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Since its inception by Kimura in 1955 �M. Kimura, Proc. Natl. Acad. Sci. U.S.A. 41, 144 �1955��, the
diffusion equation has become a standard technique of population genetics. The diffusion equation is however
only an approximation, valid in the limit of large populations and small selection. Moreover, useful quantities
such as the fixation probabilities are not easily extracted from it and need the concomitant use of a forward and
backward equation. We show here that the partial differential equation governing the probability generating
function can be used as an alternative to the diffusion equation with none of its drawbacks: it does not involve
any approximation, it has well-defined initial and boundary conditions, and its solutions are finite polynomials.
We apply this technique to derive analytical results for the Moran process with selection, which encompasses
the Kimura diffusion equation.
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I. INTRODUCTION

The use of the diffusion equation in problems related to
population genetics was first suggested by Kolmogorov to
Wright �1� and was successfully applied by Kimura �2� to
genetic drift. The diffusion equation is an approximation of
the discrete master equation governing the dynamics of a
stochastic system for large populations: if the size N of the
population is sufficiently large to neglect terms smaller than
1 /N, then the discrete master equation can be written as a
continuous �in allele frequency� partial differential equation.
Since the resolution of partial differential equation is much
more advanced than discrete equations, the diffusion equa-
tion has been proved very popular and has become a stan-
dard technique of population genetics theory �3,4�.

The diffusion equation in population genetics is not with-
out its drawbacks �for a thorough discussion, see �5��. First,
this is an approximation of order 1 /N and is not suitable for
small populations. There are many cases where the small
populations are relevant, most important among which is
when the spatial scale is included in the theory. When a
species is dispersed over a wide area, different alleles of a
gene will be fixed in different areas, even in the absence of
environment heterogeneity and geographical barriers. The
isolation by distance is due to the fact that individuals com-
pete only against those in their migration range, the number
of which can be significantly smaller than the population
considered as a whole �6–9�.

Other problems are more technical. The original Kimura
equation is a forward equation and important quantities such
as the fixation probabilities of absorbing states cannot be
computed directly, but one has to resort to the accompanying
backward equation �3,4�, even though solutions using distri-
bution theory have been recently proposed �10�. Moreover,
the solution of Kimura’s equations is given in terms of infi-
nite series, with a low convergence rate �11�, even though
recent progress in algorithms has accelerated this computa-
tion �12,13�; in any case, it seems unnecessary to solve a
finite problem involving N coupled equations by infinite se-
ries. It would be numerically more efficient to solve directly
the N original probability equations.

In the following, we show that a partial differential equa-
tion for the probability generating function �dPGF� can be
obtained from the master equation; this equation does not
include any approximation and N appears only as one of its
parameters. The equation has polynomial solutions of degree
N, and various quantities such as the fixation probabilities of
absorbing states can be easily extracted from its stationary
solution. We show the usefulness of this approach by apply-
ing it to the classical model of Moran �14�, which encom-
passes the Kimura diffusion equation in the limit of large
population.

This paper is organized as follows: we will first introduce
the continuous time master equation for birth-death phenom-
ena and show how various moments can be extracted from it;
we then apply it to the Moran process and show how intro-
duction of the dPGF can circumvent the moment closure
problem. The following section will be devoted to the
asymptotic behavior of this equation for large time, where
the fixation probabilities can be found trivially. The fourth
section is devoted to the full dynamics problem in the ab-
sence of selection; in the next section we will include selec-
tion. The concluding section is devoted to various possible
generalizations.

II. MASTER EQUATION AND dPGF DERIVATION

Consider a continuous time birth-death stochastic process
in a community of fixed size N, when the probability of
observing k events in an infinitesimal time interval dt is pro-
portional to dtk �Poissonian events�. We denote note the tran-
sition rates, the probability density for the system to change
its size from n to m individuals during an infinitesimal time
dt→0, by �15�

W�n → n + 1� = W+�n� ,

W�n → n − 1� = W−�n� ,

W�n → n + k� = 0 if �k� � 1.

The master equation governing P�n , t�, the probability of ob-
serving n individuals at time t, is given by
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�P�n,t�
�t

= W+�n − 1�P�n − 1� − W+�n�P�n�

+ W−�n + 1�P�n + 1� − W−�n�P�n� . �1�

The prototype of such problems is the continuous time Mo-
ran process for haploid populations �14�, a process when
individuals die randomly at rate � and are immediately re-
placed with the duplicate of another individual. This is a
broad model which generalizes the Kimura diffusion equa-
tion �where time is considered continuous; see below�. The
total number of individuals carrying different alleles of a
given gene is fixed to N. Let us suppose that all alleles have
the same fitness �=1� except one which we call A; without
loss of generality, we include the additional fitness s into the
duplication probability. Denoting by n the number of indi-
viduals carrying A and by �N−n� the number of all other
individuals, the transition probabilities read

W−�n� = �n
�N − n�

N
, �2�

W+�n� = ��N − n�
n

N
�1 + s� . �3�

In the first line, �n is the probability per unit of time that one
A individual dies and is replaced with a non-A. The second
line corresponds to a non-A individual dying and being re-
placed by an A; the factor �1+s� designates the different
fitness of allele A in replacing another one. In the following,
without loss of generality, we will measure time in units of
N /� and we therefore set � /N=1.

Note that if N is large, Eq. �1� can be approximated by the
Kimura diffusion equation �see Appendix, Sec. 1�

�p�x,t�
�t

= − Ns
��x�1 − x�p�

�x
+

�2�x�1 − x�p�
�x2 ,

where x=n /N and p�x , t�=NP�n , t�. However, as we argued
above, the diffusion equation is only an approximation of
order N−1 �the error was precisely estimated in the case of
Fisher-Wright �FW� model when no selection is present �16�
no precise estimation is available for s�0�. Instead of resort-
ing to this approximation, we can directly extract exact quan-
tities such as the probability generating function �PGF�. The
PGF ��z , t� constitutes the most complete information we
can have on the given stochastic process and is defined as
�15,17�

��z,t� = �
n

znP�n,t� , �4�

where z is an auxiliary continuous variable. The systems we
are looking at have two absorbing states at n=0 and n=N.
Therefore, the function � is in fact a polynomial of degree N:
if at the initial time t=0, P�n , t�=0 for n�0 and n�N, the
presence of the two absorbing states ensures that this will
remain so.

The equation governing the PGF can be extracted from
the master equation �1� �15,18�:

��

�t
= ��zn+1 − zn�W+�n�� + ��zn−1 − zn�W−�n�� . �5�

If the transition rates W��n� are polynomials of degree k in
n, then the right-hand side of Eq. �5� will contain partial
derivatives of order k of the function � with respect to z.
Therefore, the discrete master equation �1� is naturally and
without any approximation transformed into a partial differ-
ential equation which we call the dPGF.

Application of the above principle to the Moran process
�Eqs. �2� and �3�� provides the Moran dPGF �see Appendix,
Sec. 2� which we will investigate in this paper:

��

�t
=

1

�
�1 − z��� − z�

�

�z
	N� − z

��

�z

 , �6�

where � is the inverse of the fitness: �=1 / �s+1�. This is a
well-defined partial differential equation, first order in t and
second order in z, and has the same formal structure as the
diffusion equation. However, the boundary conditions of this
equation are unequivocally specified. If at time t=0 the num-
ber of A individuals is n0, then P�n ,0�=�n,n0 and

��z,0� = zn0. �7�

Moreover, from the definition of the PGF,

��1,t� = 1. �8�

If s=0, then W+�n�=W−�n�, �n�t��=n0, and therefore

� ��

�z
�

=1
= n0 if s = 0. �9�

If s�0, z=� is a fixed point of Eq. �6� ��� /�t �z=�=0�, and
therefore

���,t� = ���,0� = �n0. �10�

The set of equations �6� with the initial condition �7� and the
boundary conditions �8� and �9� or Eq. �10� constitute a well-
defined problem; this is not the case for the forward diffusion
equation used in population genetics, where the equation is
valid only for gene frequencies x� �0,1� and the terminal
classes x=0 and x=1 have to be treated separately by some
ad hoc treatment �see, for example, �3�, pp. 379–380�.

III. STATIONARY SOLUTION AND THE LIMIT FOR
LARGE TIMES

Figure 1 captures the dynamics of the PGF ��z , t� and its
convergence toward the stationary solution �s�z�. The sta-
tionary solution of Eq. �6� is given by

N�s − z�s� = K ,

where K is a constant. This is an ordinary first-order differ-
ential equation, and its solution is

�s�z� = �NzN + �0.

Using the boundary conditions �8� and �9� when s=0, the
two integration constants are found to be
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�N =
n0

N
, �0 =

N − n0

N
. �11�

When s�0, Eq. �9� has to be replaced with Eq. �10� and

�N =
1 − �n0

1 − �N , �0 =
�n0 − �N

1 − �N , �12�

where, as mentioned, �=1 / �1+s�. Note that as s→0, Eqs.
�12� converge to Eqs. �11�. Probabilities P�n , t→	� can be
extracted from the stationary PGF:

P�n,	� = �N�n,N + �0�n,0.

Specifically, �N and �0 are the total probabilities of fixation
and loss of allele. With the dPGF method, the fixation prob-
abilities are easily obtained without any approximation or
hypothesis on the value of N and s. Obtaining this result is
more intricate with other methods such as �i� looking for a
functional equation governing the discrete time PGF, as was
originally done by Fisher �19� and reviewed by Moran; �ii�
when the backward diffusion equation �3� is used; and �iii�
when two discrete Markovian processes are embedded in or-
der to transform the problem into the “gambler’s ruin” one
�20� as done by Moran �14�. Note that �n=en log ��e−ns for
small relative fitness s, and therefore �N given by Eq. �12�
contains the well-known result for fixation probability for
haploid populations,

u =
1 − e−sn0

1 − e−sN ,

as a particular approximation. Figure 2 shows the compari-
son between direct numerical resolution of the master equa-
tion �1� for the Moran process and its comparison to expres-
sions �12� for the fixation probabilities.

IV. PURE GENETIC DRIFT

We now turn our attention to the full solution of Eq. �6�
when no selection is present, i.e., s=0. The case s�0 will be
studied in the next section. The master equation �1� is a

system of N+1 first-order linear differential equations with
one constraint ��nP�n , t�=1�, and therefore its general solu-
tion is of the form

P�n,t� = �
k=0

N−1


k
ne�kt.

With the PGF ��z , t� being only a combination of these prob-
abilities weighted with functions zn, it is natural to search for
its solution as a finite superposition of eigenfunctions
�n�z�exp��nt�, where �n and �n are solutions of the eigen-
value equation

���z� = �1 − z�2 d

dz
�N��z� − z���z�� . �13�

The solution of the above equation can be given in terms of
hypergeometric functions 2F1�y�, where y=1 / �z−1� �18� or
Hahn’s polynomials �21�; for the purpose of this paper and
having in mind the case s�0, it is more fruitful to solve it
directly using the polynomial nature of the solutions. We
already know the stationary solution �0=0, �0�z�=�0
+�NzN. For ��0, as z=1 is a double zero of ��z�, we look
for solutions as polynomials of �1−z�, i.e.,

��z� = �
k=0

N−1

ak�1 − z�k+1, �14�

which gives rise to the following two term recurrence rela-
tions between the coefficients ak:

a0 = 0, �15�

�� + k�k + 1��ak = k�k − N�ak−1, k = 1, . . . ,N − 1. �16�

As a0=0, nontrivial solutions are found only if �=−n�n
+1� for some integer n; we use this integer to order the
eigenvalues �n and eigenfunctions �n�z�:

1

1

FIG. 1. The evolution of the probability generating function
��z , t� for large time. The PGF from the initial condition ��z ,0�
=zn0 converges to the stationary solution �s�z�=�NzN+�0 �arrows
indicate the direction of evolution of ��z , t��. In this illustration,
n0=1 where n0 is the initial number of A individual. Points z=1 and
z=� are fixed points of the evolution equation �6�.
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FIG. 2. �Color online� fixation probabilities �N as a function of
relative fitness s for different values of initial number of alleles
n0=1,10,50,90,99. Symbols represent direct numerical resolution
of master equation �1� for the Moran process. Continuous lines
represent theoretical expressions given by Eq. �12�. Total number of
individuals N=100.
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�n = − n�n + 1�, n = 1,2, . . . ,N − 1, �17�

�n�z� = �
k=n

N−1

ak
n�1 − z�k+1, �18�

an
n = 1,

ak
n =

k�N − k�
n�n + 1� − k�k + 1�

ak−1
n , k = n + 1, . . . ,N − 1.

�19�

The coefficients ak
n can be put into explicit form in terms of

binomial coefficients �see Appendix, Sec. 3�. The PGF is
given in terms of the above eigenfunctions as

��z,t� = �0 + �NzN + �
n=1

N−1

Cn�n�z�e�nt, �20�

where the coefficients Cn are determined from the initial con-
dition ��z ,0�=zn0. The ak

n matrix is triangular, and therefore
this determination is straightforward �see Appendix, Sec. 3�.

Expanding �n�z� using the binomial development of �1
−z�k+1 and identifying the result with the PGF definition �4�
we obtain the probabilities P�n , t� as

P�n,t� = �0�n,0 + �N�n,N + �− 1�n�
k=n

N


k−1�t�	k

n

 , �21�

where


k�t� = �
n=1

N−1

Cnak
ne�nt, k = 1, . . . ,N − 1,

and 
−1�t�=
0�t�=0.
Note that the above expressions are exact solutions. How-

ever, as the eigenvalues �n=−n�n+1� increase rapidly, these
expressions can be approximated by taking into account only
the first few eigenfunctions, depending on the degree of ac-
curacy required. Figures 3 and 4 show the accuracy of the
above formula by comparing them to the numerical reso-
lution of the master equation �1�.

Historically, problems of evolution were formulated in the
framework of FW model. Moran and FW are equivalent at
the large-population limit, where both are well approximated
by the same diffusion equation. The exact solution
P�n , t �n0 ,0� derived above �Eq. �21�� allows for a direct
comparison between them. FW is a discrete time nonover-
lapping generation N-step model where the probability of
having n individuals at generation T+1 given that there is n0
at generation T is

PFW�n�n0� = 	n0

N

n	1 −

n0

N

N−n	N

n

 . �22�

The Moran process is a one-step model over infinitesimal
time; it transforms into a N-step one if we consider it over
the finite time of one generation, PM�n �n0�= P�n , t
=1 /N �n0 ,0�. Figure 5 shows the comparison between these
two processes where it can be observed that the FW process

has a narrower distribution than the Moran one. Moran �14�
had pointed to this difference by computing the probability
of the number of descendants of one individual in both pro-
cesses.

V. INCLUDING SELECTION

When selection is present and s�0, the spectral decom-
position is achieved by solving the eigenvalue equation

��� = �1 − z��� − z�
d

dz
�N� − z��� , �23�

where �=1 / �1+s� as defined before. This equation is called
Heun’s equation �22�. Heun’s polynomials and their eigen-
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0.6

0.8

1

φ(
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t

FIG. 3. �Color online� The PGF ��z , t� as a function of z for
various times ti for genetic drift s=0. The PGF is computed directly
by numerical resolution of the master equation �1� �continuous
lines� and is compared to its theoretical expression given by Eq.
�20� �circles�. N=40, n0=5, and times ti=0,0.05,0.1,0.2,
0.4,0.8,1.6,3.2 �in units of N /��.
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FIG. 4. �Color online� Probabilities P�n , t� as a function of n at
various times for genetic drift s=0. The probabilities are computed
by direct numerical resolution of the master equation �1� �continu-
ous lines� and are compared to their theoretical expression given by
Eq. �20� �circles�. N=40, n0=5, and times ti=0.05,0.1,0.2,
0.4,0.8,1.6,3.2 �in units of N /��.
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values have been less studied than, for example, the oblong
spheroid; there is no explicit formula or fast algorithm for
their computation. However, we are interested in the small-s
limit �s�1�, and therefore we can compute the solution of
Eq. �23� by the perturbation technique in powers of s. The
first-order perturbation solution, satisfactory for Ns�1, is
directly obtained from the pure genetic drift solution by a
simple scaling: note that if we set y=1−z /
�, Eq. �23� trans-
forms into

− 
��� = �y2 − ��y − 1��
d

dy
�N� + �1 − y���� , �24�

where

� = 
� + 1/
� − 2 =
s2

4
+ O�s3� . �25�

The � term in the transformed Eq. �24� is �s2 and is there-
fore neglected in the first-order �in s� calculation. Neglecting
O��� terms, Eq. �24� acquires the same structure as Eq. �13�
for the pure genetic drift which we have already solved. The
PGF ��z , t� therefore reads

��z,t� = �0 + �NzN + �
n=1

N−1

Cn
�1��n

�1��z�e−n�n+1�t/
� + O�s2� ,

�26�

where

�n
�1� = �

k=n

N−1

ak
n�1 − z/
��k+1.

The coefficients ak
n are the same as in Eq. �19�; the ampli-

tudes Cn
�1� are obtained as before by using the initial condi-

tion ��z ,0�=zn0. Figure 6 shows the accuracy of the first-
order solution for Ns=1.

The computation can be extended to second-order pertur-
bations in s �see Appendix, Sec. 3�. Note however that for
large values of Ns, the term z�z� in Eq. �6� is comparable to

N� only in the vicinity of z=1. Therefore, for z� �0,��, we
can neglect this term and use the approximate equation

�
��

�t
= N�1 − z��� − z�

��

�z
,

which is a first-order differential equation and can be solved
exactly:

��z,t� = 	 �� − z�e−Nst − ��1 − z�
�� − z�e−Nst − �1 − z� 


n0

.

This is indeed a good approximation of the PGF for Ns�2
in the interval �0,��. As � is not a z polynomial anymore,
retrieving the probabilities P�n , t� from this function by suc-
cessive derivation is numerically fragile; the formula how-
ever is very accurate for small n and especially for the loss of
allele probability as a function of time, which takes the
simple form

P�0,t� = 	 1 − e−Nst

1 + s − e−Nst
n0

. �27�

Figure 7 shows the accuracy of this approximation for the
Ns� �1,50� interval.

VI. CONCLUDING REMARKS

We have shown the usefulness of the dPGF technique in
population genetics through the example of the Moran pro-
cess. We have shown that a partial differential equation can
be obtained for the probability generating function that is not
an approximation and which has finite polynomial solutions.
The solutions can be computed exactly for pure genetic drift
and with the perturbation techniques when s�0, and we
have shown the agreement with the numerical solution of the
original master equation.

The usefulness of the dPGF technique is very broad and
can be used to capture many features of population dynam-
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FIG. 5. �Color online� Comparison between the discrete time,
N-step Moran distribution PM�n �n0�= P�n , t=1 /N �n0� �black
circles�, and Fisher-Wright �red triangles� distribution PFW�n �n0�
for three different initial values of n0.
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FIG. 6. �Color online� The probabilities P�n , t� as a function of
n at various times ti, for s=2.5�10−2 �Ns=1�. �i� Continuous line:
direct numerical resolution of the master equation �1�; �ii� circles:
theoretical expression �26� corresponding to first-order perturba-
tions; �iii� dotted lines: solutions for s=0 �from Fig. 4�. N=40, n0

=5, and times ti=0.05,0.1,0.2,0.4,0.8,1.6,3.2 �in units of N /��.
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ics. For example, mutations can be included by considering
two alleles A and a, with mutation rates from one to others
being �1 and �2. Denoting by n the number of A alleles, the
transition rates read

W+�n� = �N − n��n�1 + s��1 − �1� + �N − n − 1��2� ,

W−�n� = n��N − n��1 − �2� − �n − 1��1� ,

and give rise to a dPGF equation which has a similar struc-
ture to Eq. �6� and can be studied by the same methods. The
diploid populations can be studied by including transition
rates W�n→n�2�. More importantly, we could include the
spatial extension of the ecosystem by dividing the ecosystem
into patches and modifying the transition rates to include
migrations from adjacent patches, which again will include
linear terms in the transition rates �9,23�. This would be an
important step to show the possibility of sympatry in specia-
tion. Other problems which could be modeled by this tech-
nique are the selection of social behavior and the control of
the cheaters. The dPGF technique has the potential to inves-
tigate by simple means a large number of problems of popu-
lation genetics.
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APPENDIX: MATHEMATICAL DETAILS

1. Diffusion equation

To transform the discrete master equation �1� into a con-
tinuous diffusion equation for large N, set x=n /N, dx=1 /N,
p�x , t�dx= P�n , t�, and w��x�=W�n�. Developing Eq. �1� into
powers of dx, one finds

�p�x,t�
�t

= −
1

N

��a�x�p�x,t��
�x

+
1

2N2

�2�b�x�p�x,t��
�x2 + O�dx3� ,

where a�x�=w+�x�−w−�x� and b�x�=w+�x�+w−�x�. In the
particular case of the Moran process, a�x�=N2sx�1−x� and
b�x�=2N2x�1−x��1+s /2�; neglecting higher-order terms the
above equation reads

�p�x,t�
�t

= − Ns
��x�1 − x�p�x,t��

�x
+ 	1 +

s

2

 �2�x�1 − x�p�x,t��

�x2 .

The Kimura equation is an approximation of the above dif-
fusion equation for small s, when the term s /2 can be ne-
glected compared to unity. To go beyond the limit of small s,
we renormalize the time t�= t�1+s /2� and the fitness s�
=s / �1+s /2� to find

�p�x,t�
�t�

= − Ns�
��x�1 − x�p�x,t��

�x
+

�2�x�1 − x�p�x,t��
�x2 ,

which is again similar to the classical Kimura equation, valid
for arbitrary s. We have to keep in mind however that the
coefficient s� can be markedly different from the fitness s,
when the latter is not small compared to unity.

2. Moran dPGF derivation

Consider the master equation �1� with the Moran transi-
tion rates �2� and �3�. We define the PGF as

��z,t� = �
n

znP�n,t� , �A1�

where z is an auxiliary continuous variable. To derive the
PGF equation, multiply both sides of Eq. �1� by zn and sum
over the index n. The left-hand side of the equation is

�
n

zn�P�n,t�
�t

=
�

�t
�

n

znP�n,t� =
���z,t�

�t
.

For the right-hand side, consider—for example—the term

�
n

znW+�n − 1�P�n − 1� = �
n

zn+1W+�n�P�n� . �A2�

Recall that because of the existence of the two absorbing
states n=0 and n=N and the initial condition

P�n,0� = 0 if n � 0 or n � N ,

the sum can be extended to n�Z, and therefore the change
of the summation variable from n to n+1 in Eq. �A2� has no
effect on the boundaries of the summation. Performing this
change of variable on all terms, the equation for the PGF
reads

��

�t
= ��zn+1 − zn�W+�n�� + ��zn−1 − zn�W−�n�� . �A3�

For the Moran process, transition rates are of the form

W��n� = k�n�N − n� ,

where k−=1 and k+= �1+s� are constant �recall that time is
measured in units of N /��. Consider the general term

0.01 0.1 1
t

0

0.2

0.4

0.6

0.8

1

P
(0

,t
)

s

FIG. 7. �Color online� Loss of allele probability P�0, t� as a
function of time, measured in �N /�� units, for various values of the
additional fitness s. Continuous curves correspond to Eq. �27�,
while circles correspond to direct numerical resolution of the master
equation �1�. N=100, n0=5, and s=0.01,0.05,0.1,0.25,0.5.
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�zn+
kn�N − n�� = kz
�N�nzn� − �n2zn�� . �A4�

From definition �A1�, it is easily shown that

�nzn� = z
��

�z
,

or, in general terms, �nkzn�= �z�z�k��z , t�. Replacing these
terms in Eq. �A4� reads

�zn+
kn�N − n�� = kz
z
�

�z
�N� − z

��

�z
� .

Replacing the above terms in Eq. �A3� we obtain

��

�t
= �k+z2 − k+z + k− − k−z�

�

�z
�N� − z

��

�z
�

= �1 − z��k− − k+z�
�

�z
�N� − z

��

�z
�

= �1 − z��1 − �1 + s�z�
�

�z
�N� − z

��

�z
� ,

which is Eq. �6�.

3. Explicit expression for coefficients

The recurrence relation for the coefficients of the eigen-
functions of Eq. �13� is

ak
n = −

k�N − k�
k�k + 1� − n�n + 1�

ak−1
n , k = n + 1, . . . ,N − 1,

where an
n=1. We can therefore compute the product directly

as

ak
n =

�1 − N + n�k−n

�2n + 2�k−n
	k

n

 ,

where it is assumed that binomial �k ,n�=0 if k�n and �
�


is the Pochhammer symbol ��
+
� /��
�.
As the eigenfunctions are given as polynomials of �1−z�,

let us set y=1−z. The coefficients ak
n�0 only for k�n, and

the matrix ak
n is a �N−1�� �N−1� triangular matrix where its

diagonal elements are unity. To determine the coefficients Cn
in Eq. �20� we use the initial condition ��z ,0�=zn0:

�
n=1

N−1

�
k=1

N−1

Cnak
nyk+1 = �1 − y�n0 − �0 − �N�1 − y�N = �

k=1

N−1

bky
k+1,

where bk is the result of the binomial development of the
above expression and reads

bk = �− 1�k��N	 N

k + 1

 − 	 n0

k + 1

� .

Cn’s are then extracted from the linear triangular system

�
n=1

N−1

Cnak
n = bk, k = 1, . . . ,N − 1, �A5�

and can also be given explicitly:

Cn = �− 1�n+1n0
�1 − N�n

�n + 1�n
3F2�1 − n0,− n,n + 1;2,1 − N;1� .

It is more efficient to solve directly the linear triangular sys-
tem �A5�. When s�0, the first-order �in s� amplitudes Cn

�1�

are obtained by the same procedure, except that now the
coefficients bk are defined as

bk = �− 1�k��N	 N

k + 1

�N/2 − 	 n0

k + 1

�n0/2� .

The same procedure can be extended to perturbations of
order �s2, and it extends the range of validity to Ns�10.
The computation is more cumbersome and we give here only
the results on the eigenvalues:

�n = − n�n + 1�	1 + �
N2 − 1 + n�n + 1�
2�2n − 1��2n + 3�
�−1/2.

For Ns=10, the relative deviations from exact values are at
most 4% for the first eigenvalues and become negligible for
large n’s.
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