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Moduli space of representations

S oriented smooth compact surface of genus g ≥ 2
π1(S) fundamental group of S
G connected real semisimple Lie group (real or complex)

A representation of π1(S) in G

is a homomorphism

ρ : π1(S)→ G

Hom(π1(S), G) is an analytic variety, which is algebraic if
G is algebraic
G acts on Hom(π1(S), G) by conjugation:

(g · ρ)(γ) = gρ(γ)g−1 for g ∈ G, ρ ∈ Hom(π1(S), G)
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Moduli space of representations

ρ is a reductive representation if composed with the
adjoint representation in the Lie algebra of G, decomposes
as a sum of irreducible representations

Hom+(π1(S), G): set of reductive representations

Moduli space of representations or character variety

The moduli space of representations of π1(S) in G is defined to
be the orbit space

R(S,G) = Hom+(π1(S), G)/G

R(S,G) is an analytic variety (algebraic if G is algebraic)

Interested in the topology and geometry of R(S,G)

Complex algebraic geometry approach: Higgs bundles
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Higgs bundles

X compact Riemann surface

G complex semisimple Lie group
GR ⊂ G real form
HR ⊂ GR maximal compact subgroup of GR

θ Cartan involution of gR, Lie algebra of GR, defining the
Cartan decomposition:

gR = hR + mR

where hR is the Lie algebra of HR

We have [mR,mR] ⊂ hR, [hR,mR] ⊂ mR

The Cartan decomposition is orthogonal with respect to
the Killing form of gR

Complexification of isotropy representation
Let H and m be the complexifications of HR and mR

respectively

ι : H → GL(m)
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Higgs bundles

A GR-Higgs bundle on X is a pair (E,ϕ) consisting of

E a holomorphic principal H-bundle over X

ϕ a holomorphic section of E(m)⊗K,
where E(m) is the associated vector bundle with fibre m
via the complexified isotropy representation
and K is the canonical line bundle of X

There are notions of stability: consider for s ∈ ihR:
Parabolic subgroup
Ps = {g ∈ H : etsge−ts is bounded as t→∞}
Character χs : ps → C defined by s (ps Lie algebra of Ps)
Subspace ms = {Y ∈ m : ι(ets)Y is bounded as t→∞}
For σ a reduction of E to Ps

deg(E)(σ, s) :=
i

2π

∫
X
χs(F ).

F : curvature of a connection on the Ps-bundle defined by σ
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Higgs bundles

Stability of GR-Higgs bundles

(E,ϕ) is:

stable if

deg(E)(σ, s) > 0

for any s ∈ ihR and any holomorphic reduction
σ ∈ Γ(E(H/Ps)) such that ϕ ∈ H0(X,Eσ(ms)⊗K)

polystable if (E,ϕ) can be reduced to a G′R-Higgs bundle,
with G′R ⊂ GR reductive and (E,ϕ) stable as a G′R-Higgs
bundle
The moduli space of polystable GR-Higgs bundles
M(X,GR) is the set of isomorphism classes of polystable
GR-Higgs bundles

M(X,GR) is as complex algebraic variety
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Higgs bundles

GR = SL(n,C)

When GR is a clasical group we can formulate the theory in
terms of vector bundles

In this case HR = SU(n), H = SL(n,C) and m = sl(n,C)
Hence, an SL(n,C)-Higgs bundle is equivalent to a pair
(V, ϕ)
V rank n holomorphic vector bundle with detV = O
ϕ : V → V ⊗K with Trϕ = 0

(V, ϕ) is stable:
deg(V ′) < 0 for every V ′ ⊂ V such that ϕ(V ′) ⊂ V ′ ⊗K
(V, ϕ) is polystable:
(V, ϕ) = ⊕(Vi, ϕi) with deg Vi = 0 and (Vi, ϕi) stable

We recover the original notions introduced by Hitchin
(1987)
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Higgs bundles

GR = SU(p, q)

In this case HR = S(U(p)×U(q)), H = S(GL(p)×GL(q)),
and m = Hom(Cq,Cp)⊕Hom(Cp,Cq)
Hence, an SU(p, q)-Higgs bundle is equivalent to a tuple
(V,W, β, γ)
V and W are rank p and q holomorphic vector bundles,
respectively, with detV ⊗ detW = O
β : W → V ⊗K and γ : V →W ⊗K

(V,W, β, γ) is stable:
deg(V ′) + deg(W ′) < 0 for every V ′ ⊂ V and W ′ ⊂W such
that β(W ′) ⊂ V ′ ⊗K and γ(V ′) ⊂W ′ ⊗K
(V,W, β, γ) is polystable if the associated
SL(p+ q,C)-Higgs bundle

V ⊕W and ϕ =

(
0 β
γ 0

)
is polystable
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Higgs bundles

Theorem

A GR-Higgs (E,ϕ) is polystable if and only if there exists a
reduction h of the structure group of E from H to HR, such
that

Fh − [ϕ, τh(ϕ)] = 0 (Hitchin equation)

τh : Ω1,0(E(m))→ Ω0,1(E(m)) is the combination of the
anti-holomorphic involution in E(m) defined by the
compact real form at each point determined by h and the
conjugation of 1-forms

Fh is the curvature of the unique HR-connection
compatible with the holomorphic structure of E

Proved by: Hitchin (1987) for GR = SL(2,C), Simpson (1988)
for general GR, and Bradlow–G–Mundet (2003) &
G–Gothen–Mundet (2009) for general GR (direct proof)

Oscar Garćıa-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller



Higgs bundles

Theorem

A GR-Higgs (E,ϕ) is polystable if and only if there exists a
reduction h of the structure group of E from H to HR, such
that

Fh − [ϕ, τh(ϕ)] = 0 (Hitchin equation)

τh : Ω1,0(E(m))→ Ω0,1(E(m)) is the combination of the
anti-holomorphic involution in E(m) defined by the
compact real form at each point determined by h and the
conjugation of 1-forms

Fh is the curvature of the unique HR-connection
compatible with the holomorphic structure of E

Proved by: Hitchin (1987) for GR = SL(2,C), Simpson (1988)
for general GR, and Bradlow–G–Mundet (2003) &
G–Gothen–Mundet (2009) for general GR (direct proof)
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Higgs bundles

Non-abelian Hodge correspondence

Let S be a smooth compact surface and J be a complex
structure on S. Let X = (S, J). There is a homeomorphism

R(S,GR) ∼=M(X,GR)

Let (E,ϕ) be a polystable G-Higgs bundle and h a solution
to Hitchin equations

∇ = ∂̄E − τh(∂̄E) + ϕ− τh(ϕ)

is a flat GR-connection and the holonomy representation ρ
is reductive

Converse: Existence of a harmonic metric on a
reductive flat GR-bundle. Proved by Donaldson (1987) for
GR = SL(2,C) and Corlette (1988) for real reductive GR
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Oscar Garćıa-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller



Topological invariants

Given ρ : π1(S)→ GR, there is an associated flat GR-bundle
on S, defined as Eρ = S̃ ×ρ GR (S̃: universal cover of S):

Hom(π1(S), GR)/GR ∼= H1(S,GR) = iso. classes of flat GR-bundles

Let G̃R be the universal covering group of GR. We have an
exact sequence

1→ π1(GR)→ G̃R → GR → 1

which gives rise to the (pointed sets) cohomology sequence

H1(S, G̃R)→ H1(S,GR)
c→ H2(S, π1(GR))

topological invariant of ρ:
c(ρ) := c(Eρ) ∈ H2(X,π1(GR)) ∼= π1(GR)
We can define the subvariety

Rc(S,GR) := {ρ ∈ R(S,GR) : c(ρ) = c}
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Topological invariants

Similarly, we can define a topological invariant of a
GR-Higgs bundle (E,ϕ) over X as the topological class of
the H-bundle E (recall HR ⊂ GR is a maximal compact
subgroup)

H1(X,H) = isomorphisms classes of H-bundles
We have

H1(X, H̃)→ H1(X,H)
c→ H2(X,π1(H))

topological invariant of (E,ϕ):

c(E,ϕ) ∈ H2(X,π1(H)) ∼= π1(H)

We can define the subvariety

Mc(X,G
R) := {(E,ϕ) ∈M(X,GR) : c(E,ϕ) = c}
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Topological invariants

Recall π1(GR) ∼= π1(HR) ∼= π1(H)

For c ∈ π1(GR) ∼= π1(H) we have de homeomorphism

Rc(S,GR) ∼=Mc(X,G
R)

Theorem

If GR is compact (Ramanathan, 1975) or complex (J. Li, 1993;
G-Oliveira, 2017)

π0(R(S,GR)) = π0(M(X,GR)) ∼= π1(GR)

The story is very different for non-compact real Lie
groups (non-complex): The map

π0(R(S,GR)) = π0(M(X,GR))→ π1(GR)

is neither injective, nor surjective in general
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GR = SL(2,R)

The topological invariant of ρ ∈ R(S, SL(2,R)) in this case
is an integer (basically the Euler class) d ∈ Z ∼= π1(GR)

Rd := {ρ ∈ R(S,SL(2,R)) : with Euler class d}

Theorem (Milnor, 1958)

Rd is empty unless
|d| ≤ g − 1

An SL(2,R)-Higgs bundle is a tuple (L, β, γ)
L line bundle over X β ∈ H0(X,L2K) and
γ ∈ H0(X,L−2K)
Equivalently it can be seen as an SL(2,C)-Higgs bundle

(V, ϕ) with V = L⊕ L−1 and ϕ =

(
0 β
γ 0

)
Milnor’s inequality follows from the semistability of (V, ϕ)
(Hitchin, 1987)
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Oscar Garćıa-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller



GR = SL(2,R)

The topological invariant of ρ ∈ R(S, SL(2,R)) in this case
is an integer (basically the Euler class) d ∈ Z ∼= π1(GR)

Rd := {ρ ∈ R(S,SL(2,R)) : with Euler class d}

Theorem (Milnor, 1958)

Rd is empty unless
|d| ≤ g − 1

An SL(2,R)-Higgs bundle is a tuple (L, β, γ)
L line bundle over X β ∈ H0(X,L2K) and
γ ∈ H0(X,L−2K)
Equivalently it can be seen as an SL(2,C)-Higgs bundle

(V, ϕ) with V = L⊕ L−1 and ϕ =

(
0 β
γ 0

)
Milnor’s inequality follows from the semistability of (V, ϕ)
(Hitchin, 1987)
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GR = SL(2,R)

Theorem (Goldman, 1988; Hitchin 1987)

Rd is connected if |d| < g − 1

Rd has 22g connected components if |d| = g − 1

Let Rmax := Rd for |d| = g − 1

Each connected component of Rmax consists entirely of
Fuchsian representations (discrete and faithful) and can
be identified with the Teichmüller space T = T (S) of
the surface S (Goldman, 1980)

Question: Are there other simple groups with similar
features to those of SL(2,R). More precisely, whose moduli
space has connected components not distinguished by the
topological invariant and consisting entirely of discrete and
faithful representations?

Split real groups

Non-compact groups of Hermitian type
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Split real forms

Split real form: in the Cartan decomposition
gR = hR ⊕mR, the space mR contains a maximal abelian
subalgebra of gR

Every complex semisimple Lie group has a split real form
Examples: SL(n,R), Sp(2n,R), SO(n, n), SO(n, n+ 1)

Consider GR = SL(n,R)
A basis for the invariant polynomials on sl(n,C) is
provided by the coefficients of the characteristic polynomial
of a trace-free matrix,

det(x−A) = xn + p1(A)xn−2 + . . .+ pn−1(A),

where deg(pi) = i+ 1.
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Split real forms

Consider the Hitchin map

p :M(X,SL(n,C))→
n−1⊕
i=1

H0(Ki+1)

defined by p(E,ϕ) = (p1(ϕ), . . . , pn−1(ϕ)),

Hitchin (1992) constructed a section of this map giving

an isomorphism between the vector space

n−1⊕
i=1

H0(Ki+1)

and a connected component of the moduli space
M(X,SL(n,R)) ⊂M(X,SL(n,C))

This is called a Hitchin component (coincides with a
Teichmüller component ∼= H0(X,K2) when GR = SL(2,R))

Hitchin gives a general construction for any split real form

General construction of a section of the Hitchin map for
arbitrary GR (G–Peón-Nieto–Ramanan, 2018)
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Split real forms

Every representation in the Hitchin component can be
deformed to a representation factoring as
π1(S)→ SL(2,R)→ GR, where π1(S)→ SL(2,R) is in a
Teichmüller component and SL(2,R)→ GR is the
principal representation

A Hitchin component consists entirely of discrete and
faithful representations (Labourie, 2006)

The Hitchin component is unique if GR is a split form of
adjoint type (i.e. without centre)

The Hitchin component for PSL(3,R) parameterizes
convex projective structures on the surface
(Choi–Goldman, 1993)

In general, the Hitchin component parameterizes certain
type of geometric structures modeled on certain
homogeneous spaces (Guichard–Wienhard, 2012)
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Non-compact real forms of Hermitian type

GR of Hermitian type means that GR/HR admits a
complex structure compatible with the Riemannian
structure of GR/HR, making GR/HR a Kähler manifold

If GR is simple the centre of hR is one-dimensional and the
almost complex structure on GR/HR is defined by a
generating element in J ∈ Z(hR)

This complex structure defines a decomposition

m = m+ ⊕m−,

where m+ and m− are the (1, 0) and the (0, 1) part of m
respectively

Classical connected simple groups of Hermitian type:
SU(p, q), Sp(2n,R), SO∗(2n), SO0(2, n)

Two exceptional real forms of E−14
6 and E−25

7
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Oscar Garćıa-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller



Non-compact real forms of Hermitian type

Let (E,ϕ) be a GR-Higgs bundle over X.
The decomposition m = m+ ⊕m− gives a vector bundle
decomposition

E(m) = E(m+)⊕ E(m−)

Hence

ϕ = (β, γ) ∈ H0(X,E(m+)⊗K)⊕H0(X,E(m−)⊗K)

The torsion-free part of π1(H) is isomorphic to Z (most of
the time π1(HR) ∼= Z) and hence the topological invariant
of either a representation of π1(X) in GR, or of a GR-Higgs
bundle, is essentialy given by an integer d ∈ Z, known as
the Toledo invariant
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Non-compact real forms of Hermitian type

Theorem (Milnor–Wood inequality)

The Toledo invariant d satisfies

|d| ≤ rank(GR/HR)(g − 1)

Proved for the classical groups for representations by
Domic–Toledo (1987) and for Higgs bundles by
Bradlow–G–Gothen (2001)

General proof for representations by
Burger–Iozzi–Wienhard (2003), and for Higgs bundles
by Biquard–G–Rubio (2017)
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Non-compact real forms of Hermitian type

GR/HR can be realized as a bounded symmetric
domain D in m+, say (Cartan for the classical groups and
Harish-Chandra in general)

D is called of tube type if it is biholomorphic to a tube
TΩ over a cone Ω

The Poincaré disc, the domain for GR = SU(1, 1), is of
tube type. The tube is the Poincaré upper-half plane and
the biholomorphism is the Cayley transform

The Shilov boundary of D is the smallest closed subset Š
of the topological boundary ∂D for which every function f
continuous on D and holomorphic on D satisfies that

|f(z)| ≤ max
w∈Š
|f(w)| for every z ∈ D

D is of tube type if and only if Š is a compact
symmetric space of the form HR/H ′R. In this case
Ω = HR

∗ /H
′R is its non-compact dual symmetric space
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Non-compact real forms of Hermitian type

The symmetric spaces defined by Sp(2n,R), SO0(2, n) are
of tube type.

The symmetric space defined by SU(p, q) is of tube type if
and only if p = q.

The symmetric space defined by SO∗(2n) is of tube type if
and only if n is even.

The E−25
7 Hermitian real form is of tube type

The E−14
6 Hermitian real form is not of tube type

Every bounded symmetric domain has a maximal tube
subdomain
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Non-compact real forms of Hermitian type

Want to study the Maximal Toledo invariant moduli
space in the tube case (non-tube reduces to the tube case)

Mmax(X,GR) :=Md(X,G
R) for |d| = rank(GR/HR)(g−1)

Theorem (Cayley Correspondence)

Let GR be a such GR/HR is a Hermitian symmetric space of
tube type, and let Ω = HR

∗ /H
′R be the non-compact dual of the

Shilov boundary Š = HR/H ′R of GR/HR. Then

Mmax(X,GR) ∼=MK2(X,HR
∗ ),

where MK2(HR
∗ ) is the moduli space of K2-twisted HR

∗ -Higgs
bundles

Proved for the classical groups by Bradlow–G–Gothen
(2006) G–Gothen–Mundet (2013) (GR = Sp(2n,R))
General case proved by Biquard–G–Rubio (2017)
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Non-compact real forms of Hermitian type

The connected components of M(X,GR) are not fully
distinguished by the usual topological invariants. The dual
group HR

∗ detects new hidden invariants (for example
for GR = Sp(2n,R), HR

∗ = GL(n,R) — Stiefel–Whitney
classes

Rmax(S,GR) consists entirely of discrete and faithful
representations (Burger–Iozzi–Labourie–Wienhard,
2006)

The mapping class group of S acts properly on
Rmax(S,GR) (Wienhard, 2006)

All common features with Hitchin components

We define a higher Teichmüller component of R(S,GR)
or M(X,GR) as one that has this kind of properties

Question: Are there other groups besides split and
hermitian real forms for which higher Teichmüller
components exist?
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Higher Teichmüller components for GR = SO(p, q)

Joint work with M. Aparicio, S. Bradlow, B. Collier,
P. Gothen and A. Oliveira, Comptes Rendus
Mathematiques (2018), and Inventiones Math. (2019)

SO(p, q)-Higgs bundle: triple (V,W, η) where V and W
are respectively rank p and rank q vector bundles with
orthogonal structures such that det(W ) ' det(V ), and
η : W → V ⊗K

For p > 2, rank p orthogonal bundles on X are classified
topologically by their first and second Stiefel–Whitney
classes, sw1 ∈ H1(X,Z2) and sw2 ∈ H2(X,Z2)

Since det(W ) ' det(V ) sw1(V ) = sw1(W ), the components
of the moduli space M(SO(p, q)) are thus partially
labeled by triples (a, b, c) ∈ Z2g

2 × Z2 × Z2, where
a = sw1(V ) ∈ H1(X,Z2), b = sw2(V ) ∈ H2(X,Z2), and
c = sw2(W ) ∈ H2(X,Z2)
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Higher Teichmüller components for GR = SO(p, q)

Joint work with M. Aparicio, S. Bradlow, B. Collier,
P. Gothen and A. Oliveira, Comptes Rendus
Mathematiques (2018), and Inventiones Math. (2019)
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Higher Teichmüller components for GR = SO(p, q)

M(SO(p, q)) =
∐

(a,b,c)∈Z2g
2 ×Z2×Z2

Ma,b,c(SO(p, q))

Theorem

Assume that 2 < p ≤ q. For every (a, b, c) ∈ Z2g
2 × Z2 × Z2 the

space Ma,b,c(SO(p, q)) has a non-empty connected component

denoted by Ma,b,c
top (SO(p, q))

Define

Mtop(SO(p, q)) =
∐
a,b,c

Ma,b,c
top (SO(p, q))

Our main result shows that the moduli space M(SO(p, q))
has additional exotic components disjoint from the
components of Mtop(SO(p, q))
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Higher Teichmüller components for GR = SO(p, q)

Theorem (Generalized Cayley Correspondence)

Fix integers (p, q) such that 2 < p < q − 1. For each choice of
a ∈ Z2g

2 and c ∈ Z2, the moduli space M(SO(p, q)) has a
connected component disjoint from Mtop(SO(p, q)). This
component is isomorphic to

Ma,c
Kp(SO(1, q − p+ 1))×H0(K2)× · · · ×H0(K2p−2)

Conjecture: These exotic components are higher
Teichmüller components (i.e. consist entirely of discrete
and faithful representations)

Evidence: Notion of positivity recently introduced by
Guichard and Wienhard

The only classical groups admiting positive structures are:
split groups, hermitian groups of tube type and
groups locally isomorphic to SO(p, q)!!!
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Anosov and positive representations

Let P ⊂ GR be a parabolic subgroup. Let L ⊂ P be the
Levi factor of P . The homogeneous space GR/L is the
unique open GR orbit in GR/P ×GR/P , and points
(x, y) ∈ GR/P ×GR/P in this open orbit are called
transverse.

Let ∂∞π1(S) be the Gromov boundary of π1(S).
Topologically ∂∞π1(S) ∼= RP1.

A representation ρ : π1(S)→ GR is P -Anosov if there
exists a unique continuous boundary map
ξρ : ∂∞π1(S)→ GR/P satisfying
- Equivariance: ξ(γ · x) = ρ(γ) · ξ(x) for all γ ∈ π1(S) and
all x ∈ ∂∞π1(S).
- Transversality: for all distinct x, y ∈ ∂∞π1(S) the
generalized flags ξ(x) and ξ(y) are transverse.
- Dynamics preserving
The map ξρ is called the P -Anosov boundary curve
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Anosov and positive representations

Anosov representations were introduced by Labourie
(2006) and have many interesting geometric and dynamic
properties

Anosov representations are discrete and faithful and define
an open subset of the moduli space of representations
R(GR). The set of Anosov representations is however not
closed.

The special cases of Hitchin representations and maximal
representations define connected components of Anosov
representations. Both Hitchin representations and maximal
representations satisfy an additional “positivity” property
which is a closed condition. For Hitchin representations
this was proved by Labourie (2006) and
Fock–Goncharov (2006), and for maximal
representations by Burger–Iozzi–Wienhard (2010).
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Anosov and positive representations

These notions of positivity have recently been unified and
generalized by Guichard and Wienhard (2016)

P ⊂ GR parabolic subgroup , L Levi factor, U ⊂ P
unipotent subgroup

A pair (GR, P ) admits a positive structure if there is a
certain semigroup U>0 ⊂ U , which gives rise to a well
defined notion of positively oriented triples of pairwise
transverse points in GR/P

If the pair (GR, P ) admits a positive structure, then a
P -Anosov representation ρ : π1(S)→ G is called positive
if the Anosov boundary curve ξ : ∂∞π1(S)→ GR/P sends
positively ordered triples in ∂∞π1(S) to positive triples in
GR/P
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Conjecture (Guichard–Labourie–Wienhard): If
(GR, P ) admits a notion of positivity, then the set of
P -positive Anosov representations is open and closed in
R(S,GR), and hence define connected components

The only classical groups admiting positive structures are:
split groups, hermitian groups of tube type and groups
locally isomorphic to SO(p, q)!!!

Higher Teichmüller components: connected
components of R(S,GR) consisting of positive Anosov
representations. These components are not labeled by
primary topological invariants
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Anosov and positive representations

Our SO(p, q) exotic components contain positive
representations. If the the Guichard–Labourie–Wienhard
conjecture is true, they will consist entirely of positive
representations

The real forms of F4, E6, E7 and E8 whose restricted root
system is of type F4 admit positive structures
As we have seen, if GR is a Hermitian group of tube type
and for GR = SO(p, q) there is a Cayley correspondence for
the maximal and exotic components, respectively
It turns out that there is a larger class of groups for which
there are components emerging from a generalized Cayley
correspondence (Cayley components). These are groups
corresponding to what we call magical nilpotents. These
are precisely the groups admitting a positive structure.
Conjecture: Higher Teichmüller components (:= those
consisting of positive representations) coincide with
Cayley components,
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Nilpotents and embeddings of Teichmüller space

e ∈ g nilpotent i.e. ade : g→ g nilpotent endomorphism.

N ⊂ g nilpotent cone. G acts on N by conjugation, with
finitely many orbits.

There is a unique open dense orbit. Nilpotents in it are
called principal.

(Jacobson–Morosov): There is a bijection

N \ {0}/G
∼=−−→ {sl2C ↪→ g}/G

e 7−→ 〈f, h, e〉

with adh(e) = 2e, adh(f) = −2f , ade(f) = h.

e ∈ N \ {0}  sl2C ↪→ g  PSL2 C ↪→ G  
PSL2 R ↪→ GR

This gives ιe : T ↪→M(GR) (where T be the Teichmüller
component in M(PSL2 R)), whose image depends only on
the conjugacy class of e.
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Nilpotents and embeddings of Teichmüller space

For most nilpotents, ιe(T ) lies in a connected component of
M(GR) containing Higgs bundles with ϕ ≡ 0,
corresponding to compact representations
π1(S)→ HR ⊂ GR, hence not discrete and faithful.

However there is a set of nilpotents of g, which we named
magical, for which that does not happen...

To every magical nilpotent of g there is an associated
canonical real form gR of g.

Before properly defining these objects, let us state our main
results — joint with Steve Bradlow, Brian Collier,
Peter Gothen and André Oliveira (BCGGO)
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The Theorems

Theorem 1 (BCGGO)

A real form GR is such that gR arises as the canonical real form
of a magical nilpotent of g if and only if it is either:

split;

Hermitian of tube type;

locally isomorphic to SO(p, q) with 1 < p ≤ q;
locally isomorphic to E2

6 , E−5
7 , E−24

8 or F 4
4 .

This coincides precisely with the classification of groups
admitting a positive structure, obtained by
Guichard–Wienhard.

Corollary

A real form GR arises as the canonical real form of a magical
nilpotent of g if and only if it admits a positive structure.
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Corollary

A real form GR arises as the canonical real form of a magical
nilpotent of g if and only if it admits a positive structure.
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The Theorems

Theorem 2 (BCGGO)

Let e ∈ g be a magical nilpotent, with corresponding canonical
real form gR. If GR is a Lie group with Lie algebra gR, there
exists a union of connected components He(GR) ofM(GR) s.t.:

Higgs bundles in He(GR) have nowhere vanishing ϕ, so
there are no representations in He(GR) which factor
through the maximal compact HR ⊂ GR.

ιe(T (S)) ⊂ He(GR) and an open set of He(GR) consists of
positive representations.

He(GR) can be parameterized as

He(GR) ∼=MKmc+1(GR
C )×

N⊕
j=1, j 6=c

H0(X,Kmj+1)

with GR
C a real Lie group — the Cayley partner of GR —

and m1, . . . ,mN ∈ N depending only on (the conjugacy
class of) e.
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Previously known cases

The parameterization of Theorem 2 is given by a morphism

Ψ :MKmc+1(GR
C )×

N⊕
j=1, j 6=c

H0(X,Kmj+1) ↪→M(GR)

which recovers the known cases (split, Hermitian, SO(p, q)).

GR split  GR
C = R+, mi are the exponents of g and Ψ is

just the Hitchin section.
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The Conjecture

Using our parameterization, we also proved that

Theorem 3 (BCGGO)

There are no representations in He(GR) which factor through
proper parabolic subgroups of GR.

This should imply that every representations in the components
are positive.

Conjecture

The connected components of He(GR) are higher
Teichmüller components.

Any higher Teichmüller component arises as a connected
component of He(GR) for some magical e and
corresponding GR.

Rest of the talk: (1) define the objects appearing in Theorem
2; (2) give an idea of the parametrization Ψ of He(GR).
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Oscar Garćıa-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller



The Conjecture

Using our parameterization, we also proved that

Theorem 3 (BCGGO)

There are no representations in He(GR) which factor through
proper parabolic subgroups of GR.

This should imply that every representations in the components
are positive.

Conjecture

The connected components of He(GR) are higher
Teichmüller components.

Any higher Teichmüller component arises as a connected
component of He(GR) for some magical e and
corresponding GR.

Rest of the talk: (1) define the objects appearing in Theorem
2; (2) give an idea of the parametrization Ψ of He(GR).
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Magical nilpotents

Non-zero nilpotent e ∈ g

 〈f, h, e〉 ∼= sl2C ↪→ g

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Two different decompositions of g:
as an sl2C-module:

g =

N⊕
j=0

Wj = W0 ⊕
N⊕
j=1

Wj

Wj  direct sum of nj ≥ 0 copies of the unique
(j + 1)-dimensional irreducible sl2C-representation.
N.B: W0 is a subalgebra of g.
adh-weight decomposition: g =

⊕
j∈Z gj with adh |gj

= j Id,
ade : gj → gj+2 and adf : gj → gj−2.

ge = ker(ade) Centralizer of e:

ge = ⊕Nj=0Vj

with Vj = Wj ∩ gj the highest weight subspaces (V0 = W0).
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Magical nilpotents

Define the vector space involution associated to the
nilpotent e ∈ g

σe : g −→ g

by

σe|W0 = Id; σe|adk
f (Vj) = (−1)k+1 Id, j ≥ 1, k ≥ 0.

Definition

The nilpotent e is magical if σe is a Lie algebra involution.

(Kostant, Hitchin): Every principal nilpotent is magical.

e magical  g = h⊕m (±1-eigenspaces of σe)  real form
gR defined by gR = hR ⊕mR.

gR  canonical real form associated to e.
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Examples of magical nilpotents

g = sl3C;

e =
(

0 1 0
0 0 1
0 0 0

)
f =

(
0 0 0
2 0 0
0 2 0

)
h =

(
2 0 0
0 0 0
0 0 −2

)
.

W2

W4

g−4 g−2 g0 g2 g4

− + −
− − −+ +

dim hR = 3 =⇒ gR = sl3R.

In general, the canonical real form of the principal nilpotent is
the split one.
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Examples of magical nilpotents

g = sp2nC;

e =
(

0 In
0 0

)
, f =

(
0 0
In 0

)
, h =

(
In 0
0 −In

)
.

...
...

...

− +

+

+

+

− −

− −

−

n0

W2

n2=
n(n+1)

2

W0

n0=
n(n−1)

2

g−2 g0 g2

dim hR = n2 =⇒ gR = sp2nR.

The same nilpotent e thought of as an element in g = sl2nC
is also magical, and dim hR = 2n2 − 1 so gR = sun,n.
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Magical nilpotents

Let e ∈ g be a magical nilpotent element. Then:

only odd dimensional irreducible sl2C-representations
appear in the decomposition of g:

g =

N⊕
j=0

W2mj = W0 ⊕
N⊕
j=1

W2mj ;

For j ≥ 1, define

Z2mj = W2mj ∩ g0.

ad
mj

f : V2mj

∼=−−→ Z2mj .

[Z2mi , Z2mj ] ⊂W0 for all i, j (⇔ e magical);

[Z2mi , Z2mj ] = 0 for all i 6= j;

∃ at most one c ∈ {1, . . . , N} such that [Z2mc , Z2mc ] 6= 0
(⇔ n2mc > 1).

=⇒ Z2mj = C for j 6= c.
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The Cayley partner group

Define a Lie algebra involution θe : g0 → g0 (recall that
g0 = gh) by

θe|W0 = Id, θe|Z2mj
= − Id .

g0 = W0 ⊕ Z2mc ⊕ C⊕ · · · ⊕ C (±1 eigenspaces).

 a real form gR0 = WR
0 ⊕ ZR

2mc
⊕ R⊕ · · · ⊕ R.

Let gRC = WR
0 ⊕ ZR

2mc
.

Cayley partner of GR  the group GR
C with Lie algebra

gRC and maximal compact the subgroup of GR with Lie
algebra WR

0 .

Now we know the objects:

He(GR) ∼=MKmc+1(GR
C )×

N⊕
j=1,j 6=c

H0(X,Kmj+1)

=MKmc+1(GR
C )×

N∏
j=1,j 6=c

M
Kmj+1(R+)
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Back to Higgs bundles

(ET , f) the PSL2 R-Higgs bundle induced by the
SL2 R-Higgs bundle

(K1/2 ⊕K−1/2, f = ( 0 0
1 0 )).

f |K1/2 = 1 : K1/2 → K−1/2 ⊗K.

ET  frame bundle of K, with structure group T = C∗.

t = 〈h〉 ⊂ sl2C.

C  the subgroup of G whose Lie algebra is W0 ⊂ g.

C is the complexification of the maximal compact
subgroup of the Cayley partner GR

C .
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The parametrization

Ψ :MKmc+1(GR
C )×

N⊕
j=1,j 6=c

H0(X,Kmj+1) −→M(GR)

((EC , ψmc), ψm1 , . . . , ψmN ) 7−→
(

(ET ∗ EC)(H), f +

N∑
j=1

φmj

)
,

where φmj = ad
−mj

f (ψmj ) and (ET ∗ EC)(H) is the H-bundle
obtained from extension of structure group to H. Note that:

adh-decomposition preserved by T and C. So

(ET ∗ EC)(g) =
⊕
j

(ET ∗ EC)(gj);

adf : (ET ∗ EC)(gj) −→ (ET ∗ EC)(gj−2)⊗K;

ad
mj

f : (ET ∗EC)(V2mj )⊗K
∼=−−→ (ET ∗EC)(Z2mj )⊗Kmj+1;

f +
∑N

j=1 φmj ∈ H0(X, (ET ∗ EC)(m)⊗K).

Theorem 4 (BCGGO)

Ψ is an isomorphism onto its image, which is open and closed in
M(GR).
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Oscar Garćıa-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller


