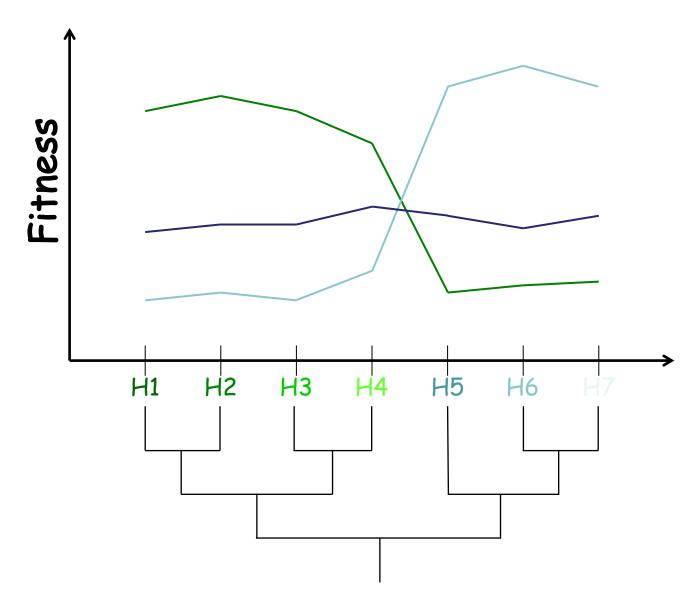
Plant defenses and virus adaptation

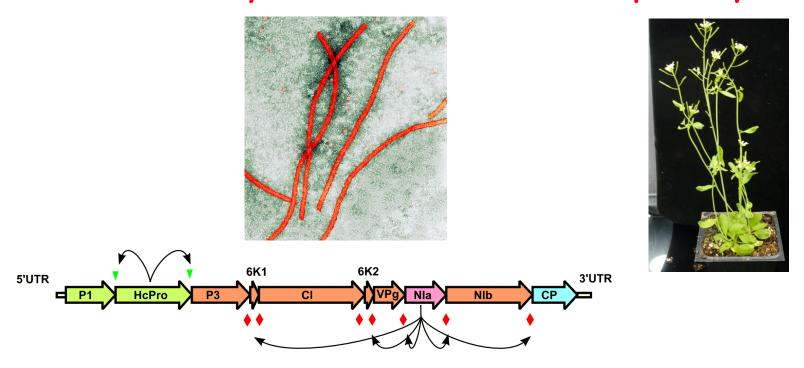
Santiago F. Elena

Evolutionary Systems Virology Group


Consequences of evolving in hosts with different susceptibility to infection

- ✓ Host heterogeneity in response to infection may:
 - Select for a monomorphic generalist population.
 - A polymorphic population composed by specialists on each host genotype.
 - A monomorphic population composed by an specialist in the most abundant susceptible host.
- ✓ The evolutionary outcome depends on:
 - Relative abundance and productivity of each host genotype.
 - The rate of transmission (gene flow) and whether coinfection/superinfection are frequent.
 - The strength of competition among viral phenotypes.
 - The heritability of host range (the genetic basis of virus adaptation).
 - Whether there is a fitness trade-off between host genotypes.
- ✓ In terms of virulence:
 - Strong host immunity may exacerbate selection for virulence (S. Gandon, A. Read...).
 - Virulence escalates up in an homogeneous population (D. Ebert, R. Regoes...).
 - An heterogeneous population cannot maintain virulence at intermediate levels in all host genotypes (M. Nowak, T. Day...).
 - Whether virulence escalates up or slides down to intermediate levels ultimately depends on the trade-off in replication between host genotypes.

Fitness tradeoffs across hosts


1. TEV/ Arabidopsis thaliana, an experimental model for an emerging plant virus

Arabidopsis thaliana Ler-0 - TEV pathosystem

- ✓ TEV has a moderately wide host range infecting around 149 species from 19 families, although most belong to the *Solanaceae*.
- ✓ Arabidopsis is a Brassicaceae, which belongs to a different order than the Solanaceae within the class Magnoliopsida. Therefore, adaptation of TEV to A. thaliana represents a jump in host species at the taxonomic level of orders.
- ✓ A. thaliana ecotypes vary in their susceptibility to TEV due to the presence of at least three resistance dominant loci.

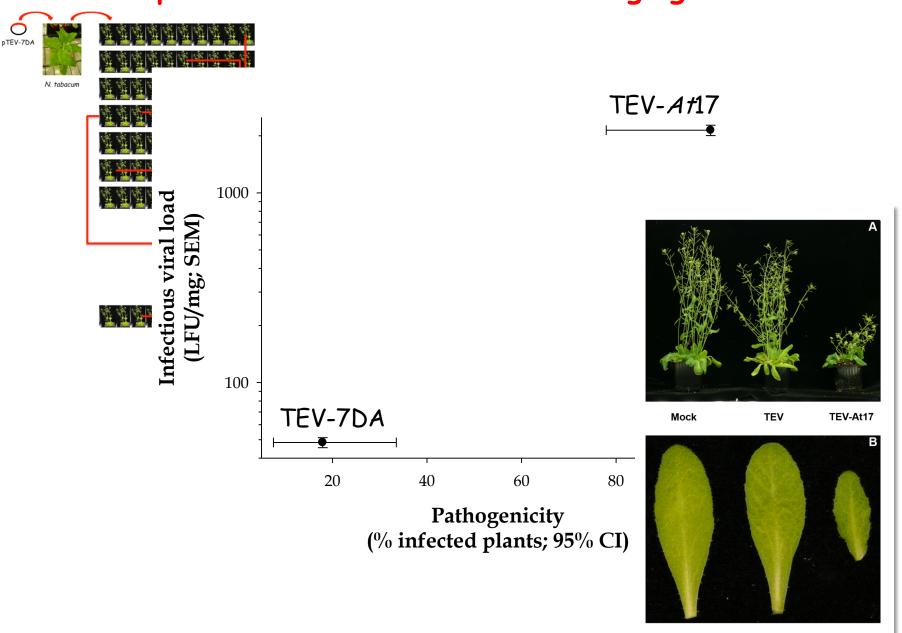
Restricted TEV Movement genes (RTM)

(J.C. Carrington, F. Revers et al.)

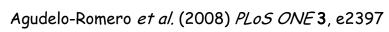
Characteristics of the RTM loci							
RTM1	Phloematic jacalin-related lectin-like protein carbohydrates binding, parasite recognition and stress response	Chromosome 1					
RTM2	Phloematic HSP-like protein with a transmembrane domain stress response	Chromosome 3					
RTM3	Meprin and TRAF homology (MATH) domain-containing protein regulation of protein processing and ubiquitination	Chromosome 3					
RTM4	?	Chromosome 1					
RTM5	?	Chromosome 2					

- ✓ Wildtype alleles at the three loci abolish systemic movement. Homozygous mutations in any locus allow it in more or less extent.
- ✓ Different A. thaliana accessions carry different alleles at these loci and vary in their susceptibility to TEV. Ler-0 (rtm1/rtm1).

1.1. Adaptation of TEV to A. thaliana Ler-0

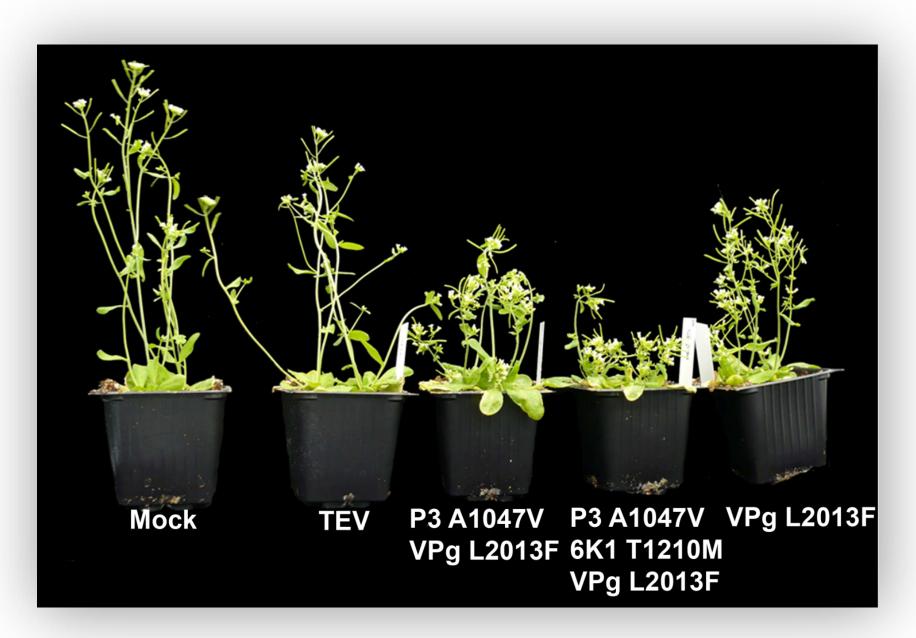


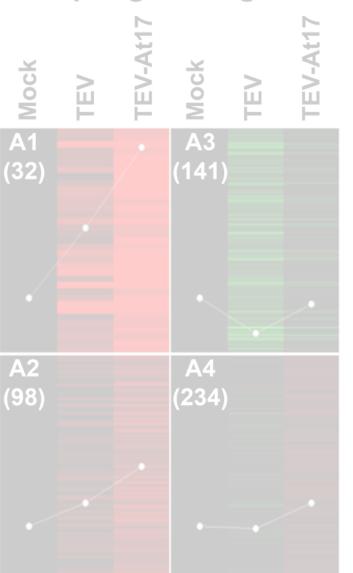
Experimental evolution of an emerging virus

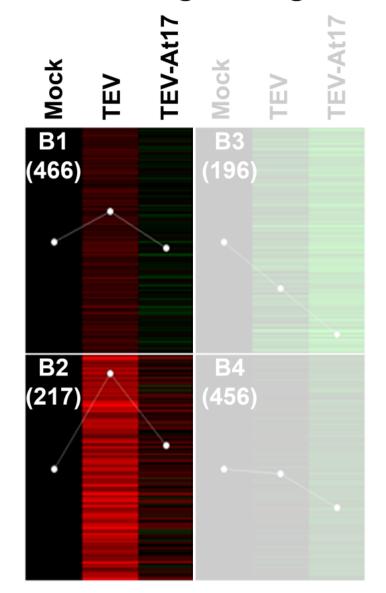


Molecular changes in TEV-At17 genome

Nucleotide change	Cistron and aa change	Symptoms severity
U357 <i>C</i>	P1 synonymous	-
C3140U	P3 A1047V	-
C3629U	6K1 T1210M	-
C6037U	VPg L2013F	+
C6666U	NIa-Pro synonymous	-
C6906U	NIa-Pro synonymous	-
	A1047V/T1210M	-
	A1047V/L2013F	++
	T1210M/L2013F	++
	A1047V/T1210M/L2013F	+++







Changes in the plant response to infection

A. Up-regulated genes

B. Down-regulated genes

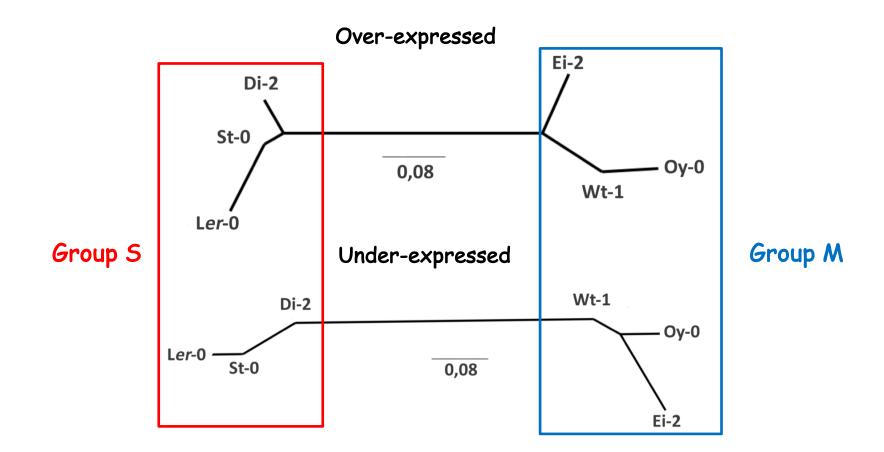
Over-represented GO terms in		Differentially	Total genes in		
SOMs B1+B2	GO level	expressed (%)	the class (%)	P	
Response to wounding	4	4.26	0.76	< 0.001	
Response to hormone stimulus	4	9.09	4.85	0.048	
Cell-to-cell signaling	4	1.42	0.19	0.050	
Response to cold	5	4.82	1.43	0.008	
Response to bacterium	5	3.54	0.82	0.009	
Thigmotropism	5	0.64	0.00	0.048	
Hyperosmotic salinity response	6	2.47	0.27	0.010	
Protein modification process	6	24.69	15.02	0.010	
Response to light intensity	6	2.06	0.27	0.047	
Protein amino acid phosphorylation	7	26.56	14.38	0.002	
MAPKKK cascade	7	1.56	0.07	0.047	
Systemic acquired resistance	8	5.38	0.47	0.013	
Activation of innate immune resistance	9	10.53	0.61	0.015	

1.2. Opening the door...

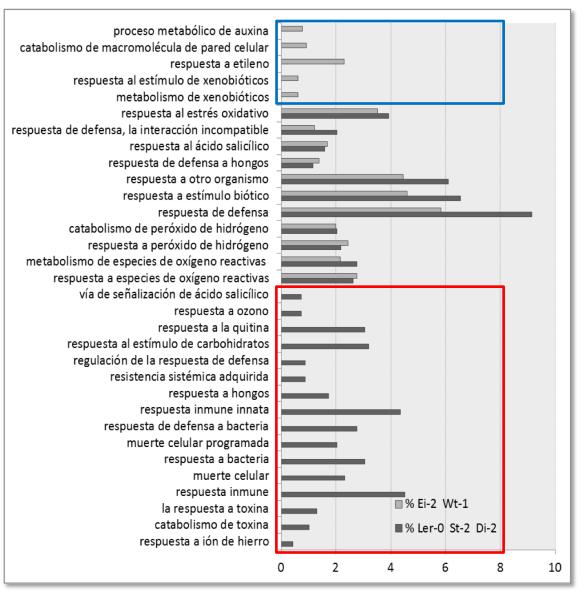
Accession	TEV ¹	TE	V- <i>At</i> 17	V-At17 P2
Alc-0	0			
Col-O	0			
Cvi-0	0			
Di-2	0			
Ei-2	0 33			
<i>G</i> a-0	0			
Ler-0	0.180 ± 0.104			
Оу-0	0			
Sorbo-0	0			
St-0	0.429 ± 0.121			
Ta-0	0			
Tsu-0	0			
Ws-0	0			
Wt-1	0			



Mild Moderate Severe



- Transcriptomic analysis (Agilent 4×44) of different ecotypes infected with TEV-At17.
- NJ dendograms from the pairwise similarity matrix computed between lists of (A) overand (B) under-expressed genes.



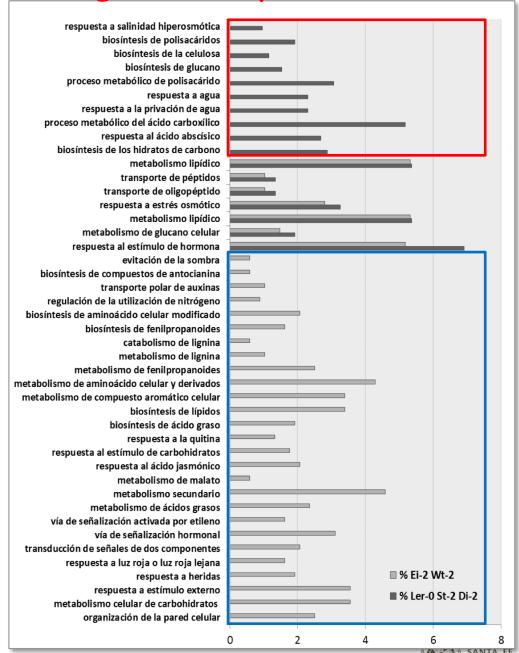
Functional categories among over-expressed

- Similarities:
 - 5 related to oxidative stress 6 related to defense responses
- Differences:

16 processes exclusive of **Group M**: defense \rightarrow low susceptibility

5 processes exclusive of **Group 5**: metabolism \rightarrow tolerance

Functional categories among under-expressed


Similarities:

7 shared categories

Differences:

10 processes exclusive of Group M

26 processes exclusive of Group S



2. Radiation of TEV-At17 into ecotypes that differ in their degree of susceptibility to infection

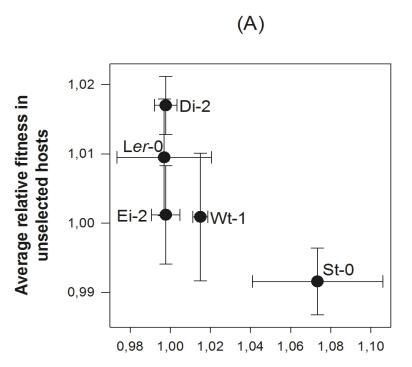
Table S1. Relative fitness values for each evolved lineage measured on each alternative host genotype. The gray shadow indicates tests of adaptation to the local host. Values are the average of a number of infection assays (between five and nine) and errors correspond to ±1 SEM. Asterisks indicate cases in which the value is significantly different from the value estimated for the ancestral TEV-At17b isolate (one-sample t-tests, P < 0.05; significance levels corrected by the FDR method).

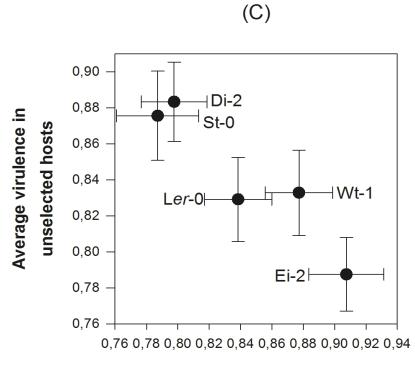
		Test host								
Local host	Lineage	Di-2	Ei-2	Ler-0	St-0	Wt-1				
Di-2	1	$0.990\pm0.000^*$	$0.984 \pm 0.002^*$	0.998±0.021	$1.044\pm0.015^*$	1.061±0.036				
	2	0.995±0.012	$0.988 {\pm} 0.004^*$	$1.002 \pm 0.000^*$	1.024 ± 0.028	$1.021\pm0.004^*$				
	3	1.009±0.004*	0.987 ± 0.015	1.000 ± 0.021	$1.041\pm0.010^*$	1.054 ± 0.027				
Ei-2	1	1.018±0.002*	1.006±0.004	0.954 ± 0.024	1.024 ± 0.015	0.953 ± 0.032				
	2	1.001 ± 0.014	1.004±0.003	0.991 ± 0.005	$1.027 \pm 0.009^*$	1.015±0.011				
	3	$1.006\pm0.002^*$	0.984±0.011	0.992 ± 0.006	$1.031\pm0.008^*$	1.003±0.008				
Ler-0	1	1.003 ± 0.004	$0.980 \pm 0.007^*$	0.953±0.021	1.084±0.038	1.029 ± 0.014				
	2	1.001 ± 0.005	$1.012\pm0.004^*$	1.004±0.024	1.013±0.010	1.014 ± 0.008				
	3	$0.986 \pm 0.004^*$	0.987 ± 0.051	1.034±0.037	1.028±0.009*	0.978 ± 0.040				
St-0	1	$0.981 \pm 0.005^*$	0.975 ± 0.016	0.980 ± 0.028	1.027±0.013*	$0.995 \pm 0.001^*$				
	2	0.998 ± 0.003	0.996 ± 0.008	0.982 ± 0.026	1.057±0.003*	$1.021\pm0.004^*$				
	3	0.992 ± 0.008	0.995 ± 0.007	0.994 ± 0.011	1.136±0.006*	0.991 ± 0.005				
Wt-1	1	$1.013\pm0.004^*$	0.967 ± 0.037	0.997 ± 0.009	0.991±0.036	1.011±0.004*				
	2	0.994 ± 0.005	0.999 ± 0.023	$0.950\pm0.014^*$	1.023 ± 0.010	1.011±0.003*				
	3	$0.995 \pm 0.002^*$	0.993±0.004	1.004±0.028	1.085±0.019*	1.022±0.005*				

The specificity of adaptation

Table 3. GLM analyses of variance for the three traits measured for all evolved lineages across the four new hosts (Di-2, Ei-2, St-0, and Wt-1).

	Relative fitness			Infectivity			Virulence					
Source of variation	Wald's χ^2	d.f.	P	η_P^2	Wald's χ^2	d.f.	P	η_P^2	Wald's χ^2	d.f.	P	η_P^2
Intersection μ	36674175.722	1	< 0.001	1.000	0.000	1	1.000	0.954	6743.107	1	< 0.001	1.000
Local host LH	555.603	4	< 0.001	0.318	17.562	4	0.002	0.079	19.098	4	0.001	0.141
Lineage $L(LH)$	2667.073	10	< 0.001	0.179	81.834	10	< 0.001	0.667	89.816	10	< 0.001	0.376
Test host TH	14629.123	4	< 0.001	0.758	61.624	4	< 0.001	0.550	12.848	4	0.012	0.137
Local host by Test host $LH \times TH$	4655.737	16	< 0.001	0.278	39.447	16	0.001	0.381	82.540	16	< 0.001	0.357
Test host by Lineage $TH \times L(LH)$	12124.267	40	< 0.001	0.186	86.925	39	< 0.001	1.000	149.934	40	< 0.001	0.161
Biological replicate $R(TH \times L(LH))$	53712.912	295	< 0.001	0.979								

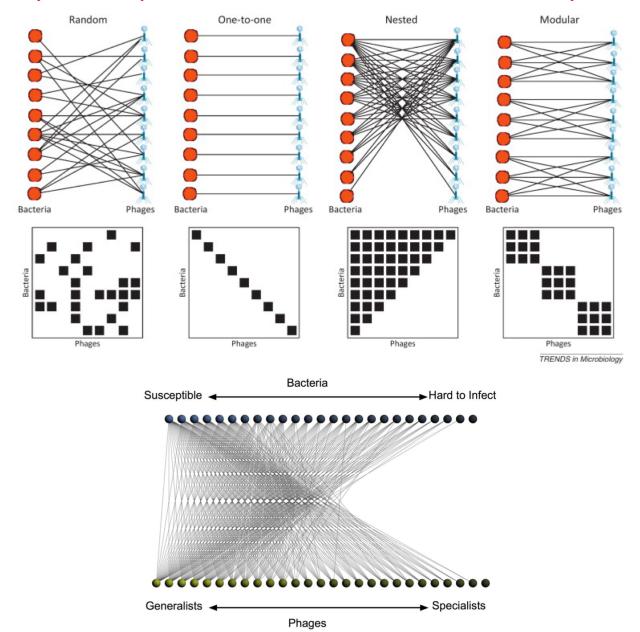




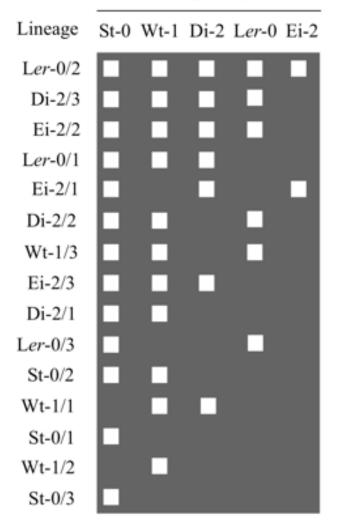
The specificity of adaptation

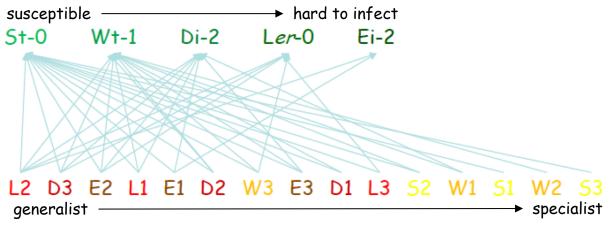
Average relative fitness in local host

Average virulence in local host



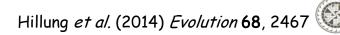
Host's susceptibility and the evolution of virus specialization



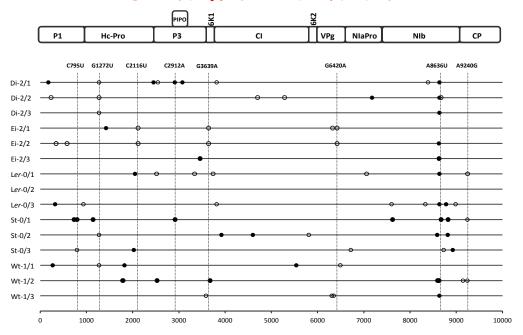


Analysis of the infection network

Host genotype



- Non-modular (P = 0.202).
- ✓ Significantly nested (P = 0.019): generalist viruses infect most ecotypes; very permissive ecotypes are available to all viruses: Gene-for-Gene model.

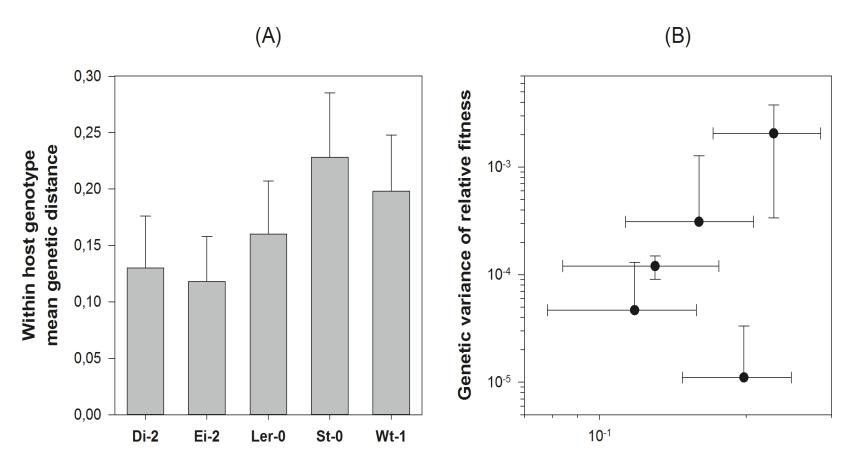


Genomic evolution

- √ 79 mutations at 62 sites (2-8 per lineage, except Ler-0/2).
- 42 synonymous, 37 nonsynonymous.
- ✓ 6 convergent synonymous: 3 exclusive of Ei-2 (C2116U, G3639A, G6420A). 1 exclusive of St-0 (C795U). G1272U shared by Di-2 and St-0 lineages. A9240G common to Ler-0/1, St-0/1 and Wt-1/2.
- ✓ 3 convergent nonsynonymous: C2912A (A923D in P3 cistron and L923I in P3N-PIPO) shared by lineages Di-2/1 and St-0/1. C8636U (S2831L in CP) shared by all Di-2 and Ler-0 and by Wt-1/3. Lineages Ei-2/2 (C8624U) and Ei-2/3 (U8623C) affect the same CP codon but resulting in different amino acid replacements (S2827L and S2827P).

Genomic evolution

✓ Treating each lineage as an observation and each host ecotype as a subpopulation, we decomposed nucleotide diversity:


Within host: π_S = 0.167±0.008. Entire sample: π_T = 0.187±0.014. Inter-host: δ_{ST} = π_T - π_S = 0.019±0.010. Coefficient of nucleotide differentiation: N_{ST} = δ_{ST}/π_T = 0.103±0.043 (z-test, 1-tail P =

- ✓ We conclude that minor yet significant genetic differentiation has been generated among viruses replicating in different host genotypes.
- ✓ To assess whether selection played a role in genetic differentiation among host genotypes, we performed a Tajima's D test and found that it was significantly negative (D = -2.172, P = 0.015). The existence of 55 singletones suggests than population expansion, rather than purifying selection, explains D < 0.

0.004).

Association between molecular diversity and genetic variance for fitness

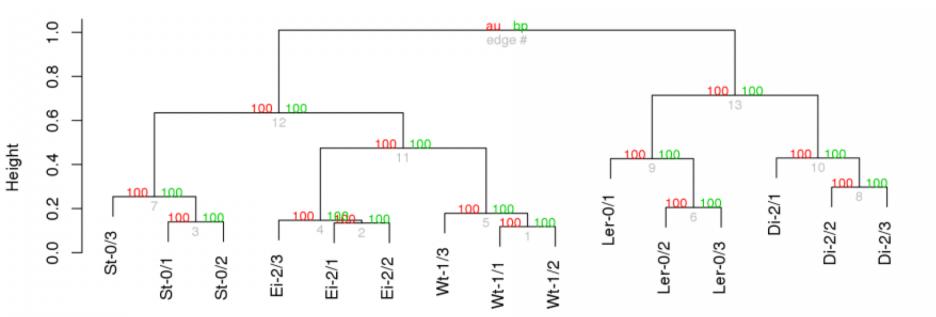
Mean genetic distance within local host genotype

Discarding Wt-1: $r_s = 1.000$, 2 d.f., 1-tail P < 0.001

Selection for translational efficiency at synonymous sites

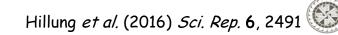
- ✓ A possible explanation for convergence at synonymous sites is that selection for translational efficiency results in the replacement of poorly used codons by synonymous ones for which the host cell has a large pool of tRNAs.
- For each of the 62 mutations, we computed the relative change in usage between the evolved and the ancestral codons $C = f_{evolved}/f_{ancestral} 1$. The hypothesis being true C > 0 for convergent synonymous mutations and significantly larger than for all other types of mutations.
- For convergent synonymous mutations $\langle G \rangle = 0.494 \pm 0.351$ (± 1 SEM); for the rest of mutations $\langle G \rangle = -0.009 \pm 0.066$ (2-samples t-test, 1-tail P = 0.016).
- ✓ We conclude that convergent synonymous mutations fixed during evolution resulted in codons that were ~50% more used by the A. thaliana translational machinery.

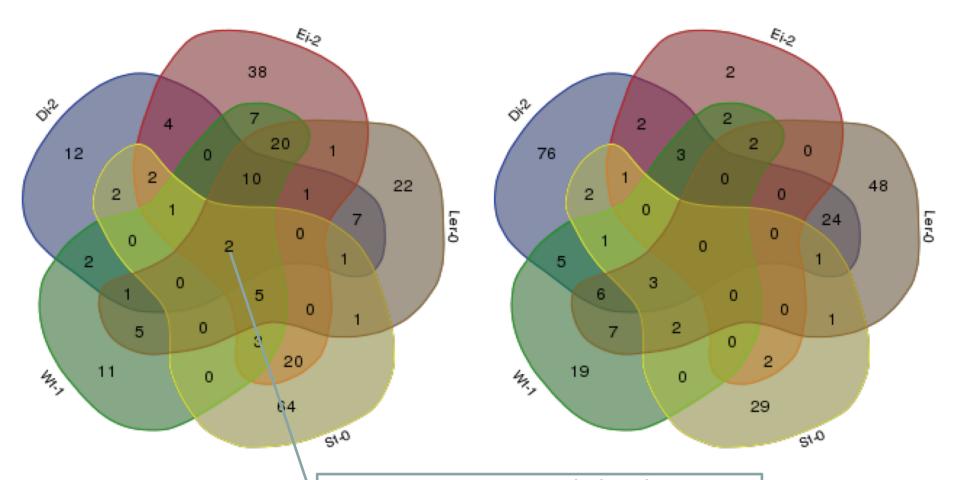
2.1. Transcriptomic consequences of TEV-At17 radiation into different host ecotypes


- ✓ Transcriptomic profiles of infected and control plants from each ecotype using the Agilent 4 × 44 A. thaliana Col-O microarray.
- ✓ Comparisons:
 - 1. Similarities/differences among replicated lineages in their host ecotypes.
 - 2. Drivers of local vs universal adaptation.
 - 3. Differences among the most specialist and the most generalist lineages.
- ✓ Similarities among pairs of transcriptomic profiles evaluated using Pearson's correlation coefficients.
 - Gene set analysis (GSA) was carried out for identifying significant GO terms using a logistic regression model (LRpath).

Local adaptation determines the effect on transcriptomic profiles

$$EV_{h,l,k} - C_k^{[2]}$$



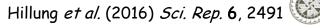


Ecotype-specific vs universal drivers of virus adaptation

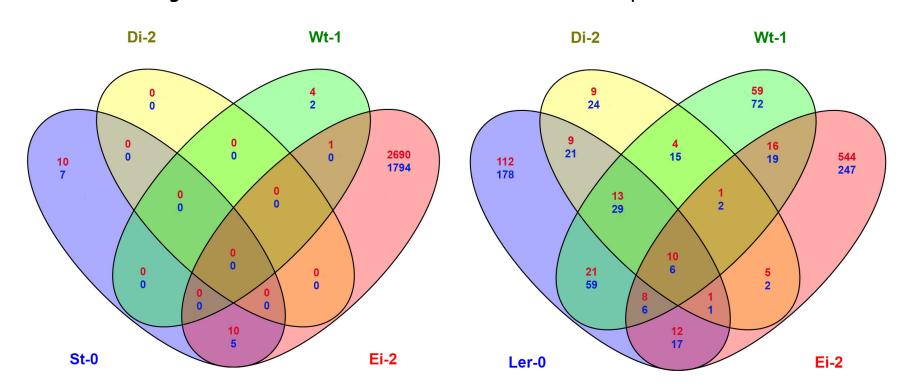
$$(EV_{h,l,k} - C_k^{[2]}) - (AV_k - C_k^{[1]})$$

Up-regulated functional categories

Down-regulated functional categories



response to cadmium ion (GO:0046686) and photorespiration (GO:0009853


Generalists alter a similar set of genes across host ecotypes whereas specialist do not

Differences with the corresponding local host

$$\left(EV_{\text{Le}r-0,2,k} - C_k^{[2]}\right) - \left(EV_{\text{Le}r-0,2,\text{Le}r-0} - C_{\text{Le}r-0}^{[2]}\right) \left(EV_{\text{St}-0,3,k} - C_k^{[2]}\right) - \left(EV_{\text{St}-0,3,\text{St}-0} - C_{\text{St}-0}^{[2]}\right)$$

Most generalist Ler-0/1

Most specialist St-0/3

