHE in the periodic table
- Chemical properties affected by the relativistic effects

- Identification of SHE
- Determination of half-life and production cross section
- Testing of models to predict cross sections at pico-barn level
- Determination of fission barrier to estimate shell corrections

SHE region in the chart of nuclides

D. Ackermann, Nucl. Instr. Meth. A 613, 371 (2010)

D. Ackermann, Nucl. Instr. Meth. A 613, 371 (2010)

L. Stavsetra, K. E. Gregorich, J. Dvorak, P.A. Ellison, I. Dragojević, M.A. Garcia, H. Nitsche, Independent verification of element 114 production in the ⁴⁸Ca + ²⁴²Pu reaction. Phys. Rev. Lett., 103, 132502, 2009,.

Target preparation: Reasonably thick and should take care of heat generation

440, 340, 320, and 270 μg/cm², 2.4 mm Ti

Cooling water channel inside

LBNL

 $\begin{array}{l} {\sf E}_{\rm beam} = 157 \; {\sf MeV} \; = = > {\sf E}_{{\sf CN}}^* = 57 \; {\sf MeV} \\ {\sf E}_{\rm beam} = 149.5 \; {\sf MeV} \; = = > {\sf E}_{{\sf CN}}^* = 50 \; {\sf MeV} \end{array}$

Temperature profile for a target wheel in vacuum and 0.6 mbar He C-Pb-C with average thicknesses of 37-460-10 mg/cm2.

Target wheel configuration, with dimensions and typical parameters, as presently used at SHIP.

Electron beam target control system implemented at SHIP

Polymer Assisted Deposition

Spin coater and target wheel

- Spin coating of metals chelated to a multi-dentate aqueous polymer (polyethylenimine(PEI))
- Annealing of spin-coated films yields a crack-free, uniform and homogenous metal oxide film
- PAD reapplication can produce film of desired thickness

Target for RIB

- Oxides, carbides ; stability wrt temperature
- Diffusion, effusion of products of interest
- Dependence of solubility of nuclide of interest
- Dependence on the morphology

Summary

- Radioactive targets offer a wide range of choices for research problems using accelerators
- Target preparation: Electrodeposition technique is the work horse Polymer assisted deposition - several advantages
- Ensuring isotopic purity (actinides-needing chem. Sep.), deposition , assay , target characterisation for variety of applications is a challenge to nuclear chemists