Higgs bundles and higher Teichmüller components

Oscar García-Prada
ICMAT-CSIC, Madrid

ICTS, Bengaluru, 10-11 February 2020

Moduli space of representations

- S oriented smooth compact surface of genus $g \geq 2$
- $\pi_{1}(S)$ fundamental group of S
- G connected real semisimple Lie group (real or complex)

Moduli space of representations

- S oriented smooth compact surface of genus $g \geq 2$
- $\pi_{1}(S)$ fundamental group of S
- G connected real semisimple Lie group (real or complex)

A representation of $\pi_{1}(S)$ in G

is a homomorphism

$$
\rho: \pi_{1}(S) \rightarrow G
$$

Moduli space of representations

- S oriented smooth compact surface of genus $g \geq 2$
- $\pi_{1}(S)$ fundamental group of S
- G connected real semisimple Lie group (real or complex)

A representation of $\pi_{1}(S)$ in G

is a homomorphism

$$
\rho: \pi_{1}(S) \rightarrow G
$$

- $\operatorname{Hom}\left(\pi_{1}(S), G\right)$ is an analytic variety, which is algebraic if G is algebraic

Moduli space of representations

- S oriented smooth compact surface of genus $g \geq 2$
- $\pi_{1}(S)$ fundamental group of S
- G connected real semisimple Lie group (real or complex)

A representation of $\pi_{1}(S)$ in G

is a homomorphism

$$
\rho: \pi_{1}(S) \rightarrow G
$$

- $\operatorname{Hom}\left(\pi_{1}(S), G\right)$ is an analytic variety, which is algebraic if G is algebraic
- G acts on $\operatorname{Hom}\left(\pi_{1}(S), G\right)$ by conjugation:

$$
(g \cdot \rho)(\gamma)=g \rho(\gamma) g^{-1} \text { for } g \in G, \rho \in \operatorname{Hom}\left(\pi_{1}(S), G\right)
$$

Moduli space of representations

- ρ is a reductive representation if composed with the adjoint representation in the Lie algebra of G, decomposes as a sum of irreducible representations
- $\operatorname{Hom}^{+}\left(\pi_{1}(S), G\right)$: set of reductive representations

Moduli space of representations

- ρ is a reductive representation if composed with the adjoint representation in the Lie algebra of G, decomposes as a sum of irreducible representations
- $\operatorname{Hom}^{+}\left(\pi_{1}(S), G\right)$: set of reductive representations

Moduli space of representations or character variety

The moduli space of representations of $\pi_{1}(S)$ in G is defined to be the orbit space

$$
\mathcal{R}(S, G)=\operatorname{Hom}^{+}\left(\pi_{1}(S), G\right) / G
$$

Moduli space of representations

- ρ is a reductive representation if composed with the adjoint representation in the Lie algebra of G, decomposes as a sum of irreducible representations
- $\operatorname{Hom}^{+}\left(\pi_{1}(S), G\right)$: set of reductive representations

Moduli space of representations or character variety

The moduli space of representations of $\pi_{1}(S)$ in G is defined to be the orbit space

$$
\mathcal{R}(S, G)=\operatorname{Hom}^{+}\left(\pi_{1}(S), G\right) / G
$$

- $\mathcal{R}(S, G)$ is an analytic variety (algebraic if G is algebraic)

Moduli space of representations

- ρ is a reductive representation if composed with the adjoint representation in the Lie algebra of G, decomposes as a sum of irreducible representations
- $\operatorname{Hom}^{+}\left(\pi_{1}(S), G\right)$: \quad set of reductive representations

Moduli space of representations or character variety

The moduli space of representations of $\pi_{1}(S)$ in G is defined to be the orbit space

$$
\mathcal{R}(S, G)=\operatorname{Hom}^{+}\left(\pi_{1}(S), G\right) / G
$$

- $\mathcal{R}(S, G)$ is an analytic variety (algebraic if G is algebraic)
- Interested in the topology and geometry of $\mathcal{R}(S, G)$

Moduli space of representations

- ρ is a reductive representation if composed with the adjoint representation in the Lie algebra of G, decomposes as a sum of irreducible representations
- $\operatorname{Hom}^{+}\left(\pi_{1}(S), G\right)$: set of reductive representations

Moduli space of representations or character variety

The moduli space of representations of $\pi_{1}(S)$ in G is defined to be the orbit space

$$
\mathcal{R}(S, G)=\operatorname{Hom}^{+}\left(\pi_{1}(S), G\right) / G
$$

- $\mathcal{R}(S, G)$ is an analytic variety (algebraic if G is algebraic)
- Interested in the topology and geometry of $\mathcal{R}(S, G)$
- Complex algebraic geometry approach: Higgs bundles

Higgs bundles

- X compact Riemann surface

Higgs bundles

- X compact Riemann surface
- G complex semisimple Lie group
- $G^{\mathbb{R}} \subset G$ real form
- $H^{\mathbb{R}} \subset G^{\mathbb{R}} \quad$ maximal compact subgroup of $G^{\mathbb{R}}$

Higgs bundles

- X compact Riemann surface
- G complex semisimple Lie group
- $G^{\mathbb{R}} \subset G$ real form
- $H^{\mathbb{R}} \subset G^{\mathbb{R}} \quad$ maximal compact subgroup of $G^{\mathbb{R}}$
- θ Cartan involution of $\mathfrak{g}^{\mathbb{R}}$, Lie algebra of $G^{\mathbb{R}}$, defining the Cartan decomposition:

$$
\mathfrak{g}^{\mathbb{R}}=\mathfrak{h}^{\mathbb{R}}+\mathfrak{m}^{\mathbb{R}}
$$

where $\mathfrak{h}^{\mathbb{R}}$ is the Lie algebra of $H^{\mathbb{R}}$
We have $\left[\mathfrak{m}^{\mathbb{R}}, \mathfrak{m}^{\mathbb{R}}\right] \subset \mathfrak{h}^{\mathbb{R}},\left[\mathfrak{h}^{\mathbb{R}}, \mathfrak{m}^{\mathbb{R}}\right] \subset \mathfrak{m}^{\mathbb{R}}$

- The Cartan decomposition is orthogonal with respect to the Killing form of $\mathfrak{g}^{\mathbb{R}}$
- Complexification of isotropy representation

Let H and \mathfrak{m} be the complexifications of $H^{\mathbb{R}}$ and $\mathfrak{m}^{\mathbb{R}}$ respectively

$$
\iota: H \rightarrow \mathrm{GL}(\mathfrak{m})
$$

Higgs bundles

A $G^{\mathbb{R}}$-Higgs bundle on X is a pair (E, φ) consisting of

- E a holomorphic principal H-bundle over X
- φ a holomorphic section of $E(\mathfrak{m}) \otimes K$, where $E(\mathfrak{m})$ is the associated vector bundle with fibre \mathfrak{m} via the complexified isotropy representation and K is the canonical line bundle of X

Higgs bundles

A $G^{\mathbb{R}}$-Higgs bundle on X is a pair (E, φ) consisting of

- $E \quad$ a holomorphic principal H-bundle over X
- φ a holomorphic section of $E(\mathfrak{m}) \otimes K$, where $E(\mathfrak{m})$ is the associated vector bundle with fibre \mathfrak{m} via the complexified isotropy representation and K is the canonical line bundle of X
- There are notions of stability: consider for $s \in i \mathfrak{h}^{\mathbb{R}}$:
- Parabolic subgroup $P_{s}=\left\{g \in H: e^{t s} g e^{-t s}\right.$ is bounded as $\left.t \rightarrow \infty\right\}$
- Character $\chi_{s}: \mathfrak{p}_{s} \rightarrow \mathbb{C}$ defined by $s\left(\mathfrak{p}_{s}\right.$ Lie algebra of $\left.P_{s}\right)$
- Subspace $\mathfrak{m}_{s}=\left\{Y \in \mathfrak{m}: \iota\left(e^{t s}\right) Y\right.$ is bounded as $\left.t \rightarrow \infty\right\}$
- For σ a reduction of E to P_{s}

$$
\operatorname{deg}(E)(\sigma, s):=\frac{i}{2 \pi} \int_{X} \chi_{s}(F)
$$

F : curvature of a connection on the $P_{s^{-}}$-bundle defined by σ

Higgs bundles

Stability of $G^{\mathbb{R}}$-Higgs bundles

(E, φ) is:

- stable if

$$
\operatorname{deg}(E)(\sigma, s)>0
$$

for any $s \in i \mathfrak{h}^{\mathbb{R}}$ and any holomorphic reduction $\sigma \in \Gamma\left(E\left(H / P_{s}\right)\right)$ such that $\varphi \in H^{0}\left(X, E_{\sigma}\left(\mathfrak{m}_{s}\right) \otimes K\right)$

Higgs bundles

Stability of $G^{\mathbb{R}}$-Higgs bundles

(E, φ) is:

- stable if

$$
\operatorname{deg}(E)(\sigma, s)>0
$$

for any $s \in i \mathfrak{h}^{\mathbb{R}}$ and any holomorphic reduction $\sigma \in \Gamma\left(E\left(H / P_{s}\right)\right)$ such that $\varphi \in H^{0}\left(X, E_{\sigma}\left(\mathfrak{m}_{s}\right) \otimes K\right)$

- polystable if (E, φ) can be reduced to a $G^{\prime \mathbb{R}}$-Higgs bundle, with $G^{\prime \mathbb{R}} \subset G^{\mathbb{R}}$ reductive and (E, φ) stable as a $G^{\prime \mathbb{R}}$-Higgs bundle

Higgs bundles

Stability of $G^{\mathbb{R}}$-Higgs bundles

(E, φ) is:

- stable if

$$
\operatorname{deg}(E)(\sigma, s)>0
$$

for any $s \in i \mathfrak{h}^{\mathbb{R}}$ and any holomorphic reduction $\sigma \in \Gamma\left(E\left(H / P_{s}\right)\right)$ such that $\varphi \in H^{0}\left(X, E_{\sigma}\left(\mathfrak{m}_{s}\right) \otimes K\right)$

- polystable if (E, φ) can be reduced to a $G^{\prime \mathbb{R}}$-Higgs bundle, with $G^{\mathbb{R}} \subset G^{\mathbb{R}}$ reductive and (E, φ) stable as a $G^{I \mathbb{R}}$-Higgs bundle
The moduli space of polystable $G^{\mathbb{R}}$-Higgs bundles $\mathcal{M}\left(X, G^{\mathbb{R}}\right)$ is the set of isomorphism classes of polystable $G^{\mathbb{R}}$-Higgs bundles
- $\mathcal{M}\left(X, G^{\mathbb{R}}\right)$ is as complex algebraic variety

Higgs bundles

$G^{\mathbb{R}}=\operatorname{SL}(n, \mathbb{C})$

- When $G^{\mathbb{R}}$ is a clasical group we can formulate the theory in terms of vector bundles

Higgs bundles

$G^{\mathbb{R}}=\operatorname{SL}(n, \mathbb{C})$

- When $G^{\mathbb{R}}$ is a clasical group we can formulate the theory in terms of vector bundles
- In this case $H^{\mathbb{R}}=\mathrm{SU}(n), H=\mathrm{SL}(n, \mathbb{C})$ and $\mathfrak{m}=\mathfrak{s l}(n, \mathbb{C})$ Hence, an $\operatorname{SL}(n, \mathbb{C})$-Higgs bundle is equivalent to a pair (V, φ)
V rank n holomorphic vector bundle with $\operatorname{det} V=\mathcal{O}$
$\varphi: V \rightarrow V \otimes K$ with $\operatorname{Tr} \varphi=0$
- (V, φ) is stable:
$\operatorname{deg}\left(V^{\prime}\right)<0$ for every $V^{\prime} \subset V$ such that $\varphi\left(V^{\prime}\right) \subset V^{\prime} \otimes K$ (V, φ) is polystable:
$(V, \varphi)=\oplus\left(V_{i}, \varphi_{i}\right)$ with $\operatorname{deg} V_{i}=0$ and $\left(V_{i}, \varphi_{i}\right)$ stable
- We recover the original notions introduced by Hitchin (1987)

Higgs bundles

$G^{\mathbb{R}}=\mathrm{SU}(p, q)$

- In this case $H^{\mathbb{R}}=\mathrm{S}(\mathrm{U}(p) \times \mathrm{U}(q)), H=\mathrm{S}(\mathrm{GL}(p) \times \mathrm{GL}(q))$, and $\mathfrak{m}=\operatorname{Hom}\left(\mathbb{C}^{q}, \mathbb{C}^{p}\right) \oplus \operatorname{Hom}\left(\mathbb{C}^{p}, \mathbb{C}^{q}\right)$
Hence, an $\mathrm{SU}(p, q)$-Higgs bundle is equivalent to a tuple (V, W, β, γ)
V and W are rank p and q holomorphic vector bundles, respectively, with $\operatorname{det} V \otimes \operatorname{det} W=\mathcal{O}$ $\beta: W \rightarrow V \otimes K$ and $\gamma: V \rightarrow W \otimes K$

Higgs bundles

$$
G^{\mathbb{R}}=\mathrm{SU}(p, q)
$$

- In this case $H^{\mathbb{R}}=\mathrm{S}(\mathrm{U}(p) \times \mathrm{U}(q)), H=\mathrm{S}(\mathrm{GL}(p) \times \mathrm{GL}(q))$, and $\mathfrak{m}=\operatorname{Hom}\left(\mathbb{C}^{q}, \mathbb{C}^{p}\right) \oplus \operatorname{Hom}\left(\mathbb{C}^{p}, \mathbb{C}^{q}\right)$
Hence, an $\operatorname{SU}(p, q)$-Higgs bundle is equivalent to a tuple (V, W, β, γ)
V and W are rank p and q holomorphic vector bundles, respectively, with $\operatorname{det} V \otimes \operatorname{det} W=\mathcal{O}$
$\beta: W \rightarrow V \otimes K$ and $\gamma: V \rightarrow W \otimes K$
- (V, W, β, γ) is stable:
$\operatorname{deg}\left(V^{\prime}\right)+\operatorname{deg}\left(W^{\prime}\right)<0$ for every $V^{\prime} \subset V$ and $W^{\prime} \subset W$ such that $\beta\left(W^{\prime}\right) \subset V^{\prime} \otimes K$ and $\gamma\left(V^{\prime}\right) \subset W^{\prime} \otimes K$
(V, W, β, γ) is polystable if the associated $\mathrm{SL}(p+q, \mathbb{C})$-Higgs bundle

$$
V \oplus W \quad \text { and } \quad \varphi=\left(\begin{array}{ll}
0 & \beta \\
\gamma & 0
\end{array}\right)
$$

is polystable

Higgs bundles

Theorem

A $G^{\mathbb{R}}$-Higgs (E, φ) is polystable if and only if there exists a reduction h of the structure group of E from H to $H^{\mathbb{R}}$, such that

$$
F_{h}-\left[\varphi, \tau_{h}(\varphi)\right]=0 \quad(\text { Hitchin equation })
$$

- $\tau_{h}: \Omega^{1,0}(E(\mathfrak{m})) \rightarrow \Omega^{0,1}(E(\mathfrak{m}))$ is the combination of the anti-holomorphic involution in $E(\mathfrak{m})$ defined by the compact real form at each point determined by h and the conjugation of 1-forms
- F_{h} is the curvature of the unique $H^{\mathbb{R}}$-connection compatible with the holomorphic structure of E

Higgs bundles

Theorem

A $G^{\mathbb{R}}$-Higgs (E, φ) is polystable if and only if there exists a reduction h of the structure group of E from H to $H^{\mathbb{R}}$, such that

$$
F_{h}-\left[\varphi, \tau_{h}(\varphi)\right]=0 \quad(\text { Hitchin equation })
$$

- $\tau_{h}: \Omega^{1,0}(E(\mathfrak{m})) \rightarrow \Omega^{0,1}(E(\mathfrak{m}))$ is the combination of the anti-holomorphic involution in $E(\mathfrak{m})$ defined by the compact real form at each point determined by h and the conjugation of 1-forms
- F_{h} is the curvature of the unique $H^{\mathbb{R}}$-connection compatible with the holomorphic structure of E

Proved by: Hitchin (1987) for $G^{\mathbb{R}}=\mathrm{SL}(2, \mathbb{C})$, Simpson (1988) for general $G^{\mathbb{R}}$, and Bradlow-G-Mundet (2003) \&
G-Gothen-Mundet (2009) for general $G^{\mathbb{R}}$ (direct proof)

Higgs bundles

Non-abelian Hodge correspondence

Let S be a smooth compact surface and J be a complex structure on S. Let $X=(S, J)$. There is a homeomorphism

$$
\mathcal{R}\left(S, G^{\mathbb{R}}\right) \cong \mathcal{M}\left(X, G^{\mathbb{R}}\right)
$$

Higgs bundles

Non-abelian Hodge correspondence

Let S be a smooth compact surface and J be a complex structure on S. Let $X=(S, J)$. There is a homeomorphism

$$
\mathcal{R}\left(S, G^{\mathbb{R}}\right) \cong \mathcal{M}\left(X, G^{\mathbb{R}}\right)
$$

Higgs bundles

Non-abelian Hodge correspondence

Let S be a smooth compact surface and J be a complex structure on S. Let $X=(S, J)$. There is a homeomorphism

$$
\mathcal{R}\left(S, G^{\mathbb{R}}\right) \cong \mathcal{M}\left(X, G^{\mathbb{R}}\right)
$$

- Let (E, φ) be a polystable G-Higgs bundle and h a solution to Hitchin equations

$$
\nabla=\bar{\partial}_{E}-\tau_{h}\left(\bar{\partial}_{E}\right)+\varphi-\tau_{h}(\varphi)
$$

is a flat $G^{\mathbb{R}}$-connection and the holonomy representation ρ is reductive

Higgs bundles

Non-abelian Hodge correspondence

Let S be a smooth compact surface and J be a complex structure on S. Let $X=(S, J)$. There is a homeomorphism

$$
\mathcal{R}\left(S, G^{\mathbb{R}}\right) \cong \mathcal{M}\left(X, G^{\mathbb{R}}\right)
$$

- Let (E, φ) be a polystable G-Higgs bundle and h a solution to Hitchin equations

$$
\nabla=\bar{\partial}_{E}-\tau_{h}\left(\bar{\partial}_{E}\right)+\varphi-\tau_{h}(\varphi)
$$

is a flat $G^{\mathbb{R}}$-connection and the holonomy representation ρ is reductive

- Converse: Existence of a harmonic metric on a reductive flat $G^{\mathbb{R}}$-bundle. Proved by Donaldson (1987) for $G^{\mathbb{R}}=\operatorname{SL}(2, \mathbb{C})$ and Corlette (1988) for real reductive $G^{\mathbb{R}}$

Topological invariants

- Given $\rho: \pi_{1}(S) \rightarrow G^{\mathbb{R}}$, there is an associated flat $G^{\mathbb{R}}$-bundle on S, defined as $E_{\rho}=\widetilde{S} \times{ }_{\rho} G^{\mathbb{R}}(\widetilde{S}$: universal cover of $S)$: $\operatorname{Hom}\left(\pi_{1}(S), G^{\mathbb{R}}\right) / G^{\mathbb{R}} \cong H^{1}\left(S, G^{\mathbb{R}}\right)=$ iso. classes of flat $G^{\mathbb{R}}$-bundle

Topological invariants

- Given $\rho: \pi_{1}(S) \rightarrow G^{\mathbb{R}}$, there is an associated flat $G^{\mathbb{R}}$-bundle on S, defined as $E_{\rho}=\widetilde{S} \times{ }_{\rho} G^{\mathbb{R}}(\widetilde{S}$: universal cover of $S)$:
$\operatorname{Hom}\left(\pi_{1}(S), G^{\mathbb{R}}\right) / G^{\mathbb{R}} \cong H^{1}\left(S, G^{\mathbb{R}}\right)=$ iso. classes of flat $G^{\mathbb{R}}$-bundle
- Let $\widetilde{G}^{\mathbb{R}}$ be the universal covering group of $G^{\mathbb{R}}$. We have an exact sequence

$$
1 \rightarrow \pi_{1}\left(G^{\mathbb{R}}\right) \rightarrow \widetilde{G}^{\mathbb{R}} \rightarrow G^{\mathbb{R}} \rightarrow 1
$$

which gives rise to the (pointed sets) cohomology sequence

$$
H^{1}\left(S, \widetilde{G}^{\mathbb{R}}\right) \rightarrow H^{1}\left(S, G^{\mathbb{R}}\right) \xrightarrow{c} H^{2}\left(S, \pi_{1}\left(G^{\mathbb{R}}\right)\right)
$$

- Given $\rho: \pi_{1}(S) \rightarrow G^{\mathbb{R}}$, there is an associated flat $G^{\mathbb{R}}$-bundle on S, defined as $E_{\rho}=\widetilde{S} \times{ }_{\rho} G^{\mathbb{R}}(\widetilde{S}$: universal cover of $S)$:
$\operatorname{Hom}\left(\pi_{1}(S), G^{\mathbb{R}}\right) / G^{\mathbb{R}} \cong H^{1}\left(S, G^{\mathbb{R}}\right)=$ iso. classes of flat $G^{\mathbb{R}}$-bundle
- Let $\widetilde{G}^{\mathbb{R}}$ be the universal covering group of $G^{\mathbb{R}}$. We have an exact sequence

$$
1 \rightarrow \pi_{1}\left(G^{\mathbb{R}}\right) \rightarrow \widetilde{G}^{\mathbb{R}} \rightarrow G^{\mathbb{R}} \rightarrow 1
$$

which gives rise to the (pointed sets) cohomology sequence

$$
H^{1}\left(S, \widetilde{G}^{\mathbb{R}}\right) \rightarrow H^{1}\left(S, G^{\mathbb{R}}\right) \xrightarrow{c} H^{2}\left(S, \pi_{1}\left(G^{\mathbb{R}}\right)\right)
$$

- topological invariant of ρ :

$$
c(\rho):=c\left(E_{\rho}\right) \in H^{2}\left(X, \pi_{1}\left(G^{\mathbb{R}}\right)\right) \cong \pi_{1}\left(G^{\mathbb{R}}\right)
$$

- We can define the subvariety

$$
\mathcal{R}_{c}\left(S, G^{\mathbb{R}}\right):=\left\{\rho \in \mathcal{R}\left(S, G^{\mathbb{R}}\right): c(\rho)=c\right\}
$$

Topological invariants

- Similarly, we can define a topological invariant of a $G^{\mathbb{R}}$-Higgs bundle (E, φ) over X as the topological class of the H-bundle E (recall $H^{\mathbb{R}} \subset G^{\mathbb{R}}$ is a maximal compact subgroup)

Topological invariants

- Similarly, we can define a topological invariant of a $G^{\mathbb{R}}$-Higgs bundle (E, φ) over X as the topological class of the H-bundle E (recall $H^{\mathbb{R}} \subset G^{\mathbb{R}}$ is a maximal compact subgroup)
- $H^{1}(X, \underline{H})=$ isomorphisms classes of H-bundles We have

$$
H^{1}(X, \underline{\widetilde{H}}) \rightarrow H^{1}(X, \underline{H}) \xrightarrow{c} H^{2}\left(X, \pi_{1}(H)\right)
$$

Topological invariants

- Similarly, we can define a topological invariant of a $G^{\mathbb{R}}$-Higgs bundle (E, φ) over X as the topological class of the H-bundle E (recall $H^{\mathbb{R}} \subset G^{\mathbb{R}}$ is a maximal compact subgroup)
- $H^{1}(X, \underline{H})=$ isomorphisms classes of H-bundles

We have

$$
H^{1}(X, \underline{\widetilde{H}}) \rightarrow H^{1}(X, \underline{H}) \xrightarrow{c} H^{2}\left(X, \pi_{1}(H)\right)
$$

- topological invariant of (E, φ) :

$$
c(E, \varphi) \in H^{2}\left(X, \pi_{1}(H)\right) \cong \pi_{1}(H)
$$

- We can define the subvariety

$$
\mathcal{M}_{c}\left(X, G^{\mathbb{R}}\right):=\left\{(E, \varphi) \in \mathcal{M}\left(X, G^{\mathbb{R}}\right): c(E, \varphi)=c\right\}
$$

Topological invariants

- Recall $\pi_{1}\left(G^{\mathbb{R}}\right) \cong \pi_{1}\left(H^{\mathbb{R}}\right) \cong \pi_{1}(H)$
- For $c \in \pi_{1}\left(G^{\mathbb{R}}\right) \cong \pi_{1}(H)$ we have de homeomorphism

$$
\mathcal{R}_{c}\left(S, G^{\mathbb{R}}\right) \cong \mathcal{M}_{c}\left(X, G^{\mathbb{R}}\right)
$$

Theorem

If $G^{\mathbb{R}}$ is compact (Ramanathan, 1975) or complex (J. Li, 1993; G-Oliveira, 2017)

$$
\pi_{0}\left(\mathcal{R}\left(S, G^{\mathbb{R}}\right)\right)=\pi_{0}\left(\mathcal{M}\left(X, G^{\mathbb{R}}\right)\right) \cong \pi_{1}\left(G^{\mathbb{R}}\right)
$$

- The story is very different for non-compact real Lie groups (non-complex): The map

$$
\pi_{0}\left(\mathcal{R}\left(S, G^{\mathbb{R}}\right)\right)=\pi_{0}\left(\mathcal{M}\left(X, G^{\mathbb{R}}\right)\right) \rightarrow \pi_{1}\left(G^{\mathbb{R}}\right)
$$

is neither injective, nor surjective in general

$G^{\mathbb{R}}=\operatorname{SL}(2, \mathbb{R})$

- The topological invariant of $\rho \in \mathcal{R}(S, \mathrm{SL}(2, \mathbb{R}))$ in this case is an integer (basically the Euler class) $d \in \mathbb{Z} \cong \pi_{1}\left(G^{\mathbb{R}}\right)$
-

$$
\mathcal{R}_{d}:=\{\rho \in \mathcal{R}(S, \mathrm{SL}(2, \mathbb{R})) \quad: \quad \text { with Euler class } d\}
$$

$G^{\mathbb{R}}=\operatorname{SL}(2, \mathbb{R})$

- The topological invariant of $\rho \in \mathcal{R}(S, \mathrm{SL}(2, \mathbb{R}))$ in this case is an integer (basically the Euler class) $d \in \mathbb{Z} \cong \pi_{1}\left(G^{\mathbb{R}}\right)$
-

$$
\mathcal{R}_{d}:=\{\rho \in \mathcal{R}(S, \mathrm{SL}(2, \mathbb{R})) \quad: \quad \text { with Euler class } d\}
$$

Theorem (Milnor, 1958)

\mathcal{R}_{d} is empty unless

$$
|d| \leq g-1
$$

$G^{\mathbb{R}}=\operatorname{SL}(2, \mathbb{R})$

- The topological invariant of $\rho \in \mathcal{R}(S, \mathrm{SL}(2, \mathbb{R}))$ in this case is an integer (basically the Euler class) $d \in \mathbb{Z} \cong \pi_{1}\left(G^{\mathbb{R}}\right)$
-

$$
\mathcal{R}_{d}:=\{\rho \in \mathcal{R}(S, \mathrm{SL}(2, \mathbb{R})) \quad: \quad \text { with Euler class } d\}
$$

Theorem (Milnor, 1958)

\mathcal{R}_{d} is empty unless

$$
|d| \leq g-1
$$

- An $\operatorname{SL}(2, \mathbb{R})$-Higgs bundle is a tuple (L, β, γ) L line bundle over $X \quad \beta \in H^{0}\left(X, L^{2} K\right)$ and $\gamma \in H^{0}\left(X, L^{-2} K\right)$
Equivalently it can be seen as an $\mathrm{SL}(2, \mathbb{C})$-Higgs bundle
(V, φ) with $V=L \oplus L^{-1}$ and $\varphi=\left(\begin{array}{cc}0 & \beta \\ \gamma & 0\end{array}\right)$
- Milnor's inequality follows from the semistability of (V, φ) (Hitchin, 1987)

$G^{\mathbb{R}}=\operatorname{SL}(2, \mathbb{R})$

Theorem (Goldman, 1988; Hitchin 1987)

- \mathcal{R}_{d} is connected if $|d|<g-1$
- \mathcal{R}_{d} has $2^{2 g}$ connected components if $|d|=g-1$

$G^{\mathbb{R}}=\operatorname{SL}(2, \mathbb{R})$

Theorem (Goldman, 1988; Hitchin 1987)

- \mathcal{R}_{d} is connected if $|d|<g-1$
- \mathcal{R}_{d} has $2^{2 g}$ connected components if $|d|=g-1$
- Let $\mathcal{R}_{\text {max }}:=\mathcal{R}_{d}$ for $|d|=g-1$
- Each connected component of $\mathcal{R}_{\text {max }}$ consists entirely of Fuchsian representations (discrete and faithful) and can be identified with the Teichmüller space $\mathcal{T}=\mathcal{T}(S)$ of the surface S (Goldman, 1980)

$G^{\mathbb{R}}=\operatorname{SL}(2, \mathbb{R})$

Theorem (Goldman, 1988; Hitchin 1987)

- \mathcal{R}_{d} is connected if $|d|<g-1$
- \mathcal{R}_{d} has $2^{2 g}$ connected components if $|d|=g-1$
- Let $\mathcal{R}_{\text {max }}:=\mathcal{R}_{d}$ for $|d|=g-1$
- Each connected component of $\mathcal{R}_{\text {max }}$ consists entirely of Fuchsian representations (discrete and faithful) and can be identified with the Teichmüller space $\mathcal{T}=\mathcal{T}(S)$ of the surface S (Goldman, 1980)
- Question: Are there other simple groups with similar features to those of $\operatorname{SL}(2, \mathbb{R})$. More precisely, whose moduli space has connected components not distinguished by the topological invariant and consisting entirely of discrete and faithful representations?

Theorem (Goldman, 1988; Hitchin 1987)

- \mathcal{R}_{d} is connected if $|d|<g-1$
- \mathcal{R}_{d} has $2^{2 g}$ connected components if $|d|=g-1$
- Let $\mathcal{R}_{\text {max }}:=\mathcal{R}_{d}$ for $|d|=g-1$
- Each connected component of $\mathcal{R}_{\text {max }}$ consists entirely of Fuchsian representations (discrete and faithful) and can be identified with the Teichmüller space $\mathcal{T}=\mathcal{T}(S)$ of the surface S (Goldman, 1980)
- Question: Are there other simple groups with similar features to those of $\operatorname{SL}(2, \mathbb{R})$. More precisely, whose moduli space has connected components not distinguished by the topological invariant and consisting entirely of discrete and faithful representations?
- Split real groups
- Non-compact groups of Hermitian type
- Split real form: in the Cartan decomposition $\mathfrak{g}^{\mathbb{R}}=\mathfrak{h}^{\mathbb{R}} \oplus \mathfrak{m}^{\mathbb{R}}$, the space $\mathfrak{m}^{\mathbb{R}}$ contains a maximal abelian subalgebra of $\mathfrak{g}^{\mathbb{R}}$
- Every complex semisimple Lie group has a split real form Examples: $\mathrm{SL}(n, \mathbb{R}), \mathrm{Sp}(2 n, \mathbb{R}), \mathrm{SO}(n, n), \mathrm{SO}(n, n+1)$
- Split real form: in the Cartan decomposition $\mathfrak{g}^{\mathbb{R}}=\mathfrak{h}^{\mathbb{R}} \oplus \mathfrak{m}^{\mathbb{R}}$, the space $\mathfrak{m}^{\mathbb{R}}$ contains a maximal abelian subalgebra of $\mathfrak{g}^{\mathbb{R}}$
- Every complex semisimple Lie group has a split real form Examples: $\mathrm{SL}(n, \mathbb{R}), \operatorname{Sp}(2 n, \mathbb{R}), \mathrm{SO}(n, n), \mathrm{SO}(n, n+1)$
- Consider $G^{\mathbb{R}}=\operatorname{SL}(n, \mathbb{R})$

A basis for the invariant polynomials on $\mathfrak{s l}(n, \mathbb{C})$ is provided by the coefficients of the characteristic polynomial of a trace-free matrix,

$$
\operatorname{det}(x-A)=x^{n}+p_{1}(A) x^{n-2}+\ldots+p_{n-1}(A)
$$

where $\operatorname{deg}\left(p_{i}\right)=i+1$.

- Consider the Hitchin map

$$
p: \mathcal{M}(X, \operatorname{SL}(n, \mathbb{C})) \rightarrow \bigoplus_{i=1}^{n-1} H^{0}\left(K^{i+1}\right)
$$

defined by $p(E, \varphi)=\left(p_{1}(\varphi), \ldots, p_{n-1}(\varphi)\right)$,

- Hitchin (1992) constructed a section of this map giving

$$
n-1
$$

an isomorphism between the vector space $\bigoplus H^{0}\left(K^{i+1}\right)$

$$
i=1
$$

and a connected component of the moduli space $\mathcal{M}(X, \operatorname{SL}(n, \mathbb{R})) \subset \mathcal{M}(X, \operatorname{SL}(n, \mathbb{C}))$

- This is called a Hitchin component (coincides with a Teichmüller component $\cong H^{0}\left(X, K^{2}\right)$ when $\left.G^{\mathbb{R}}=\mathrm{SL}(2, \mathbb{R})\right)$
- Consider the Hitchin map

$$
p: \mathcal{M}(X, \mathrm{SL}(n, \mathbb{C})) \rightarrow \bigoplus_{i=1}^{n-1} H^{0}\left(K^{i+1}\right)
$$

defined by $p(E, \varphi)=\left(p_{1}(\varphi), \ldots, p_{n-1}(\varphi)\right)$,

- Hitchin (1992) constructed a section of this map giving

$$
n-1
$$

an isomorphism between the vector space $\bigoplus H^{0}\left(K^{i+1}\right)$

$$
i=1
$$

and a connected component of the moduli space $\mathcal{M}(X, \operatorname{SL}(n, \mathbb{R})) \subset \mathcal{M}(X, \operatorname{SL}(n, \mathbb{C}))$

- This is called a Hitchin component (coincides with a Teichmüller component $\cong H^{0}\left(X, K^{2}\right)$ when $\left.G^{\mathbb{R}}=\mathrm{SL}(2, \mathbb{R})\right)$
- Hitchin gives a general construction for any split real form
- Consider the Hitchin map

$$
p: \mathcal{M}(X, \mathrm{SL}(n, \mathbb{C})) \rightarrow \bigoplus_{i=1}^{n-1} H^{0}\left(K^{i+1}\right)
$$

defined by $p(E, \varphi)=\left(p_{1}(\varphi), \ldots, p_{n-1}(\varphi)\right)$,

- Hitchin (1992) constructed a section of this map giving an isomorphism between the vector space $\bigoplus^{n-1} H^{0}\left(K^{i+1}\right)$ and a connected component of the moduli space $\mathcal{M}(X, \operatorname{SL}(n, \mathbb{R})) \subset \mathcal{M}(X, \operatorname{SL}(n, \mathbb{C}))$
- This is called a Hitchin component (coincides with a Teichmüller component $\cong H^{0}\left(X, K^{2}\right)$ when $\left.G^{\mathbb{R}}=\mathrm{SL}(2, \mathbb{R})\right)$
- Hitchin gives a general construction for any split real form
- General construction of a section of the Hitchin map for arbitrary $G^{\mathbb{R}}$ (G-Peón-Nieto-Ramanan, 2018)
- Every representation in the Hitchin component can be deformed to a representation factoring as $\pi_{1}(S) \rightarrow \mathrm{SL}(2, \mathbb{R}) \rightarrow G^{\mathbb{R}}$, where $\pi_{1}(S) \rightarrow \mathrm{SL}(2, \mathbb{R})$ is in a Teichmüller component and $\operatorname{SL}(2, \mathbb{R}) \rightarrow G^{\mathbb{R}}$ is the principal representation
- Every representation in the Hitchin component can be deformed to a representation factoring as $\pi_{1}(S) \rightarrow \mathrm{SL}(2, \mathbb{R}) \rightarrow G^{\mathbb{R}}$, where $\pi_{1}(S) \rightarrow \mathrm{SL}(2, \mathbb{R})$ is in a Teichmüller component and $\operatorname{SL}(2, \mathbb{R}) \rightarrow G^{\mathbb{R}}$ is the principal representation
- A Hitchin component consists entirely of discrete and faithful representations (Labourie, 2006)
- Every representation in the Hitchin component can be deformed to a representation factoring as $\pi_{1}(S) \rightarrow \mathrm{SL}(2, \mathbb{R}) \rightarrow G^{\mathbb{R}}$, where $\pi_{1}(S) \rightarrow \mathrm{SL}(2, \mathbb{R})$ is in a Teichmüller component and $\operatorname{SL}(2, \mathbb{R}) \rightarrow G^{\mathbb{R}}$ is the principal representation
- A Hitchin component consists entirely of discrete and faithful representations (Labourie, 2006)
- The Hitchin component is unique if $G^{\mathbb{R}}$ is a split form of adjoint type (i.e. without centre)
- Every representation in the Hitchin component can be deformed to a representation factoring as $\pi_{1}(S) \rightarrow \mathrm{SL}(2, \mathbb{R}) \rightarrow G^{\mathbb{R}}$, where $\pi_{1}(S) \rightarrow \mathrm{SL}(2, \mathbb{R})$ is in a Teichmüller component and $\operatorname{SL}(2, \mathbb{R}) \rightarrow G^{\mathbb{R}}$ is the principal representation
- A Hitchin component consists entirely of discrete and faithful representations (Labourie, 2006)
- The Hitchin component is unique if $G^{\mathbb{R}}$ is a split form of adjoint type (i.e. without centre)
- The Hitchin component for $\operatorname{PSL}(3, \mathbb{R})$ parameterizes convex projective structures on the surface (Choi-Goldman, 1993)
- In general, the Hitchin component parameterizes certain type of geometric structures modeled on certain homogeneous spaces (Guichard-Wienhard, 2012)

Non-compact real forms of Hermitian type

Non-compact real forms of Hermitian type

- $G^{\mathbb{R}}$ of Hermitian type means that $G^{\mathbb{R}} / H^{\mathbb{R}}$ admits a complex structure compatible with the Riemannian structure of $G^{\mathbb{R}} / H^{\mathbb{R}}$, making $G^{\mathbb{R}} / H^{\mathbb{R}}$ a Kähler manifold

Non-compact real forms of Hermitian type

- $G^{\mathbb{R}}$ of Hermitian type means that $G^{\mathbb{R}} / H^{\mathbb{R}}$ admits a complex structure compatible with the Riemannian structure of $G^{\mathbb{R}} / H^{\mathbb{R}}$, making $G^{\mathbb{R}} / H^{\mathbb{R}}$ a Kähler manifold
- If $G^{\mathbb{R}}$ is simple the centre of $\mathfrak{h}^{\mathbb{R}}$ is one-dimensional and the almost complex structure on $G^{\mathbb{R}} / H^{\mathbb{R}}$ is defined by a generating element in $J \in Z\left(\mathfrak{h}^{\mathbb{R}}\right)$
- This complex structure defines a decomposition

$$
\mathfrak{m}=\mathfrak{m}_{+} \oplus \mathfrak{m}_{-}
$$

where \mathfrak{m}_{+}and \mathfrak{m}_{-}are the $(1,0)$ and the $(0,1)$ part of \mathfrak{m} respectively

Non-compact real forms of Hermitian type

- $G^{\mathbb{R}}$ of Hermitian type means that $G^{\mathbb{R}} / H^{\mathbb{R}}$ admits a complex structure compatible with the Riemannian structure of $G^{\mathbb{R}} / H^{\mathbb{R}}$, making $G^{\mathbb{R}} / H^{\mathbb{R}}$ a Kähler manifold
- If $G^{\mathbb{R}}$ is simple the centre of $\mathfrak{h}^{\mathbb{R}}$ is one-dimensional and the almost complex structure on $G^{\mathbb{R}} / H^{\mathbb{R}}$ is defined by a generating element in $J \in Z\left(\mathfrak{h}^{\mathbb{R}}\right)$
- This complex structure defines a decomposition

$$
\mathfrak{m}=\mathfrak{m}_{+} \oplus \mathfrak{m}_{-}
$$

where \mathfrak{m}_{+}and \mathfrak{m}_{-}are the $(1,0)$ and the $(0,1)$ part of \mathfrak{m} respectively

- Classical connected simple groups of Hermitian type: $\mathrm{SU}(p, q), \mathrm{Sp}(2 n, \mathbb{R}), \mathrm{SO}^{*}(2 n), \mathrm{SO}_{0}(2, n)$

Non-compact real forms of Hermitian type

- $G^{\mathbb{R}}$ of Hermitian type means that $G^{\mathbb{R}} / H^{\mathbb{R}}$ admits a complex structure compatible with the Riemannian structure of $G^{\mathbb{R}} / H^{\mathbb{R}}$, making $G^{\mathbb{R}} / H^{\mathbb{R}}$ a Kähler manifold
- If $G^{\mathbb{R}}$ is simple the centre of $\mathfrak{h}^{\mathbb{R}}$ is one-dimensional and the almost complex structure on $G^{\mathbb{R}} / H^{\mathbb{R}}$ is defined by a generating element in $J \in Z\left(\mathfrak{h}^{\mathbb{R}}\right)$
- This complex structure defines a decomposition

$$
\mathfrak{m}=\mathfrak{m}_{+} \oplus \mathfrak{m}_{-}
$$

where \mathfrak{m}_{+}and \mathfrak{m}_{-}are the $(1,0)$ and the $(0,1)$ part of \mathfrak{m} respectively

- Classical connected simple groups of Hermitian type: $\mathrm{SU}(p, q), \mathrm{Sp}(2 n, \mathbb{R}), \mathrm{SO}^{*}(2 n), \mathrm{SO}_{0}(2, n)$
- Two exceptional real forms of E_{6}^{-14} and E_{7}^{-25}

Non-compact real forms of Hermitian type

- Let (E, φ) be a $G^{\mathbb{R}}$-Higgs bundle over X. The decomposition $\mathfrak{m}=\mathfrak{m}_{+} \oplus \mathfrak{m}_{-}$gives a vector bundle decomposition

$$
E(\mathfrak{m})=E\left(\mathfrak{m}_{+}\right) \oplus E\left(\mathfrak{m}_{-}\right)
$$

Non-compact real forms of Hermitian type

- Let (E, φ) be a $G^{\mathbb{R}}$-Higgs bundle over X. The decomposition $\mathfrak{m}=\mathfrak{m}_{+} \oplus \mathfrak{m}_{-}$gives a vector bundle decomposition

$$
E(\mathfrak{m})=E\left(\mathfrak{m}_{+}\right) \oplus E\left(\mathfrak{m}_{-}\right)
$$

- Hence

$$
\varphi=(\beta, \gamma) \in H^{0}\left(X, E\left(\mathfrak{m}_{+}\right) \otimes K\right) \oplus H^{0}\left(X, E\left(\mathfrak{m}_{-}\right) \otimes K\right)
$$

Non-compact real forms of Hermitian type

- Let (E, φ) be a $G^{\mathbb{R}}$-Higgs bundle over X. The decomposition $\mathfrak{m}=\mathfrak{m}_{+} \oplus \mathfrak{m}_{-}$gives a vector bundle decomposition

$$
E(\mathfrak{m})=E\left(\mathfrak{m}_{+}\right) \oplus E\left(\mathfrak{m}_{-}\right)
$$

- Hence

$$
\varphi=(\beta, \gamma) \in H^{0}\left(X, E\left(\mathfrak{m}_{+}\right) \otimes K\right) \oplus H^{0}\left(X, E\left(\mathfrak{m}_{-}\right) \otimes K\right)
$$

- The torsion-free part of $\pi_{1}(H)$ is isomorphic to \mathbb{Z} (most of the time $\left.\pi_{1}\left(H^{\mathbb{R}}\right) \cong \mathbb{Z}\right)$ and hence the topological invariant of either a representation of $\pi_{1}(X)$ in $G^{\mathbb{R}}$, or of a $G^{\mathbb{R}}$-Higgs bundle, is essentialy given by an integer $d \in \mathbb{Z}$, known as the Toledo invariant

Non-compact real forms of Hermitian type

Theorem (Milnor-Wood inequality)

The Toledo invariant d satisfies

$$
|d| \leq \operatorname{rank}\left(G^{\mathbb{R}} / H^{\mathbb{R}}\right)(g-1)
$$

- Proved for the classical groups for representations by Domic-Toledo (1987) and for Higgs bundles by Bradlow-G-Gothen (2001)
- General proof for representations by

Burger-Iozzi-Wienhard (2003), and for Higgs bundles by Biquard-G-Rubio (2017)

Non-compact real forms of Hermitian type

- $G^{\mathbb{R}} / H^{\mathbb{R}}$ can be realized as a bounded symmetric domain \mathcal{D} in \mathfrak{m}_{+}, say (Cartan for the classical groups and Harish-Chandra in general)

Non-compact real forms of Hermitian type

- $G^{\mathbb{R}} / H^{\mathbb{R}}$ can be realized as a bounded symmetric domain \mathcal{D} in \mathfrak{m}_{+}, say (Cartan for the classical groups and Harish-Chandra in general)
- \mathcal{D} is called of tube type if it is biholomorphic to a tube T_{Ω} over a cone Ω
- The Poincaré disc, the domain for $G^{\mathbb{R}}=\operatorname{SU}(1,1)$, is of tube type. The tube is the Poincaré upper-half plane and the biholomorphism is the Cayley transform

Non-compact real forms of Hermitian type

- $G^{\mathbb{R}} / H^{\mathbb{R}}$ can be realized as a bounded symmetric domain \mathcal{D} in \mathfrak{m}_{+}, say (Cartan for the classical groups and Harish-Chandra in general)
- \mathcal{D} is called of tube type if it is biholomorphic to a tube T_{Ω} over a cone Ω
- The Poincaré disc, the domain for $G^{\mathbb{R}}=\operatorname{SU}(1,1)$, is of tube type. The tube is the Poincaré upper-half plane and the biholomorphism is the Cayley transform
- The Shilov boundary of \mathcal{D} is the smallest closed subset \check{S} of the topological boundary $\partial \mathcal{D}$ for which every function f continuous on $\overline{\mathcal{D}}$ and holomorphic on \mathcal{D} satisfies that

$$
|f(z)| \leq \max _{w \in \tilde{S}}|f(w)| \text { for every } z \in \mathcal{D}
$$

Non-compact real forms of Hermitian type

- $G^{\mathbb{R}} / H^{\mathbb{R}}$ can be realized as a bounded symmetric domain \mathcal{D} in \mathfrak{m}_{+}, say (Cartan for the classical groups and Harish-Chandra in general)
- \mathcal{D} is called of tube type if it is biholomorphic to a tube T_{Ω} over a cone Ω
- The Poincaré disc, the domain for $G^{\mathbb{R}}=\operatorname{SU}(1,1)$, is of tube type. The tube is the Poincaré upper-half plane and the biholomorphism is the Cayley transform
- The Shilov boundary of \mathcal{D} is the smallest closed subset \check{S} of the topological boundary $\partial \mathcal{D}$ for which every function f continuous on $\overline{\mathcal{D}}$ and holomorphic on \mathcal{D} satisfies that

$$
|f(z)| \leq \max _{w \in \tilde{S}}|f(w)| \text { for every } z \in \mathcal{D}
$$

- \mathcal{D} is of tube type if and only if \check{S} is a compact symmetric space of the form $H^{\mathbb{R}} / H^{\mathbb{R}}$. In this case $\Omega=H_{*}^{\mathbb{R}} / H^{\prime \mathbb{R}}$ is its non-compact dual symmetric space

Non-compact real forms of Hermitian type

- The symmetric spaces defined by $\mathrm{Sp}(2 n, \mathbb{R}), \mathrm{SO}_{0}(2, n)$ are of tube type.
- The symmetric space defined by $\mathrm{SU}(p, q)$ is of tube type if and only if $p=q$.
- The symmetric space defined by $\mathrm{SO}^{*}(2 n)$ is of tube type if and only if n is even.
- The E_{7}^{-25} Hermitian real form is of tube type
- The E_{6}^{-14} Hermitian real form is not of tube type
- Every bounded symmetric domain has a maximal tube subdomain

Non-compact real forms of Hermitian type

- Want to study the Maximal Toledo invariant moduli space in the tube case (non-tube reduces to the tube case)

$$
\mathcal{M}_{\max }\left(X, G^{\mathbb{R}}\right):=\mathcal{M}_{d}\left(X, G^{\mathbb{R}}\right) \text { for }|d|=\operatorname{rank}\left(G^{\mathbb{R}} / H^{\mathbb{R}}\right)(g-1)
$$

Theorem (Cayley Correspondence)

Let $G^{\mathbb{R}}$ be a such $G^{\mathbb{R}} / H^{\mathbb{R}}$ is a Hermitian symmetric space of tube type, and let $\Omega=H_{*}^{\mathbb{R}} / H^{\prime \mathbb{R}}$ be the non-compact dual of the Shilov boundary $\check{S}=H^{\mathbb{R}} / H^{\mathbb{R}}$ of $G^{\mathbb{R}} / H^{\mathbb{R}}$. Then

$$
\mathcal{M}_{\max }\left(X, G^{\mathbb{R}}\right) \cong \mathcal{M}_{K^{2}}\left(X, H_{*}^{\mathbb{R}}\right)
$$

where $\mathcal{M}_{K^{2}}\left(H_{*}^{\mathbb{R}}\right)$ is the moduli space of K^{2}-twisted $H_{*}^{\mathbb{R}}$-Higgs bundles

- Proved for the classical groups by Bradlow-G-Gothen (2006) G-Gothen-Mundet (2013) $\left(G^{\mathbb{R}}=\operatorname{Sp}(2 n, \mathbb{R})\right)$
- General case proved by Biquard-G-Rubio (2017)

Non-compact real forms of Hermitian type

- The connected components of $\mathcal{M}\left(X, G^{\mathbb{R}}\right)$ are not fully distinguished by the usual topological invariants. The dual group $H_{*}^{\mathbb{R}}$ detects new hidden invariants (for example for $G^{\mathbb{R}}=\operatorname{Sp}(2 n, \mathbb{R}), H_{*}^{\mathbb{R}}=\operatorname{GL}(n, \mathbb{R})$ - Stiefel-Whitney classes
- $\mathcal{R}_{\max }\left(S, G^{\mathbb{R}}\right)$ consists entirely of discrete and faithful representations (Burger-Iozzi-Labourie-Wienhard, 2006)
- The mapping class group of S acts properly on $\mathcal{R}_{\text {max }}\left(S, G^{\mathbb{R}}\right)$ (Wienhard, 2006)
- All common features with Hitchin components

Non-compact real forms of Hermitian type

- The connected components of $\mathcal{M}\left(X, G^{\mathbb{R}}\right)$ are not fully distinguished by the usual topological invariants. The dual group $H_{*}^{\mathbb{R}}$ detects new hidden invariants (for example for $G^{\mathbb{R}}=\operatorname{Sp}(2 n, \mathbb{R}), H_{*}^{\mathbb{R}}=\operatorname{GL}(n, \mathbb{R})$ - Stiefel-Whitney classes
- $\mathcal{R}_{\max }\left(S, G^{\mathbb{R}}\right)$ consists entirely of discrete and faithful representations (Burger-Iozzi-Labourie-Wienhard, 2006)
- The mapping class group of S acts properly on $\mathcal{R}_{\text {max }}\left(S, G^{\mathbb{R}}\right)$ (Wienhard, 2006)
- All common features with Hitchin components
- We define a higher Teichmüller component of $\mathcal{R}\left(S, G^{\mathbb{R}}\right)$ or $\mathcal{M}\left(X, G^{\mathbb{R}}\right)$ as one that has this kind of properties

Non-compact real forms of Hermitian type

- The connected components of $\mathcal{M}\left(X, G^{\mathbb{R}}\right)$ are not fully distinguished by the usual topological invariants. The dual group $H_{*}^{\mathbb{R}}$ detects new hidden invariants (for example for $G^{\mathbb{R}}=\operatorname{Sp}(2 n, \mathbb{R}), H_{*}^{\mathbb{R}}=\operatorname{GL}(n, \mathbb{R})$ - Stiefel-Whitney classes
- $\mathcal{R}_{\max }\left(S, G^{\mathbb{R}}\right)$ consists entirely of discrete and faithful representations (Burger-Iozzi-Labourie-Wienhard, 2006)
- The mapping class group of S acts properly on $\mathcal{R}_{\text {max }}\left(S, G^{\mathbb{R}}\right)$ (Wienhard, 2006)
- All common features with Hitchin components
- We define a higher Teichmüller component of $\mathcal{R}\left(S, G^{\mathbb{R}}\right)$ or $\mathcal{M}\left(X, G^{\mathbb{R}}\right)$ as one that has this kind of properties
- Question: Are there other groups besides split and hermitian real forms for which higher Teichmüller components exist?

Higher Teichmüller components for $G^{\mathbb{R}}=\mathrm{SO}(p, q)$

- Joint work with M. Aparicio, S. Bradlow, B. Collier, P. Gothen and A. Oliveira, Comptes Rendus Mathematiques (2018), and Inventiones Math. (2019)
- $\mathrm{SO}(p, q)$-Higgs bundle: triple (V, W, η) where V and W are respectively rank p and rank q vector bundles with orthogonal structures such that $\operatorname{det}(W) \simeq \operatorname{det}(V)$, and $\eta: W \rightarrow V \otimes K$

Higher Teichmüller components for $G^{\mathbb{R}}=\mathrm{SO}(p, q)$

- Joint work with M. Aparicio, S. Bradlow, B. Collier, P. Gothen and A. Oliveira, Comptes Rendus Mathematiques (2018), and Inventiones Math. (2019)
- $\mathrm{SO}(p, q)$-Higgs bundle: triple (V, W, η) where V and W are respectively rank p and rank q vector bundles with orthogonal structures such that $\operatorname{det}(W) \simeq \operatorname{det}(V)$, and $\eta: W \rightarrow V \otimes K$
- For $p>2$, rank p orthogonal bundles on X are classified topologically by their first and second Stiefel-Whitney classes, $s w_{1} \in H^{1}\left(X, \mathbb{Z}_{2}\right)$ and $s w_{2} \in H^{2}\left(X, \mathbb{Z}_{2}\right)$

Higher Teichmüller components for $G^{\mathbb{R}}=\mathrm{SO}(p, q)$

- Joint work with M. Aparicio, S. Bradlow, B. Collier, P. Gothen and A. Oliveira, Comptes Rendus Mathematiques (2018), and Inventiones Math. (2019)
- $\mathrm{SO}(p, q)$-Higgs bundle: triple (V, W, η) where V and W are respectively rank p and rank q vector bundles with orthogonal structures such that $\operatorname{det}(W) \simeq \operatorname{det}(V)$, and $\eta: W \rightarrow V \otimes K$
- For $p>2$, rank p orthogonal bundles on X are classified topologically by their first and second Stiefel-Whitney classes, $s w_{1} \in H^{1}\left(X, \mathbb{Z}_{2}\right)$ and $s w_{2} \in H^{2}\left(X, \mathbb{Z}_{2}\right)$
- Since $\operatorname{det}(W) \simeq \operatorname{det}(V) s w_{1}(V)=s w_{1}(W)$, the components of the moduli space $\mathcal{M}(\mathrm{SO}(p, q))$ are thus partially labeled by triples $(a, b, c) \in \mathbb{Z}_{2}^{2 g} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, where $a=s w_{1}(V) \in H^{1}\left(X, \mathbb{Z}_{2}\right), b=s w_{2}(V) \in H^{2}\left(X, \mathbb{Z}_{2}\right)$, and $c=s w_{2}(W) \in H^{2}\left(X, \mathbb{Z}_{2}\right)$

Higher Teichmüller components for $G^{\mathbb{R}}=\mathrm{SO}(p, q)$

$$
\mathcal{M}(\mathrm{SO}(p, q))=\coprod_{(a, b, c) \in \mathbb{Z}_{2}^{2 g} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}} \mathcal{M}^{a, b, c}(\mathrm{SO}(p, q))
$$

Theorem

Assume that $2<p \leq q$. For every $(a, b, c) \in \mathbb{Z}_{2}^{2 g} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ the space $\mathcal{M}^{a, b, c}(\mathrm{SO}(p, q))$ has a non-empty connected component denoted by $\mathcal{M}_{\text {top }}^{a, b, c}(\mathrm{SO}(p, q))$

- Define

$$
\mathcal{M}_{\mathrm{top}}(\mathrm{SO}(p, q))=\coprod_{a, b, c} \mathcal{M}_{\mathrm{top}}^{a, b, c}(\mathrm{SO}(p, q))
$$

- Our main result shows that the moduli space $\mathcal{M}(\mathrm{SO}(p, q))$ has additional exotic components disjoint from the components of $\mathcal{M}_{\text {top }}(\mathrm{SO}(p, q))$

Higher Teichmüller components for $G^{\mathbb{R}}=\mathrm{SO}(p, q)$

Theorem (Generalized Cayley Correspondence)

Fix integers (p, q) such that $2<p<q-1$. For each choice of $a \in \mathbb{Z}_{2}^{2 g}$ and $c \in \mathbb{Z}_{2}$, the moduli space $\mathcal{M}(\mathrm{SO}(p, q))$ has a connected component disjoint from $\mathcal{M}_{\text {top }}(\mathrm{SO}(p, q))$. This component is isomorphic to

$$
\mathcal{M}_{K^{p}}^{a, c}(\mathrm{SO}(1, q-p+1)) \times H^{0}\left(K^{2}\right) \times \cdots \times H^{0}\left(K^{2 p-2}\right)
$$

Higher Teichmüller components for $G^{\mathbb{R}}=\mathrm{SO}(p, q)$

Theorem (Generalized Cayley Correspondence)

Fix integers (p, q) such that $2<p<q-1$. For each choice of $a \in \mathbb{Z}_{2}^{2 g}$ and $c \in \mathbb{Z}_{2}$, the moduli space $\mathcal{M}(\mathrm{SO}(p, q))$ has a connected component disjoint from $\mathcal{M}_{\text {top }}(\mathrm{SO}(p, q))$. This component is isomorphic to

$$
\mathcal{M}_{K^{p}}^{a, c}(\mathrm{SO}(1, q-p+1)) \times H^{0}\left(K^{2}\right) \times \cdots \times H^{0}\left(K^{2 p-2}\right)
$$

- Conjecture: These exotic components are higher Teichmüller components (i.e. consist entirely of discrete and faithful representations)

Higher Teichmüller components for $G^{\mathbb{R}}=\mathrm{SO}(p, q)$

Theorem (Generalized Cayley Correspondence)

Fix integers (p, q) such that $2<p<q-1$. For each choice of $a \in \mathbb{Z}_{2}^{2 g}$ and $c \in \mathbb{Z}_{2}$, the moduli space $\mathcal{M}(\mathrm{SO}(p, q))$ has a connected component disjoint from $\mathcal{M}_{\text {top }}(\mathrm{SO}(p, q))$. This component is isomorphic to

$$
\mathcal{M}_{K^{p}}^{a, c}(\mathrm{SO}(1, q-p+1)) \times H^{0}\left(K^{2}\right) \times \cdots \times H^{0}\left(K^{2 p-2}\right)
$$

- Conjecture: These exotic components are higher Teichmüller components (i.e. consist entirely of discrete and faithful representations)
- Evidence: Notion of positivity recently introduced by Guichard and Wienhard
- The only classical groups admiting positive structures are: split groups, hermitian groups of tube type and groups locally isomorphic to $\mathrm{SO}(p, q)!!!$

Anosov and positive representations

- Let $P \subset G^{\mathbb{R}}$ be a parabolic subgroup. Let $L \subset P$ be the Levi factor of P. The homogeneous space $G^{\mathbb{R}} / L$ is the unique open $G^{\mathbb{R}}$ orbit in $G^{\mathbb{R}} / P \times G^{\mathbb{R}} / P$, and points $(x, y) \in G^{\mathbb{R}} / P \times G^{\mathbb{R}} / P$ in this open orbit are called transverse.
- Let $\partial_{\infty} \pi_{1}(S)$ be the Gromov boundary of $\pi_{1}(S)$. Topologically $\partial_{\infty} \pi_{1}(S) \cong \mathbb{R} \mathbb{P}^{1}$.

Anosov and positive representations

- Let $P \subset G^{\mathbb{R}}$ be a parabolic subgroup. Let $L \subset P$ be the Levi factor of P. The homogeneous space $G^{\mathbb{R}} / L$ is the unique open $G^{\mathbb{R}}$ orbit in $G^{\mathbb{R}} / P \times G^{\mathbb{R}} / P$, and points $(x, y) \in G^{\mathbb{R}} / P \times G^{\mathbb{R}} / P$ in this open orbit are called transverse.
- Let $\partial_{\infty} \pi_{1}(S)$ be the Gromov boundary of $\pi_{1}(S)$. Topologically $\partial_{\infty} \pi_{1}(S) \cong \mathbb{R} \mathbb{P}^{1}$.
- A representation $\rho: \pi_{1}(S) \rightarrow G^{\mathbb{R}}$ is P-Anosov if there exists a unique continuous boundary map
$\xi_{\rho}: \partial_{\infty} \pi_{1}(S) \rightarrow G^{\mathbb{R}} / P$ satisfying
- Equivariance: $\xi(\gamma \cdot x)=\rho(\gamma) \cdot \xi(x)$ for all $\gamma \in \pi_{1}(S)$ and all $x \in \partial_{\infty} \pi_{1}(S)$.
- Transversality: for all distinct $x, y \in \partial_{\infty} \pi_{1}(S)$ the generalized flags $\xi(x)$ and $\xi(y)$ are transverse.
- Dynamics preserving

The map ξ_{ρ} is called the P-Anosov boundary curve

Anosov and positive representations

- Anosov representations were introduced by Labourie (2006) and have many interesting geometric and dynamic properties
- Anosov representations are discrete and faithful and define an open subset of the moduli space of representations $\mathcal{R}\left(G^{\mathbb{R}}\right)$. The set of Anosov representations is however not closed.

Anosov and positive representations

- Anosov representations were introduced by Labourie (2006) and have many interesting geometric and dynamic properties
- Anosov representations are discrete and faithful and define an open subset of the moduli space of representations $\mathcal{R}\left(G^{\mathbb{R}}\right)$. The set of Anosov representations is however not closed.
- The special cases of Hitchin representations and maximal representations define connected components of Anosov representations. Both Hitchin representations and maximal representations satisfy an additional "positivity" property which is a closed condition. For Hitchin representations this was proved by Labourie (2006) and
Fock-Goncharov (2006), and for maximal representations by Burger-Iozzi-Wienhard (2010).

Anosov and positive representations

- These notions of positivity have recently been unified and generalized by Guichard and Wienhard (2016)

Anosov and positive representations

- These notions of positivity have recently been unified and generalized by Guichard and Wienhard (2016)
- $P \subset G^{\mathbb{R}}$ parabolic subgroup,L Levi factor, $U \subset P$ unipotent subgroup
- A pair $\left(G^{\mathbb{R}}, P\right)$ admits a positive structure if there is a certain semigroup $U_{>0} \subset U$, which gives rise to a well defined notion of positively oriented triples of pairwise transverse points in $G^{\mathbb{R}} / P$

Anosov and positive representations

- These notions of positivity have recently been unified and generalized by Guichard and Wienhard (2016)
- $P \subset G^{\mathbb{R}}$ parabolic subgroup,L Levi factor, $U \subset P$ unipotent subgroup
- A pair $\left(G^{\mathbb{R}}, P\right)$ admits a positive structure if there is a certain semigroup $U_{>0} \subset U$, which gives rise to a well defined notion of positively oriented triples of pairwise transverse points in $G^{\mathbb{R}} / P$
- If the pair $\left(G^{\mathbb{R}}, P\right)$ admits a positive structure, then a P-Anosov representation $\rho: \pi_{1}(S) \rightarrow G$ is called positive if the Anosov boundary curve $\xi: \partial_{\infty} \pi_{1}(S) \rightarrow G^{\mathbb{R}} / P$ sends positively ordered triples in $\partial_{\infty} \pi_{1}(S)$ to positive triples in $G^{\mathbb{R}} / P$

Anosov and positive representations

- These notions of positivity have recently been unified and generalized by Guichard and Wienhard (2016)
- $P \subset G^{\mathbb{R}}$ parabolic subgroup,L Levi factor, $U \subset P$ unipotent subgroup
- A pair $\left(G^{\mathbb{R}}, P\right)$ admits a positive structure if there is a certain semigroup $U_{>0} \subset U$, which gives rise to a well defined notion of positively oriented triples of pairwise transverse points in $G^{\mathbb{R}} / P$
- If the pair $\left(G^{\mathbb{R}}, P\right)$ admits a positive structure, then a P-Anosov representation $\rho: \pi_{1}(S) \rightarrow G$ is called positive if the Anosov boundary curve $\xi: \partial_{\infty} \pi_{1}(S) \rightarrow G^{\mathbb{R}} / P$ sends positively ordered triples in $\partial_{\infty} \pi_{1}(S)$ to positive triples in $G^{\mathbb{R}} / P$
- Conjecture (Guichard-Labourie-Wienhard): If $\left(G^{\mathbb{R}}, P\right)$ admits a notion of positivity, then the set of P-positive Anosov representations is open and closed in $\mathcal{R}\left(S, G^{\mathbb{R}}\right)$, and hence define connected components
- Conjecture (Guichard-Labourie-Wienhard): If $\left(G^{\mathbb{R}}, P\right)$ admits a notion of positivity, then the set of P-positive Anosov representations is open and closed in $\mathcal{R}\left(S, G^{\mathbb{R}}\right)$, and hence define connected components
- The only classical groups admiting positive structures are: split groups, hermitian groups of tube type and groups locally isomorphic to $\mathrm{SO}(p, q)!!!$
- Conjecture (Guichard-Labourie-Wienhard): If $\left(G^{\mathbb{R}}, P\right)$ admits a notion of positivity, then the set of P-positive Anosov representations is open and closed in $\mathcal{R}\left(S, G^{\mathbb{R}}\right)$, and hence define connected components
- The only classical groups admiting positive structures are: split groups, hermitian groups of tube type and groups locally isomorphic to $\mathrm{SO}(p, q)!!!$
- Higher Teichmüller components: connected components of $\mathcal{R}\left(S, G^{\mathbb{R}}\right)$ consisting of positive Anosov representations. These components are not labeled by primary topological invariants

Anosov and positive representations

- Our $\mathrm{SO}(p, q)$ exotic components contain positive representations. If the the Guichard-Labourie-Wienhard conjecture is true, they will consist entirely of positive representations

Anosov and positive representations

- Our $\mathrm{SO}(p, q)$ exotic components contain positive representations. If the the Guichard-Labourie-Wienhard conjecture is true, they will consist entirely of positive representations
- The real forms of F_{4}, E_{6}, E_{7} and E_{8} whose restricted root system is of type F_{4} admit positive structures

Anosov and positive representations

- Our $\mathrm{SO}(p, q)$ exotic components contain positive representations. If the the Guichard-Labourie-Wienhard conjecture is true, they will consist entirely of positive representations
- The real forms of F_{4}, E_{6}, E_{7} and E_{8} whose restricted root system is of type F_{4} admit positive structures
- As we have seen, if $G^{\mathbb{R}}$ is a Hermitian group of tube type and for $G^{\mathbb{R}}=\mathrm{SO}(p, q)$ there is a Cayley correspondence for the maximal and exotic components, respectively

Anosov and positive representations

- Our $\mathrm{SO}(p, q)$ exotic components contain positive representations. If the the Guichard-Labourie-Wienhard conjecture is true, they will consist entirely of positive representations
- The real forms of F_{4}, E_{6}, E_{7} and E_{8} whose restricted root system is of type F_{4} admit positive structures
- As we have seen, if $G^{\mathbb{R}}$ is a Hermitian group of tube type and for $G^{\mathbb{R}}=\mathrm{SO}(p, q)$ there is a Cayley correspondence for the maximal and exotic components, respectively
- It turns out that there is a larger class of groups for which there are components emerging from a generalized Cayley correspondence (Cayley components). These are groups corresponding to what we call magical nilpotents. These are precisely the groups admitting a positive structure.

Anosov and positive representations

- Our $\mathrm{SO}(p, q)$ exotic components contain positive representations. If the the Guichard-Labourie-Wienhard conjecture is true, they will consist entirely of positive representations
- The real forms of F_{4}, E_{6}, E_{7} and E_{8} whose restricted root system is of type F_{4} admit positive structures
- As we have seen, if $G^{\mathbb{R}}$ is a Hermitian group of tube type and for $G^{\mathbb{R}}=\mathrm{SO}(p, q)$ there is a Cayley correspondence for the maximal and exotic components, respectively
- It turns out that there is a larger class of groups for which there are components emerging from a generalized Cayley correspondence (Cayley components). These are groups corresponding to what we call magical nilpotents. These are precisely the groups admitting a positive structure.
- Conjecture: Higher Teichmüller components (:= those consisting of positive representations) coincide with
Cayley components,

Nilpotents and embeddings of Teichmüller space

- $e \in \mathfrak{g}$ nilpotent i.e. $\operatorname{ad}_{e}: \mathfrak{g} \rightarrow \mathfrak{g}$ nilpotent endomorphism.
- $N \subset \mathfrak{g} \rightsquigarrow$ nilpotent cone. G acts on N by conjugation, with finitely many orbits.

Nilpotents and embeddings of Teichmüller space

- $e \in \mathfrak{g}$ nilpotent i.e. $\operatorname{ad}_{e}: \mathfrak{g} \rightarrow \mathfrak{g}$ nilpotent endomorphism.
- $N \subset \mathfrak{g} \rightsquigarrow$ nilpotent cone. G acts on N by conjugation, with finitely many orbits.
- There is a unique open dense orbit. Nilpotents in it are called principal.

Nilpotents and embeddings of Teichmüller space

- $e \in \mathfrak{g}$ nilpotent i.e. $\operatorname{ad}_{e}: \mathfrak{g} \rightarrow \mathfrak{g}$ nilpotent endomorphism.
- $N \subset \mathfrak{g} \rightsquigarrow$ nilpotent cone. G acts on N by conjugation, with finitely many orbits.
- There is a unique open dense orbit. Nilpotents in it are called principal.

Nilpotents and embeddings of Teichmüller space

- $e \in \mathfrak{g}$ nilpotent i.e. $\operatorname{ad}_{e}: \mathfrak{g} \rightarrow \mathfrak{g}$ nilpotent endomorphism.
- $N \subset \mathfrak{g} \rightsquigarrow$ nilpotent cone. G acts on N by conjugation, with finitely many orbits.
- There is a unique open dense orbit. Nilpotents in it are called principal.
- (Jacobson-Morosov): There is a bijection

$$
\begin{aligned}
& N \backslash\{0\} / G \cong \\
& e\left.\longmapsto \mathfrak{s l}_{2} \mathbb{C} \hookrightarrow \mathfrak{g}\right\} / G \\
&\longmapsto f, h, e\rangle
\end{aligned}
$$

with $\operatorname{ad}_{h}(e)=2 e, \operatorname{ad}_{h}(f)=-2 f, \operatorname{ad}_{e}(f)=h$.

Nilpotents and embeddings of Teichmüller space

- $e \in \mathfrak{g}$ nilpotent i.e. $\operatorname{ad}_{e}: \mathfrak{g} \rightarrow \mathfrak{g}$ nilpotent endomorphism.
- $N \subset \mathfrak{g} \rightsquigarrow$ nilpotent cone. G acts on N by conjugation, with finitely many orbits.
- There is a unique open dense orbit. Nilpotents in it are called principal.
- (Jacobson-Morosov): There is a bijection

$$
\begin{aligned}
& N \backslash\{0\} / G \cong \\
& e\left.\longmapsto \mathfrak{s l}_{2} \mathbb{C} \hookrightarrow \mathfrak{g}\right\} / G \\
&\longmapsto f, h, e\rangle
\end{aligned}
$$

with $\operatorname{ad}_{h}(e)=2 e, \operatorname{ad}_{h}(f)=-2 f, \operatorname{ad}_{e}(f)=h$.

- $e \in N \backslash\{0\} \rightsquigarrow \mathfrak{s l}_{2} \mathbb{C} \hookrightarrow \mathfrak{g} \rightsquigarrow \mathrm{PSL}_{2} \mathbb{C} \hookrightarrow G \rightsquigarrow$ $\mathrm{PSL}_{2} \mathbb{R} \hookrightarrow G^{\mathbb{R}}$

Nilpotents and embeddings of Teichmüller space

- $e \in \mathfrak{g}$ nilpotent i.e. $\operatorname{ad}_{e}: \mathfrak{g} \rightarrow \mathfrak{g}$ nilpotent endomorphism.
- $N \subset \mathfrak{g} \rightsquigarrow$ nilpotent cone. G acts on N by conjugation, with finitely many orbits.
- There is a unique open dense orbit. Nilpotents in it are called principal.
- (Jacobson-Morosov): There is a bijection

$$
\begin{aligned}
& N \backslash\{0\} / G \cong \\
& e\left.\longmapsto \mathfrak{s l}_{2} \mathbb{C} \hookrightarrow \mathfrak{g}\right\} / G \\
&\longmapsto f, h, e\rangle
\end{aligned}
$$

with $\operatorname{ad}_{h}(e)=2 e, \operatorname{ad}_{h}(f)=-2 f, \operatorname{ad}_{e}(f)=h$.

- $e \in N \backslash\{0\} \rightsquigarrow \mathfrak{s l}_{2} \mathbb{C} \hookrightarrow \mathfrak{g} \rightsquigarrow \mathrm{PSL}_{2} \mathbb{C} \hookrightarrow G \rightsquigarrow$ $\mathrm{PSL}_{2} \mathbb{R} \hookrightarrow G^{\mathbb{R}}$
- This gives $\iota_{e}: \mathcal{T} \hookrightarrow \mathcal{M}\left(G^{\mathbb{R}}\right)$ (where \mathcal{T} be the Teichmüller component in $\mathcal{M}\left(\mathrm{PSL}_{2} \mathbb{R}\right)$), whose image depends only on the conjugacy class of e.

Nilpotents and embeddings of Teichmüller space

- For most nilpotents, $\iota_{e}(\mathcal{T})$ lies in a connected component of $\mathcal{M}\left(G^{\mathbb{R}}\right)$ containing Higgs bundles with $\varphi \equiv 0$, corresponding to compact representations $\pi_{1}(S) \rightarrow H^{\mathbb{R}} \subset G^{\mathbb{R}}$, hence not discrete and faithful.

Nilpotents and embeddings of Teichmüller space

- For most nilpotents, $\iota_{e}(\mathcal{T})$ lies in a connected component of $\mathcal{M}\left(G^{\mathbb{R}}\right)$ containing Higgs bundles with $\varphi \equiv 0$, corresponding to compact representations $\pi_{1}(S) \rightarrow H^{\mathbb{R}} \subset G^{\mathbb{R}}$, hence not discrete and faithful.
- However there is a set of nilpotents of \mathfrak{g}, which we named magical, for which that does not happen...

Nilpotents and embeddings of Teichmüller space

- For most nilpotents, $\iota_{e}(\mathcal{T})$ lies in a connected component of $\mathcal{M}\left(G^{\mathbb{R}}\right)$ containing Higgs bundles with $\varphi \equiv 0$, corresponding to compact representations $\pi_{1}(S) \rightarrow H^{\mathbb{R}} \subset G^{\mathbb{R}}$, hence not discrete and faithful.
- However there is a set of nilpotents of \mathfrak{g}, which we named magical, for which that does not happen...
- To every magical nilpotent of \mathfrak{g} there is an associated canonical real form $\mathfrak{g}^{\mathbb{R}}$ of \mathfrak{g}.

Nilpotents and embeddings of Teichmüller space

- For most nilpotents, $\iota_{e}(\mathcal{T})$ lies in a connected component of $\mathcal{M}\left(G^{\mathbb{R}}\right)$ containing Higgs bundles with $\varphi \equiv 0$, corresponding to compact representations $\pi_{1}(S) \rightarrow H^{\mathbb{R}} \subset G^{\mathbb{R}}$, hence not discrete and faithful.
- However there is a set of nilpotents of \mathfrak{g}, which we named magical, for which that does not happen...
- To every magical nilpotent of \mathfrak{g} there is an associated canonical real form $\mathfrak{g}^{\mathbb{R}}$ of \mathfrak{g}.
- Before properly defining these objects, let us state our main results - joint with Steve Bradlow, Brian Collier, Peter Gothen and André Oliveira (BCGGO)

The Theorems

Theorem 1 (BCGGO)

A real form $G^{\mathbb{R}}$ is such that $\mathfrak{g}^{\mathbb{R}}$ arises as the canonical real form of a magical nilpotent of \mathfrak{g} if and only if it is either:

- split;
- Hermitian of tube type;
- locally isomorphic to $\mathrm{SO}(p, q)$ with $1<p \leq q$;
- locally isomorphic to $E_{6}^{2}, E_{7}^{-5}, E_{8}^{-24}$ or F_{4}^{4}.

The Theorems

Theorem 1 (BCGGO)

A real form $G^{\mathbb{R}}$ is such that $\mathfrak{g}^{\mathbb{R}}$ arises as the canonical real form of a magical nilpotent of \mathfrak{g} if and only if it is either:

- split;
- Hermitian of tube type;
- locally isomorphic to $\mathrm{SO}(p, q)$ with $1<p \leq q$;
- locally isomorphic to $E_{6}^{2}, E_{7}^{-5}, E_{8}^{-24}$ or F_{4}^{4}.

This coincides precisely with the classification of groups admitting a positive structure, obtained by Guichard-Wienhard.

The Theorems

Theorem 1 (BCGGO)

A real form $G^{\mathbb{R}}$ is such that $\mathfrak{g}^{\mathbb{R}}$ arises as the canonical real form of a magical nilpotent of \mathfrak{g} if and only if it is either:

- split;
- Hermitian of tube type;
- locally isomorphic to $\mathrm{SO}(p, q)$ with $1<p \leq q$;
- locally isomorphic to $E_{6}^{2}, E_{7}^{-5}, E_{8}^{-24}$ or F_{4}^{4}.

This coincides precisely with the classification of groups admitting a positive structure, obtained by
Guichard-Wienhard.

Corollary

A real form $G^{\mathbb{R}}$ arises as the canonical real form of a magical nilpotent of \mathfrak{g} if and only if it admits a positive structure.

The Theorems

Theorem 2 (BCGGO)

Let $e \in \mathfrak{g}$ be a magical nilpotent, with corresponding canonical real form $\mathfrak{g}^{\mathbb{R}}$. If $G^{\mathbb{R}}$ is a Lie group with Lie algebra $\mathfrak{g}^{\mathbb{R}}$, there exists a union of connected components $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ of $\mathcal{M}\left(G^{\mathbb{R}}\right)$ s.t.:

The Theorems

Theorem 2 (BCGGO)

Let $e \in \mathfrak{g}$ be a magical nilpotent, with corresponding canonical real form $\mathfrak{g}^{\mathbb{R}}$. If $G^{\mathbb{R}}$ is a Lie group with Lie algebra $\mathfrak{g}^{\mathbb{R}}$, there exists a union of connected components $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ of $\mathcal{M}\left(G^{\mathbb{R}}\right)$ s.t.:

- Higgs bundles in $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ have nowhere vanishing φ, so there are no representations in $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ which factor through the maximal compact $H^{\mathbb{R}} \subset G^{\mathbb{R}}$.

The Theorems

Theorem 2 (BCGGO)

Let $e \in \mathfrak{g}$ be a magical nilpotent, with corresponding canonical real form $\mathfrak{g}^{\mathbb{R}}$. If $G^{\mathbb{R}}$ is a Lie group with Lie algebra $\mathfrak{g}^{\mathbb{R}}$, there exists a union of connected components $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ of $\mathcal{M}\left(G^{\mathbb{R}}\right)$ s.t.:

- Higgs bundles in $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ have nowhere vanishing φ, so there are no representations in $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ which factor through the maximal compact $H^{\mathbb{R}} \subset G^{\mathbb{R}}$.
- $\iota_{e}(\mathcal{T}(S)) \subset \mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ and an open set of $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ consists of positive representations.

The Theorems

Theorem 2 (BCGGO)

Let $e \in \mathfrak{g}$ be a magical nilpotent, with corresponding canonical real form $\mathfrak{g}^{\mathbb{R}}$. If $G^{\mathbb{R}}$ is a Lie group with Lie algebra $\mathfrak{g}^{\mathbb{R}}$, there exists a union of connected components $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ of $\mathcal{M}\left(G^{\mathbb{R}}\right)$ s.t.:

- Higgs bundles in $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ have nowhere vanishing φ, so there are no representations in $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ which factor through the maximal compact $H^{\mathbb{R}} \subset G^{\mathbb{R}}$.
- $\iota_{e}(\mathcal{T}(S)) \subset \mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ and an open set of $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ consists of positive representations.
- $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ can be parameterized as

$$
\mathcal{H}_{e}\left(G^{\mathbb{R}}\right) \cong \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right)
$$

with $G_{\mathcal{C}}^{\mathbb{R}}$ a real Lie group - the Cayley partner of $G^{\mathbb{R}}$ and $m_{1}, \ldots, m_{N} \in \mathbb{N}$ depending only on (the conjugacy class of) e.

- The parameterization of Theorem 2 is given by a morphism

$$
\Psi: \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right) \hookrightarrow \mathcal{M}\left(G^{\mathbb{R}}\right)
$$

which recovers the known cases (split, Hermitian, $\mathrm{SO}(p, q)$).

- The parameterization of Theorem 2 is given by a morphism

$$
\Psi: \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right) \hookrightarrow \mathcal{M}\left(G^{\mathbb{R}}\right)
$$

which recovers the known cases (split, Hermitian, $\mathrm{SO}(p, q)$).

- $G^{\mathbb{R}}$ split $\rightsquigarrow G_{\mathcal{C}}^{\mathbb{R}}=\mathbb{R}^{+}, m_{i}$ are the exponents of \mathfrak{g} and Ψ is just the Hitchin section.

The Conjecture

Using our parameterization, we also proved that

Theorem 3 (BCGGO)

There are no representations in $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ which factor through proper parabolic subgroups of $G^{\mathbb{R}}$.

This should imply that every representations in the components are positive.

The Conjecture

Using our parameterization, we also proved that

Theorem 3 (BCGGO)

There are no representations in $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ which factor through proper parabolic subgroups of $G^{\mathbb{R}}$.

This should imply that every representations in the components are positive.

Conjecture

- The connected components of $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ are higher Teichmüller components.
- Any higher Teichmüller component arises as a connected component of $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ for some magical e and corresponding $G^{\mathbb{R}}$.

The Conjecture

Using our parameterization, we also proved that

Theorem 3 (BCGGO)

There are no representations in $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ which factor through proper parabolic subgroups of $G^{\mathbb{R}}$.

This should imply that every representations in the components are positive.

Conjecture

- The connected components of $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ are higher Teichmüller components.
- Any higher Teichmüller component arises as a connected component of $\mathcal{H}_{e}\left(G^{\mathbb{R}}\right)$ for some magical e and corresponding $G^{\mathbb{R}}$.

Rest of the talk: (1) define the objects appearing in Theorem $\mathbf{2 ;}(2)$ give an idea of the parametrization Ψ of $\mathcal{H}_{e}\left(G_{\overline{\mathrm{R}}}^{\mathbb{R}}\right)$.

Magical nilpotents

- Non-zero nilpotent $e \in \mathfrak{g}$

Magical nilpotents

- Non-zero nilpotent $e \in \mathfrak{g} \quad \rightsquigarrow \quad\langle f, h, e\rangle \cong \mathfrak{s l}_{2} \mathbb{C} \hookrightarrow \mathfrak{g}$

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h
$$

Magical nilpotents

- Non-zero nilpotent $e \in \mathfrak{g} \rightsquigarrow\langle f, h, e\rangle \cong \mathfrak{s l}_{2} \mathbb{C} \hookrightarrow \mathfrak{g}$

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h
$$

- Two different decompositions of \mathfrak{g} :
- as an $\mathfrak{s l}_{2} \mathbb{C}$-module:

$$
\mathfrak{g}=\bigoplus_{j=0}^{N} W_{j}=W_{0} \oplus \bigoplus_{j=1}^{N} W_{j}
$$

$W_{j} \rightsquigarrow$ direct sum of $n_{j} \geq 0$ copies of the unique
$(j+1)$-dimensional irreducible $\mathfrak{s l}_{2} \mathbb{C}$-representation.
N.B: W_{0} is a subalgebra of \mathfrak{g}.

Magical nilpotents

- Non-zero nilpotent $e \in \mathfrak{g} \rightsquigarrow\langle f, h, e\rangle \cong \mathfrak{s l}_{2} \mathbb{C} \hookrightarrow \mathfrak{g}$

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h
$$

- Two different decompositions of \mathfrak{g} :
- as an $\mathfrak{s l}_{2} \mathbb{C}$-module:

$$
\mathfrak{g}=\bigoplus_{j=0}^{N} W_{j}=W_{0} \oplus \bigoplus_{j=1}^{N} W_{j}
$$

$W_{j} \rightsquigarrow$ direct sum of $n_{j} \geq 0$ copies of the unique
$(j+1)$-dimensional irreducible $\mathfrak{s l}_{2} \mathbb{C}$-representation.
N.B: W_{0} is a subalgebra of \mathfrak{g}.

- ad_{h}-weight decomposition: $\mathfrak{g}=\bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_{j}$ with $\left.\operatorname{ad}_{h}\right|_{\mathfrak{g}_{j}}=j \mathrm{Id}$, $\operatorname{ad}_{e}: \mathfrak{g}_{j} \rightarrow \mathfrak{g}_{j+2}$ and $\operatorname{ad}_{f}: \mathfrak{g}_{j} \rightarrow \mathfrak{g}_{j-2}$.

Magical nilpotents

- Non-zero nilpotent $e \in \mathfrak{g} \quad \rightsquigarrow \quad\langle f, h, e\rangle \cong \mathfrak{s l}_{2} \mathbb{C} \hookrightarrow \mathfrak{g}$

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h
$$

- Two different decompositions of \mathfrak{g} :
- as an $\mathfrak{s l}_{2} \mathbb{C}$-module:

$$
\mathfrak{g}=\bigoplus_{j=0}^{N} W_{j}=W_{0} \oplus \bigoplus_{j=1}^{N} W_{j}
$$

$W_{j} \rightsquigarrow$ direct sum of $n_{j} \geq 0$ copies of the unique
$(j+1)$-dimensional irreducible $\mathfrak{s l}_{2} \mathbb{C}$-representation.
N.B: W_{0} is a subalgebra of \mathfrak{g}.

- ad_{h}-weight decomposition: $\mathfrak{g}=\bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_{j}$ with $\left.\operatorname{ad}_{h}\right|_{\mathfrak{g}_{j}}=j \mathrm{Id}$, $\operatorname{ad}_{e}: \mathfrak{g}_{j} \rightarrow \mathfrak{g}_{j+2}$ and $\operatorname{ad}_{f}: \mathfrak{g}_{j} \rightarrow \mathfrak{g}_{j-2}$.
- $\mathfrak{g}^{e}=\operatorname{ker}\left(\operatorname{ad}_{e}\right) \rightsquigarrow$ Centralizer of e :

$$
\mathfrak{g}^{e}=\oplus_{j=0}^{N} V_{j}
$$

with $V_{j}=W_{j} \cap \mathfrak{g}_{j}$ the highest weight subspaces $\left(V_{0}=W_{0}\right)$.

Magical nilpotents

- Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$
\sigma_{e}: \mathfrak{g} \longrightarrow \mathfrak{g}
$$

by

$$
\left.\sigma_{e}\right|_{W_{0}}=\mathrm{Id} ;\left.\quad \sigma_{e}\right|_{\mathrm{ad}_{f}^{k}\left(V_{j}\right)}=(-1)^{k+1} \mathrm{Id}, j \geq 1, k \geq 0 .
$$

Magical nilpotents

- Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$
\sigma_{e}: \mathfrak{g} \longrightarrow \mathfrak{g}
$$

by

$$
\left.\sigma_{e}\right|_{W_{0}}=\mathrm{Id} ;\left.\quad \sigma_{e}\right|_{\mathrm{ad}_{f}^{k}\left(V_{j}\right)}=(-1)^{k+1} \mathrm{Id}, j \geq 1, k \geq 0 .
$$

Definition

The nilpotent e is magical if σ_{e} is a Lie algebra involution.

Magical nilpotents

- Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$
\sigma_{e}: \mathfrak{g} \longrightarrow \mathfrak{g}
$$

by

$$
\left.\sigma_{e}\right|_{W_{0}}=\mathrm{Id} ;\left.\quad \sigma_{e}\right|_{\mathrm{ad}_{f}^{k}\left(V_{j}\right)}=(-1)^{k+1} \mathrm{Id}, j \geq 1, k \geq 0
$$

Definition

The nilpotent e is magical if σ_{e} is a Lie algebra involution.

- (Kostant, Hitchin): Every principal nilpotent is magical.

Magical nilpotents

- Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$
\sigma_{e}: \mathfrak{g} \longrightarrow \mathfrak{g}
$$

by

$$
\left.\sigma_{e}\right|_{W_{0}}=\mathrm{Id} ;\left.\quad \sigma_{e}\right|_{\mathrm{ad}_{f}^{k}\left(V_{j}\right)}=(-1)^{k+1} \mathrm{Id}, j \geq 1, k \geq 0
$$

Definition

The nilpotent e is magical if σ_{e} is a Lie algebra involution.

- (Kostant, Hitchin): Every principal nilpotent is magical.
- e magical $\rightsquigarrow \mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}\left(\pm 1\right.$-eigenspaces of $\left.\sigma_{e}\right)$

Magical nilpotents

- Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$
\sigma_{e}: \mathfrak{g} \longrightarrow \mathfrak{g}
$$

by

$$
\left.\sigma_{e}\right|_{W_{0}}=\mathrm{Id} ;\left.\quad \sigma_{e}\right|_{\mathrm{ad}_{f}^{k}\left(V_{j}\right)}=(-1)^{k+1} \mathrm{Id}, j \geq 1, k \geq 0 .
$$

Definition

The nilpotent e is magical if σ_{e} is a Lie algebra involution.

- (Kostant, Hitchin): Every principal nilpotent is magical.
- e magical $\rightsquigarrow \mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}\left(\pm 1\right.$-eigenspaces of $\left.\sigma_{e}\right) \rightsquigarrow$ real form $\mathfrak{g}^{\mathbb{R}}$ defined by $\mathfrak{g}^{\mathbb{R}}=\mathfrak{h}^{\mathbb{R}} \oplus \mathfrak{m}^{\mathbb{R}}$.

Magical nilpotents

- Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$
\sigma_{e}: \mathfrak{g} \longrightarrow \mathfrak{g}
$$

by

$$
\left.\sigma_{e}\right|_{W_{0}}=\mathrm{Id} ;\left.\quad \sigma_{e}\right|_{\mathrm{ad}_{f}^{k}\left(V_{j}\right)}=(-1)^{k+1} \mathrm{Id}, j \geq 1, k \geq 0 .
$$

Definition

The nilpotent e is magical if σ_{e} is a Lie algebra involution.

- (Kostant, Hitchin): Every principal nilpotent is magical.
- e magical $\rightsquigarrow \mathfrak{g}=\mathfrak{h} \oplus \mathfrak{m}\left(\pm 1\right.$-eigenspaces of $\left.\sigma_{e}\right) \rightsquigarrow$ real form $\mathfrak{g}^{\mathbb{R}}$ defined by $\mathfrak{g}^{\mathbb{R}}=\mathfrak{h}^{\mathbb{R}} \oplus \mathfrak{m}^{\mathbb{R}}$.
- $\mathfrak{g}^{\mathbb{R}} \rightsquigarrow$ canonical real form associated to e.

Examples of magical nilpotents

- $\mathfrak{g}=\mathfrak{s l}_{3} \mathbb{C}$;

$$
e=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad f=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 2 & 0
\end{array}\right) \quad h=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right) .
$$

Examples of magical nilpotents

- $\mathfrak{g}=\mathfrak{s l}_{3} \mathbb{C}$;

$$
e=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad f=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 2 & 0
\end{array}\right) \quad h=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right) .
$$

$$
\operatorname{dim} \mathfrak{h}^{\mathbb{R}}=3 \Longrightarrow \mathfrak{g}^{\mathbb{R}}=\mathfrak{s l}_{3} \mathbb{R}
$$

Examples of magical nilpotents

- $\mathfrak{g}=\mathfrak{s l}_{3} \mathbb{C}$;

$$
e=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \quad f=\left(\begin{array}{lll}
0 & 0 & 0 \\
2 & 0 & 0 \\
0 & 2 & 0
\end{array}\right) \quad h=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -2
\end{array}\right) .
$$

$$
\operatorname{dim} \mathfrak{h}^{\mathbb{R}}=3 \Longrightarrow \mathfrak{g}^{\mathbb{R}}=\mathfrak{s l}_{3} \mathbb{R} .
$$

In general, the canonical real form of the principal nilpotent is the split one.

Examples of magical nilpotents

- $\mathfrak{g}=\mathfrak{s p}_{2 n} \mathbb{C}$;

$$
e=\left(\begin{array}{cc}
0 & I_{n} \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{cc}
0 & 0 \\
I_{n} & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -I_{n}
\end{array}\right) .
$$

Examples of magical nilpotents

- $\mathfrak{g}=\mathfrak{s p}_{2 n} \mathbb{C}$;

$$
e=\left(\begin{array}{cc}
0 & I_{n} \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{cc}
0 & 0 \\
I_{n} & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -I_{n}
\end{array}\right) .
$$

$$
\operatorname{dim} \mathfrak{h}^{\mathbb{R}}=n^{2} \Longrightarrow \mathfrak{g}^{\mathbb{R}}=\mathfrak{s p}_{2 n} \mathbb{R}
$$

Examples of magical nilpotents

- $\mathfrak{g}=\mathfrak{s p}_{2 n} \mathbb{C}$;

$$
e=\left(\begin{array}{cc}
0 & I_{n} \\
0 & 0
\end{array}\right), \quad f=\left(\begin{array}{cc}
0 & 0 \\
I_{n} & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -I_{n}
\end{array}\right) .
$$

$$
\operatorname{dim} \mathfrak{h}^{\mathbb{R}}=n^{2} \Longrightarrow \mathfrak{g}^{\mathbb{R}}=\mathfrak{s p}_{2 n} \mathbb{R}
$$

- The same nilpotent e thought of as an element in $\mathfrak{g}=\mathfrak{s l}_{2 n} \mathbb{C}$ is also magical, and $\operatorname{dim} \mathfrak{h}^{\mathbb{R}}=2 n^{2}-1$ so $\mathfrak{g}^{\mathbb{R}}=\mathfrak{s u}{ }_{n, n}$.

Magical nilpotents

Let $e \in \mathfrak{g}$ be a magical nilpotent element. Then:

Magical nilpotents

Let $e \in \mathfrak{g}$ be a magical nilpotent element. Then:

- only odd dimensional irreducible $\mathfrak{s l}_{2} \mathbb{C}$-representations appear in the decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\bigoplus_{j=0}^{N} W_{2 m_{j}}=W_{0} \oplus \bigoplus_{j=1}^{N} W_{2 m_{j}}
$$

Magical nilpotents

Let $e \in \mathfrak{g}$ be a magical nilpotent element. Then:

- only odd dimensional irreducible $\mathfrak{s l}_{2} \mathbb{C}$-representations appear in the decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\bigoplus_{j=0}^{N} W_{2 m_{j}}=W_{0} \oplus \bigoplus_{j=1}^{N} W_{2 m_{j}}
$$

- For $j \geq 1$, define

$$
Z_{2 m_{j}}=W_{2 m_{j}} \cap \mathfrak{g}_{0}
$$

Magical nilpotents

Let $e \in \mathfrak{g}$ be a magical nilpotent element. Then:

- only odd dimensional irreducible $\mathfrak{s l}_{2} \mathbb{C}$-representations appear in the decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\bigoplus_{j=0}^{N} W_{2 m_{j}}=W_{0} \oplus \bigoplus_{j=1}^{N} W_{2 m_{j}}
$$

- For $j \geq 1$, define

$$
Z_{2 m_{j}}=W_{2 m_{j}} \cap \mathfrak{g}_{0}
$$

- $\operatorname{ad}_{f}^{m_{j}}: V_{2 m_{j}} \xrightarrow{\cong} Z_{2 m_{j}}$.

Magical nilpotents

Let $e \in \mathfrak{g}$ be a magical nilpotent element. Then:

- only odd dimensional irreducible $\mathfrak{s l}_{2} \mathbb{C}$-representations appear in the decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\bigoplus_{j=0}^{N} W_{2 m_{j}}=W_{0} \oplus \bigoplus_{j=1}^{N} W_{2 m_{j}}
$$

- For $j \geq 1$, define

$$
Z_{2 m_{j}}=W_{2 m_{j}} \cap \mathfrak{g}_{0}
$$

- $\operatorname{ad}_{f}^{m_{j}}: V_{2 m_{j}} \xrightarrow{\cong} Z_{2 m_{j}}$.
- $\left[Z_{2 m_{i}}, Z_{2 m_{j}}\right] \subset W_{0}$ for all i, j ($\Leftrightarrow e$ magical);

Magical nilpotents

Let $e \in \mathfrak{g}$ be a magical nilpotent element. Then:

- only odd dimensional irreducible $\mathfrak{s l}_{2} \mathbb{C}$-representations appear in the decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\bigoplus_{j=0}^{N} W_{2 m_{j}}=W_{0} \oplus \bigoplus_{j=1}^{N} W_{2 m_{j}}
$$

- For $j \geq 1$, define

$$
Z_{2 m_{j}}=W_{2 m_{j}} \cap \mathfrak{g}_{0}
$$

- $\operatorname{ad}_{f}^{m_{j}}: V_{2 m_{j}} \xrightarrow{\cong} Z_{2 m_{j}}$.
- $\left[Z_{2 m_{i}}, Z_{2 m_{j}}\right] \subset W_{0}$ for all i, j ($\Leftrightarrow e$ magical);
- $\left[Z_{2 m_{i}}, Z_{2 m_{j}}\right]=0$ for all $i \neq j$;
- \exists at most one $c \in\{1, \ldots, N\}$ such that $\left[Z_{2 m_{c}}, Z_{2 m_{c}}\right] \neq 0$ ($\Leftrightarrow n_{2 m_{c}}>1$).
- $\Longrightarrow Z_{2 m_{j}}=\mathbb{C}$ for $j \neq c$.

The Cayley partner group

- Define a Lie algebra involution $\theta_{e}: \mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0}$ (recall that $\mathfrak{g}_{0}=\mathfrak{g}^{h}$) by

$$
\left.\theta_{e}\right|_{W_{0}}=\mathrm{Id},\left.\quad \theta_{e}\right|_{Z_{2 m_{j}}}=-\mathrm{Id}
$$

The Cayley partner group

- Define a Lie algebra involution $\theta_{e}: \mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0}$ (recall that $\mathfrak{g}_{0}=\mathfrak{g}^{h}$) by

$$
\left.\theta_{e}\right|_{W_{0}}=\mathrm{Id},\left.\quad \theta_{e}\right|_{Z_{2 m_{j}}}=-\mathrm{Id}
$$

- $\mathfrak{g}_{0}=W_{0} \oplus Z_{2 m_{c}} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}(\pm 1$ eigenspaces $)$.

The Cayley partner group

- Define a Lie algebra involution $\theta_{e}: \mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0}$ (recall that $\mathfrak{g}_{0}=\mathfrak{g}^{h}$) by

$$
\left.\theta_{e}\right|_{W_{0}}=\mathrm{Id},\left.\quad \theta_{e}\right|_{Z_{2 m_{j}}}=-\mathrm{Id}
$$

- $\mathfrak{g}_{0}=W_{0} \oplus Z_{2 m_{c}} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}(\pm 1$ eigenspaces $)$.
$\bullet \rightsquigarrow$ a real form $\mathfrak{g}_{0}^{\mathbb{R}}=W_{0}^{\mathbb{R}} \oplus Z_{2 m_{c}}^{\mathbb{R}} \oplus \mathbb{R} \oplus \cdots \oplus \mathbb{R}$.

The Cayley partner group

- Define a Lie algebra involution $\theta_{e}: \mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0}$ (recall that $\mathfrak{g}_{0}=\mathfrak{g}^{h}$) by

$$
\left.\theta_{e}\right|_{W_{0}}=\mathrm{Id},\left.\quad \theta_{e}\right|_{Z_{2 m_{j}}}=-\mathrm{Id}
$$

- $\mathfrak{g}_{0}=W_{0} \oplus Z_{2 m_{c}} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}(\pm 1$ eigenspaces $)$.
- \rightsquigarrow a real form $\mathfrak{g}_{0}^{\mathbb{R}}=W_{0}^{\mathbb{R}} \oplus Z_{2 m_{c}}^{\mathbb{R}} \oplus \mathbb{R} \oplus \cdots \oplus \mathbb{R}$.
- Let $\mathfrak{g}_{\mathcal{C}}^{\mathbb{R}}=W_{0}^{\mathbb{R}} \oplus Z_{2 m_{c}}^{\mathbb{R}}$.

The Cayley partner group

- Define a Lie algebra involution $\theta_{e}: \mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0}$ (recall that $\mathfrak{g}_{0}=\mathfrak{g}^{h}$) by

$$
\left.\theta_{e}\right|_{W_{0}}=\mathrm{Id},\left.\quad \theta_{e}\right|_{Z_{2 m_{j}}}=-\mathrm{Id}
$$

- $\mathfrak{g}_{0}=W_{0} \oplus Z_{2 m_{c}} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}(\pm 1$ eigenspaces $)$.
- \rightsquigarrow a real form $\mathfrak{g}_{0}^{\mathbb{R}}=W_{0}^{\mathbb{R}} \oplus Z_{2 m_{c}}^{\mathbb{R}} \oplus \mathbb{R} \oplus \cdots \oplus \mathbb{R}$.
- Let $\mathfrak{g}_{\mathcal{C}}^{\mathbb{R}}=W_{0}^{\mathbb{R}} \oplus Z_{2 m_{c}}^{\mathbb{R}}$.
- Cayley partner of $G^{\mathbb{R}} \rightsquigarrow$ the group $G_{\mathcal{C}}^{\mathbb{R}}$ with Lie algebra $\mathfrak{g}_{\mathcal{C}}^{\mathbb{R}}$ and maximal compact the subgroup of $G^{\mathbb{R}}$ with Lie algebra $W_{0}^{\mathbb{R}}$.

The Cayley partner group

- Define a Lie algebra involution $\theta_{e}: \mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0}$ (recall that $\mathfrak{g}_{0}=\mathfrak{g}^{h}$) by

$$
\left.\theta_{e}\right|_{W_{0}}=\mathrm{Id},\left.\quad \theta_{e}\right|_{Z_{2 m_{j}}}=-\mathrm{Id} .
$$

- $\mathfrak{g}_{0}=W_{0} \oplus Z_{2 m_{c}} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}(\pm 1$ eigenspaces $)$.
- \rightsquigarrow a real form $\mathfrak{g}_{0}^{\mathbb{R}}=W_{0}^{\mathbb{R}} \oplus Z_{2 m_{c}}^{\mathbb{R}} \oplus \mathbb{R} \oplus \cdots \oplus \mathbb{R}$.
- Let $\mathfrak{g}_{\mathcal{C}}^{\mathbb{R}}=W_{0}^{\mathbb{R}} \oplus Z_{2 m_{c}}^{\mathbb{R}}$.
- Cayley partner of $G^{\mathbb{R}} \rightsquigarrow$ the group $G_{\mathcal{C}}^{\mathbb{R}}$ with Lie algebra $\mathfrak{g}_{\mathcal{C}}^{\mathbb{R}}$ and maximal compact the subgroup of $G^{\mathbb{R}}$ with Lie algebra $W_{0}^{\mathbb{R}}$.
- Now we know the objects:

$$
\begin{aligned}
\mathcal{H}_{e}\left(G^{\mathbb{R}}\right) & \cong \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right) \\
& =\mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \prod_{j=1, j \neq c}^{N} \mathcal{M}_{K^{m_{j}+1}}\left(\mathbb{R}^{+}\right)
\end{aligned}
$$

Back to Higgs bundles

- $\left(E_{T}, f\right) \rightsquigarrow$ the $\mathrm{PSL}_{2} \mathbb{R}$-Higgs bundle induced by the $\mathrm{SL}_{2} \mathbb{R}$-Higgs bundle

$$
\left(K^{1 / 2} \oplus K^{-1 / 2}, f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right) .
$$

- $\left.f\right|_{K^{1 / 2}}=1: K^{1 / 2} \rightarrow K^{-1 / 2} \otimes K$.

Back to Higgs bundles

- $\left(E_{T}, f\right) \rightsquigarrow$ the $\mathrm{PSL}_{2} \mathbb{R}$-Higgs bundle induced by the $\mathrm{SL}_{2} \mathbb{R}$-Higgs bundle

$$
\left(K^{1 / 2} \oplus K^{-1 / 2}, f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right) .
$$

- $\left.f\right|_{K^{1 / 2}}=1: K^{1 / 2} \rightarrow K^{-1 / 2} \otimes K$.
- $E_{T} \rightsquigarrow$ frame bundle of K, with structure group $T=\mathbb{C}^{*}$.

Back to Higgs bundles

- $\left(E_{T}, f\right) \rightsquigarrow$ the $\mathrm{PSL}_{2} \mathbb{R}$-Higgs bundle induced by the $\mathrm{SL}_{2} \mathbb{R}$-Higgs bundle

$$
\left(K^{1 / 2} \oplus K^{-1 / 2}, f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right) .
$$

- $\left.f\right|_{K^{1 / 2}}=1: K^{1 / 2} \rightarrow K^{-1 / 2} \otimes K$.
- $E_{T} \rightsquigarrow$ frame bundle of K, with structure group $T=\mathbb{C}^{*}$.
- $\mathfrak{t}=\langle h\rangle \subset \mathfrak{s l}_{2} \mathbb{C}$.

Back to Higgs bundles

- $\left(E_{T}, f\right) \rightsquigarrow$ the $\mathrm{PSL}_{2} \mathbb{R}$-Higgs bundle induced by the $\mathrm{SL}_{2} \mathbb{R}$-Higgs bundle

$$
\left(K^{1 / 2} \oplus K^{-1 / 2}, f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right) .
$$

- $\left.f\right|_{K^{1 / 2}}=1: K^{1 / 2} \rightarrow K^{-1 / 2} \otimes K$.
- $E_{T} \rightsquigarrow$ frame bundle of K, with structure group $T=\mathbb{C}^{*}$.
- $\mathfrak{t}=\langle h\rangle \subset \mathfrak{s l}_{2} \mathbb{C}$.
- $C \rightsquigarrow$ the subgroup of G whose Lie algebra is $W_{0} \subset \mathfrak{g}$.
- C is the complexification of the maximal compact subgroup of the Cayley partner $G_{\mathcal{C}}^{\mathbb{R}}$.

The parametrization

$$
\Psi: \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right) \longrightarrow \mathcal{M}\left(G^{\mathbb{R}}\right)
$$

The parametrization

$$
\begin{aligned}
& \quad \Psi: \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right) \longrightarrow \mathcal{M}\left(G^{\mathbb{R}}\right) \\
& \left(\left(E_{C}, \psi_{m_{c}}\right), \psi_{m_{1}}, \ldots, \psi_{m_{N}}\right) \longmapsto\left(\left(E_{T} * E_{C}\right)(H), f+\sum_{j=1}^{N} \phi_{m_{j}}\right), \\
& \text { where } \phi_{m_{j}}=\operatorname{ad}_{f}^{-m_{j}}\left(\psi_{m_{j}}\right) \text { and }\left(E_{T} * E_{C}\right)(H) \text { is the } H \text {-bundle } \\
& \text { obtained from extension of structure group to } H \text {. Note that: }
\end{aligned}
$$

The parametrization

$$
\begin{aligned}
& \qquad \Psi: \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right) \longrightarrow \mathcal{M}\left(G^{\mathbb{R}}\right) \\
& \left(\left(E_{C}, \psi_{m_{c}}\right), \psi_{m_{1}}, \ldots, \psi_{m_{N}}\right) \longmapsto\left(\left(E_{T} * E_{C}\right)(H), f+\sum_{j=1}^{N} \phi_{m_{j}}\right), \\
& \text { where } \phi_{m_{j}}=\operatorname{ad}_{f}^{-m_{j}}\left(\psi_{m_{j}}\right) \text { and }\left(E_{T} * E_{C}\right)(H) \text { is the } H \text {-bundle } \\
& \text { obtained from extension of structure group to } H \text {. Note that: } \\
& \text { - } \operatorname{ad}_{h^{-}} \text {-decomposition preserved by } T \text { and } C . \text { So } \\
& \qquad\left(E_{T} * E_{C}\right)(\mathfrak{g})=\bigoplus_{j}\left(E_{T} * E_{C}\right)\left(\mathfrak{g}_{j}\right)
\end{aligned}
$$

The parametrization

$$
\begin{aligned}
& \quad \Psi: \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right) \longrightarrow \mathcal{M}\left(G^{\mathbb{R}}\right) \\
& \left(\left(E_{C}, \psi_{m_{c}}\right), \psi_{m_{1}}, \ldots, \psi_{m_{N}}\right) \longmapsto\left(\left(E_{T} * E_{C}\right)(H), f+\sum_{j=1}^{N} \phi_{m_{j}}\right), \\
& \text { where } \phi_{m_{j}}=\operatorname{ad}_{f}^{-m_{j}}\left(\psi_{m_{j}}\right) \text { and }\left(E_{T} * E_{C}\right)(H) \text { is the } H \text {-bundle } \\
& \text { obtained from extension of structure group to } H \text {. Note that: } \\
& \text { - } \operatorname{ad}_{h^{\prime}} \text {-decomposition preserved by } T \text { and } C \text {. So } \\
& \qquad\left(E_{T} * E_{C}\right)(\mathfrak{g})=\bigoplus_{j}^{j}\left(E_{T} * E_{C}\right)\left(\mathfrak{g}_{j}\right) \\
& \text { - } \operatorname{ad}_{f}:\left(E_{T} * E_{C}\right)\left(\mathfrak{g}_{j}\right) \longrightarrow\left(E_{T} *_{C}\right)\left(\mathfrak{g}_{j-2}\right) \otimes K
\end{aligned}
$$

The parametrization

$$
\begin{gathered}
\Psi: \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right) \longrightarrow \mathcal{M}\left(G^{\mathbb{R}}\right) \\
\left(\left(E_{C}, \psi_{m_{c}}\right), \psi_{m_{1}}, \ldots, \psi_{m_{N}}\right) \longmapsto\left(\left(E_{T} * E_{C}\right)(H), f+\sum_{j=1}^{N} \phi_{m_{j}}\right),
\end{gathered}
$$

where $\phi_{m_{j}}=\operatorname{ad}_{f}^{-m_{j}}\left(\psi_{m_{j}}\right)$ and $\left(E_{T} * E_{C}\right)(H)$ is the H-bundle obtained from extension of structure group to H. Note that:

- ad_{h}-decomposition preserved by T and C. So

$$
\left(E_{T} * E_{C}\right)(\mathfrak{g})=\bigoplus\left(E_{T} * E_{C}\right)\left(\mathfrak{g}_{j}\right)
$$

- $\operatorname{ad}_{f}:\left(E_{T} * E_{C}\right)\left(\mathfrak{g}_{j}\right) \longrightarrow\left(E_{T} *^{j} E_{C}\right)\left(\mathfrak{g}_{j-2}\right) \otimes K$;
- $\operatorname{ad}_{f}^{m_{j}}:\left(E_{T} * E_{C}\right)\left(V_{2 m_{j}}\right) \otimes K \xrightarrow{\cong}\left(E_{T} * E_{C}\right)\left(Z_{2 m_{j}}\right) \otimes K^{m_{j}+1}$;

The parametrization

$$
\begin{gathered}
\Psi: \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right) \longrightarrow \mathcal{M}\left(G^{\mathbb{R}}\right) \\
\left(\left(E_{C}, \psi_{m_{c}}\right), \psi_{m_{1}}, \ldots, \psi_{m_{N}}\right) \longmapsto\left(\left(E_{T} * E_{C}\right)(H), f+\sum_{j=1}^{N} \phi_{m_{j}}\right),
\end{gathered}
$$

where $\phi_{m_{j}}=\operatorname{ad}_{f}^{-m_{j}}\left(\psi_{m_{j}}\right)$ and $\left(E_{T} * E_{C}\right)(H)$ is the H-bundle obtained from extension of structure group to H. Note that:

- ad_{h}-decomposition preserved by T and C. So

$$
\left(E_{T} * E_{C}\right)(\mathfrak{g})=\bigoplus\left(E_{T} * E_{C}\right)\left(\mathfrak{g}_{j}\right)
$$

- $\operatorname{ad}_{f}:\left(E_{T} * E_{C}\right)\left(\mathfrak{g}_{j}\right) \longrightarrow\left(E_{T} *^{j} E_{C}\right)\left(\mathfrak{g}_{j-2}\right) \otimes K$;
- $\operatorname{ad}_{f}^{m_{j}}:\left(E_{T} * E_{C}\right)\left(V_{2 m_{j}}\right) \otimes K \xrightarrow{\cong}\left(E_{T} * E_{C}\right)\left(Z_{2 m_{j}}\right) \otimes K^{m_{j}+1}$;
- $f+\sum_{j=1}^{N} \phi_{m_{j}} \in H^{0}\left(X,\left(E_{T} * E_{C}\right)(\mathfrak{m}) \otimes K\right)$.

The parametrization

$$
\Psi: \mathcal{M}_{K^{m_{c}+1}}\left(G_{\mathcal{C}}^{\mathbb{R}}\right) \times \bigoplus_{j=1, j \neq c}^{N} H^{0}\left(X, K^{m_{j}+1}\right) \longrightarrow \mathcal{M}\left(G^{\mathbb{R}}\right)
$$

$\left(\left(E_{C}, \psi_{m_{c}}\right), \psi_{m_{1}}, \ldots, \psi_{m_{N}}\right) \longmapsto\left(\left(E_{T} * E_{C}\right)(H), f+\sum_{j=1}^{N} \phi_{m_{j}}\right)$, where $\phi_{m_{j}}=\operatorname{ad}_{f}^{-m_{j}}\left(\psi_{m_{j}}\right)$ and $\left(E_{T} * E_{C}\right)(H)$ is the H-bundle obtained from extension of structure group to H. Note that:

- ad_{h}-decomposition preserved by T and C. So

$$
\left(E_{T} * E_{C}\right)(\mathfrak{g})=\bigoplus\left(E_{T} * E_{C}\right)\left(\mathfrak{g}_{j}\right)
$$

- $\operatorname{ad}_{f}:\left(E_{T} * E_{C}\right)\left(\mathfrak{g}_{j}\right) \longrightarrow\left(E_{T} *^{j} E_{C}\right)\left(\mathfrak{g}_{j-2}\right) \otimes K$;
- $\operatorname{ad}_{f}^{m_{j}}:\left(E_{T} * E_{C}\right)\left(V_{2 m_{j}}\right) \otimes K \xrightarrow{\cong}\left(E_{T} * E_{C}\right)\left(Z_{2 m_{j}}\right) \otimes K^{m_{j}+1}$;
- $f+\sum_{j=1}^{N} \phi_{m_{j}} \in H^{0}\left(X,\left(E_{T} * E_{C}\right)(\mathfrak{m}) \otimes K\right)$.

Theorem 4 (BCGGO)

Ψ is an isomorphism onto its image, which is open and closed in $\mathcal{M}\left(G^{\mathbb{R}}\right)$.

