Higgs bundles and higher Teichmüller components

Oscar García-Prada ICMAT-CSIC, Madrid

ICTS, Bengaluru, 10–11 February 2020

Oscar García-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller

- S oriented smooth compact surface of genus $g \ge 2$
- $\pi_1(S)$ fundamental group of S
- G connected real semisimple Lie group (real or complex)

- S oriented smooth compact surface of genus $g \ge 2$
- $\pi_1(S)$ fundamental group of S
- G connected real semisimple Lie group (real or complex)

A representation of $\pi_1(S)$ in G

is a homomorphism

 $\rho \colon \pi_1(S) \to G$

- S oriented smooth compact surface of genus $g \ge 2$
- $\pi_1(S)$ fundamental group of S
- G connected real semisimple Lie group (real or complex)

A representation of $\pi_1(S)$ in G

is a homomorphism

$$\rho\colon \pi_1(S)\to G$$

• Hom $(\pi_1(S), G)$ is an analytic variety, which is algebraic if G is algebraic

- S oriented smooth compact surface of genus $g \ge 2$
- $\pi_1(S)$ fundamental group of S
- G connected real semisimple Lie group (real or complex)

A representation of $\pi_1(S)$ in G

is a homomorphism

$$\rho \colon \pi_1(S) \to G$$

- Hom $(\pi_1(S), G)$ is an analytic variety, which is algebraic if G is algebraic
- G acts on $\operatorname{Hom}(\pi_1(S), G)$ by conjugation:

$$(g \cdot \rho)(\gamma) = g\rho(\gamma)g^{-1}$$
 for $g \in G, \rho \in \operatorname{Hom}(\pi_1(S), G)$

- ρ is a **reductive representation** if composed with the adjoint representation in the Lie algebra of G, decomposes as a sum of irreducible representations
- Hom⁺ $(\pi_1(S), G)$: set of reductive representations

- ρ is a **reductive representation** if composed with the adjoint representation in the Lie algebra of G, decomposes as a sum of irreducible representations
- Hom⁺ $(\pi_1(S), G)$: set of reductive representations

Moduli space of representations or character variety

The moduli space of representations of $\pi_1(S)$ in G is defined to be the orbit space

$$\mathcal{R}(S,G) = \operatorname{Hom}^+(\pi_1(S),G)/G$$

- ρ is a **reductive representation** if composed with the adjoint representation in the Lie algebra of G, decomposes as a sum of irreducible representations
- Hom⁺ $(\pi_1(S), G)$: set of reductive representations

Moduli space of representations or character variety

The moduli space of representations of $\pi_1(S)$ in G is defined to be the orbit space

$$\mathcal{R}(S,G) = \operatorname{Hom}^+(\pi_1(S),G)/G$$

• $\mathcal{R}(S,G)$ is an analytic variety (algebraic if G is algebraic)

伺下 イヨト イヨト

- ρ is a **reductive representation** if composed with the adjoint representation in the Lie algebra of G, decomposes as a sum of irreducible representations
- Hom⁺ $(\pi_1(S), G)$: set of reductive representations

Moduli space of representations or character variety

The moduli space of representations of $\pi_1(S)$ in G is defined to be the orbit space

$$\mathcal{R}(S,G) = \operatorname{Hom}^+(\pi_1(S),G)/G$$

- $\mathcal{R}(S,G)$ is an analytic variety (algebraic if G is algebraic)
- Interested in the topology and geometry of $\mathcal{R}(S,G)$

(日本) (日本) (日本)

- ρ is a **reductive representation** if composed with the adjoint representation in the Lie algebra of G, decomposes as a sum of irreducible representations
- Hom⁺ $(\pi_1(S), G)$: set of reductive representations

Moduli space of representations or character variety

The moduli space of representations of $\pi_1(S)$ in G is defined to be the orbit space

$$\mathcal{R}(S,G) = \operatorname{Hom}^+(\pi_1(S),G)/G$$

- $\mathcal{R}(S,G)$ is an analytic variety (algebraic if G is algebraic)
- Interested in the topology and geometry of $\mathcal{R}(S,G)$
- Complex algebraic geometry approach: Higgs bundles

< A >

• X compact Riemann surface

Oscar García-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller

★御▶ ★理▶ ★理▶

- 2

- X compact Riemann surface
- G complex semisimple Lie group
- $G^{\mathbb{R}} \subset G$ real form
- $H^{\mathbb{R}} \subset G^{\mathbb{R}}$ maximal compact subgroup of $G^{\mathbb{R}}$

- X compact Riemann surface
- G complex semisimple Lie group
- $G^{\mathbb{R}} \subset G$ real form
- $H^{\mathbb{R}} \subset G^{\mathbb{R}}$ maximal compact subgroup of $G^{\mathbb{R}}$
- θ Cartan involution of $\mathfrak{g}^{\mathbb{R}}$, Lie algebra of $G^{\mathbb{R}}$, defining the Cartan decomposition:

$$\mathfrak{g}^{\mathbb{R}}=\mathfrak{h}^{\mathbb{R}}+\mathfrak{m}^{\mathbb{R}}$$

where $\mathfrak{h}^{\mathbb{R}}$ is the Lie algebra of $H^{\mathbb{R}}$ We have $[\mathfrak{m}^{\mathbb{R}}, \mathfrak{m}^{\mathbb{R}}] \subset \mathfrak{h}^{\mathbb{R}}, [\mathfrak{h}^{\mathbb{R}}, \mathfrak{m}^{\mathbb{R}}] \subset \mathfrak{m}^{\mathbb{R}}$

- $\bullet\,$ The Cartan decomposition is orthogonal with respect to the Killing form of $\mathfrak{g}^{\mathbb{R}}$
- Complexification of isotropy representation Let H and \mathfrak{m} be the complexifications of $H^{\mathbb{R}}$ and $\mathfrak{m}^{\mathbb{R}}$ respectively

$$\iota: H \to \mathrm{GL}(\mathfrak{m})$$

A $G^{\mathbb{R}}$ -Higgs bundle on X is a pair (E, φ) consisting of

- E a holomorphic principal H-bundle over X
- φ a holomorphic section of E(m) ⊗ K, where E(m) is the associated vector bundle with fibre m via the complexified isotropy representation and K is the canonical line bundle of X

伺 ト イヨト イヨト

A $G^{\mathbb{R}}$ -Higgs bundle on X is a pair (E, φ) consisting of

- E a holomorphic principal H-bundle over X
- φ a holomorphic section of E(𝔅) ⊗ K, where E(𝔅) is the associated vector bundle with fibre 𝔅 via the complexified isotropy representation and K is the canonical line bundle of X
- There are notions of **stability**: consider for $s \in i\mathfrak{h}^{\mathbb{R}}$:
- Parabolic subgroup $P_s = \{g \in H : e^{ts}ge^{-ts} \text{ is bounded as } t \to \infty\}$
- Character $\chi_s : \mathfrak{p}_s \to \mathbb{C}$ defined by s (\mathfrak{p}_s Lie algebra of P_s)
- Subspace $\mathfrak{m}_s = \{Y \in \mathfrak{m} : \iota(e^{ts})Y \text{ is bounded as } t \to \infty\}$
- For σ a reduction of E to P_s

$$\deg(E)(\sigma,s) := \frac{i}{2\pi} \int_X \chi_s(F).$$

 $F\colon$ curvature of a connection on the P_s -bundle defined by σ

Stability of $G^{\mathbb{R}}$ -Higgs bundles

 (E,φ) is:

 $\bullet~{\bf stable}~{\rm if}$

 $\deg(E)(\sigma,s)>0$

for any $s \in i\mathfrak{h}^{\mathbb{R}}$ and any holomorphic reduction $\sigma \in \Gamma(E(H/P_s))$ such that $\varphi \in H^0(X, E_{\sigma}(\mathfrak{m}_s) \otimes K)$

Stability of $G^{\mathbb{R}}$ -Higgs bundles

 (E,φ) is:

 $\bullet~{\bf stable}~{\rm if}$

 $\deg(E)(\sigma,s)>0$

for any $s \in i\mathfrak{h}^{\mathbb{R}}$ and any holomorphic reduction $\sigma \in \Gamma(E(H/P_s))$ such that $\varphi \in H^0(X, E_{\sigma}(\mathfrak{m}_s) \otimes K)$

• **polystable** if (E, φ) can be reduced to a $G'^{\mathbb{R}}$ -Higgs bundle, with $G'^{\mathbb{R}} \subset G^{\mathbb{R}}$ reductive and (E, φ) stable as a $G'^{\mathbb{R}}$ -Higgs bundle

Stability of $G^{\mathbb{R}}$ -Higgs bundles

 (E,φ) is:

 $\bullet~{\bf stable}~{\rm if}$

 $\deg(E)(\sigma,s)>0$

for any $s \in i\mathfrak{h}^{\mathbb{R}}$ and any holomorphic reduction $\sigma \in \Gamma(E(H/P_s))$ such that $\varphi \in H^0(X, E_{\sigma}(\mathfrak{m}_s) \otimes K)$

- **polystable** if (E, φ) can be reduced to a $G'^{\mathbb{R}}$ -Higgs bundle, with $G'^{\mathbb{R}} \subset G^{\mathbb{R}}$ reductive and (E, φ) stable as a $G'^{\mathbb{R}}$ -Higgs bundle
 - The moduli space of polystable $G^{\mathbb{R}}$ -Higgs bundles $\mathcal{M}(X, G^{\mathbb{R}})$ is the set of isomorphism classes of polystable $G^{\mathbb{R}}$ -Higgs bundles
- $\mathcal{M}(X, G^{\mathbb{R}})$ is as complex algebraic variety

$$G^{\mathbb{R}}=\mathrm{SL}(n,\mathbb{C})$$

• When $G^{\mathbb{R}}$ is a clasical group we can formulate the theory in terms of vector bundles

・ 同 ト ・ ヨ ト ・ ヨ ト

э

 $G^{\mathbb{R}} = \mathrm{SL}(n,\mathbb{C})$

- When $G^{\mathbb{R}}$ is a clasical group we can formulate the theory in terms of vector bundles
- In this case H^ℝ = SU(n), H = SL(n, C) and m = sl(n, C) Hence, an SL(n, C)-Higgs bundle is equivalent to a pair (V, φ)
 - $V \quad \text{rank } n \text{ holomorphic vector bundle with det } V = \mathcal{O}$ $\varphi: V \to V \otimes K \text{ with } \operatorname{Tr} \varphi = 0$
- (V, φ) is stable: $\deg(V') < 0$ for every $V' \subset V$ such that $\varphi(V') \subset V' \otimes K$ (V, φ) is polystable: $(V, \varphi) = \bigoplus(V_i, \varphi_i)$ with $\deg V_i = 0$ and (V_i, φ_i) stable
- We recover the original notions introduced by **Hitchin** (1987)

・吊り イラト イラト 一戸

- $G^{\mathbb{R}} = \mathrm{SU}(p,q)$
 - In this case H^ℝ = S(U(p) × U(q)), H = S(GL(p) × GL(q)), and m = Hom(C^q, C^p) ⊕ Hom(C^p, C^q) Hence, an SU(p,q)-Higgs bundle is equivalent to a tuple (V, W, β, γ)

V and W are rank p and q holomorphic vector bundles, respectively, with det $V\otimes \det W=\mathcal{O}$

 $\beta: W \to V \otimes K$ and $\gamma: V \to W \otimes K$

伺い イラト イラト ニラ

- $G^{\mathbb{R}} = \mathrm{SU}(p,q)$
 - In this case H^ℝ = S(U(p) × U(q)), H = S(GL(p) × GL(q)), and m = Hom(C^q, C^p) ⊕ Hom(C^p, C^q) Hence, an SU(p, q)-Higgs bundle is equivalent to a tuple

$$(V, W, \beta, \gamma)$$

V and W are rank p and q holomorphic vector bundles, respectively, with $\det V\otimes \det W=\mathcal{O}$

 $\beta: W \to V \otimes K$ and $\gamma: V \to W \otimes K$

• (V, W, β, γ) is stable: $\deg(V') + \deg(W') < 0$ for every $V' \subset V$ and $W' \subset W$ such that $\beta(W') \subset V' \otimes K$ and $\gamma(V') \subset W' \otimes K$ (V, W, β, γ) is polystable if the associated $\operatorname{SL}(p+q, \mathbb{C})$ -Higgs bundle

$$V \oplus W$$
 and $\varphi = \begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix}$

伺 と く ヨ と く ヨ と …

is polystable

Theorem

A $G^{\mathbb{R}}$ -Higgs (E, φ) is polystable if and only if there exists a reduction h of the structure group of E from H to $H^{\mathbb{R}}$, such that

 $F_h - [\varphi, \tau_h(\varphi)] = 0$ (Hitchin equation)

- $\tau_h: \Omega^{1,0}(E(\mathfrak{m})) \to \Omega^{0,1}(E(\mathfrak{m}))$ is the combination of the anti-holomorphic involution in $E(\mathfrak{m})$ defined by the compact real form at each point determined by h and the conjugation of 1-forms
- F_h is the curvature of the unique $H^{\mathbb{R}}$ -connection compatible with the holomorphic structure of E

伺下 イヨト イヨト

Theorem

A $G^{\mathbb{R}}$ -Higgs (E, φ) is polystable if and only if there exists a reduction h of the structure group of E from H to $H^{\mathbb{R}}$, such that

 $F_h - [\varphi, \tau_h(\varphi)] = 0$ (Hitchin equation)

- $\tau_h: \Omega^{1,0}(E(\mathfrak{m})) \to \Omega^{0,1}(E(\mathfrak{m}))$ is the combination of the anti-holomorphic involution in $E(\mathfrak{m})$ defined by the compact real form at each point determined by h and the conjugation of 1-forms
- F_h is the curvature of the unique $H^{\mathbb{R}}$ -connection compatible with the holomorphic structure of E

Proved by: **Hitchin** (1987) for $G^{\mathbb{R}} = \text{SL}(2, \mathbb{C})$, **Simpson** (1988) for general $G^{\mathbb{R}}$, and **Bradlow–G–Mundet** (2003) & **G–Gothen–Mundet** (2009) for general $G^{\mathbb{R}}$ (direct proof)

Let S be a smooth compact surface and J be a complex structure on S. Let X = (S, J). There is a homeomorphism

 $\mathcal{R}(S, G^{\mathbb{R}}) \cong \mathcal{M}(X, G^{\mathbb{R}})$

伺 と く ヨ と く ヨ と

Let S be a smooth compact surface and J be a complex structure on S. Let X = (S, J). There is a homeomorphism

 $\mathcal{R}(S, G^{\mathbb{R}}) \cong \mathcal{M}(X, G^{\mathbb{R}})$

伺 と く ヨ と く ヨ と

Let S be a smooth compact surface and J be a complex structure on S. Let X = (S, J). There is a homeomorphism

$$\mathcal{R}(S, G^{\mathbb{R}}) \cong \mathcal{M}(X, G^{\mathbb{R}})$$

• Let (E, φ) be a polystable *G*-Higgs bundle and *h* a solution to Hitchin equations

$$\nabla = \bar{\partial}_E - \tau_h(\bar{\partial}_E) + \varphi - \tau_h(\varphi)$$

is a flat $G^{\mathbb{R}}\text{-connection}$ and the holonomy representation ρ is reductive

伺下 イヨト イヨト

Let S be a smooth compact surface and J be a complex structure on S. Let X = (S, J). There is a homeomorphism

$$\mathcal{R}(S, G^{\mathbb{R}}) \cong \mathcal{M}(X, G^{\mathbb{R}})$$

• Let (E, φ) be a polystable *G*-Higgs bundle and *h* a solution to Hitchin equations

$$\nabla = \bar{\partial}_E - \tau_h(\bar{\partial}_E) + \varphi - \tau_h(\varphi)$$

is a flat $G^{\mathbb{R}}\text{-connection}$ and the holonomy representation ρ is reductive

Converse: Existence of a harmonic metric on a reductive flat G^ℝ-bundle. Proved by Donaldson (1987) for G^ℝ = SL(2, C) and Corlette (1988) for real reductive G^ℝ

・ 「 ト ・ ヨ ト ・ ヨ ト

- 3

 Given ρ: π₁(S) → G^ℝ, there is an associated flat G^ℝ-bundle on S, defined as E_ρ = S̃ ×_ρ G^ℝ (S̃: universal cover of S): Hom(π₁(S), G^ℝ)/G^ℝ ≅ H¹(S, G^ℝ) = iso. classes of flat G^ℝ-bundle

- Given ρ: π₁(S) → G^ℝ, there is an associated flat G^ℝ-bundle on S, defined as E_ρ = S̃ ×_ρ G^ℝ (S̃: universal cover of S): Hom(π₁(S), G^ℝ)/G^ℝ ≅ H¹(S, G^ℝ) = iso. classes of flat G^ℝ-bundle
- Let $\widetilde{G}^{\mathbb{R}}$ be the universal covering group of $G^{\mathbb{R}}$. We have an exact sequence

$$1 \to \pi_1(G^{\mathbb{R}}) \to \widetilde{G}^{\mathbb{R}} \to G^{\mathbb{R}} \to 1$$

which gives rise to the (pointed sets) cohomology sequence

$$H^1(S, \widetilde{G}^{\mathbb{R}}) \to H^1(S, G^{\mathbb{R}}) \xrightarrow{c} H^2(S, \pi_1(G^{\mathbb{R}}))$$

- Given ρ: π₁(S) → G^ℝ, there is an associated flat G^ℝ-bundle on S, defined as E_ρ = S̃ ×_ρ G^ℝ (S̃: universal cover of S): Hom(π₁(S), G^ℝ)/G^ℝ ≅ H¹(S, G^ℝ) = iso. classes of flat G^ℝ-bundle
- Let $\widetilde{G}^{\mathbb{R}}$ be the universal covering group of $G^{\mathbb{R}}$. We have an exact sequence

$$1 \to \pi_1(G^{\mathbb{R}}) \to \widetilde{G}^{\mathbb{R}} \to G^{\mathbb{R}} \to 1$$

which gives rise to the (pointed sets) cohomology sequence $H^1(S, \widetilde{G}^{\mathbb{R}}) \to H^1(S, G^{\mathbb{R}}) \xrightarrow{c} H^2(S, \pi_1(G^{\mathbb{R}}))$

topological invariant of ρ: c(ρ) := c(E_ρ) ∈ H²(X, π₁(G^ℝ)) ≅ π₁(G^ℝ)
We can define the subvariety

$$\mathcal{R}_c(S, G^{\mathbb{R}}) := \{ \rho \in \mathcal{R}(S, G^{\mathbb{R}}) \ : \ c(\rho) = c \}$$

Oscar García-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller

• Similarly, we can define a topological invariant of a $G^{\mathbb{R}}$ -Higgs bundle (E, φ) over X as the topological class of the *H*-bundle *E* (recall $H^{\mathbb{R}} \subset G^{\mathbb{R}}$ is a maximal compact subgroup)

.

- Similarly, we can define a topological invariant of a $G^{\mathbb{R}}$ -Higgs bundle (E, φ) over X as the topological class of the H-bundle E (recall $H^{\mathbb{R}} \subset G^{\mathbb{R}}$ is a maximal compact subgroup)
- $H^1(X, \underline{H}) =$ isomorphisms classes of *H*-bundles We have

$$H^1(X,\underline{\widetilde{H}}) \to H^1(X,\underline{H}) \stackrel{c}{\to} H^2(X,\pi_1(H))$$

- Similarly, we can define a topological invariant of a $G^{\mathbb{R}}$ -Higgs bundle (E, φ) over X as the topological class of the *H*-bundle *E* (recall $H^{\mathbb{R}} \subset G^{\mathbb{R}}$ is a maximal compact subgroup)
- $H^1(X, \underline{H}) =$ isomorphisms classes of *H*-bundles We have

$$H^1(X,\underline{\widetilde{H}}) \to H^1(X,\underline{H}) \stackrel{c}{\to} H^2(X,\pi_1(H))$$

• topological invariant of (E, φ) :

$$c(E,\varphi) \in H^2(X,\pi_1(H)) \cong \pi_1(H)$$

• We can define the subvariety

$$\mathcal{M}_{c}(X, G^{\mathbb{R}}) := \{ (E, \varphi) \in \mathcal{M}(X, G^{\mathbb{R}}) : c(E, \varphi) = c \}$$

.

- Recall $\pi_1(G^{\mathbb{R}}) \cong \pi_1(H^{\mathbb{R}}) \cong \pi_1(H)$
- For $c \in \pi_1(G^{\mathbb{R}}) \cong \pi_1(H)$ we have de homeomorphism

$$\mathcal{R}_c(S, G^{\mathbb{R}}) \cong \mathcal{M}_c(X, G^{\mathbb{R}})$$

Theorem

If $G^{\mathbb{R}}$ is compact (Ramanathan, 1975) or complex (J. Li, 1993; G-Oliveira, 2017)

$$\pi_0(\mathcal{R}(S, G^{\mathbb{R}})) = \pi_0(\mathcal{M}(X, G^{\mathbb{R}})) \cong \pi_1(G^{\mathbb{R}})$$

• The story is very different for **non-compact** real Lie groups (non-complex): The map

$$\pi_0(\mathcal{R}(S, G^{\mathbb{R}})) = \pi_0(\mathcal{M}(X, G^{\mathbb{R}})) \to \pi_1(G^{\mathbb{R}})$$

is neither injective, nor surjective in general

$G^{\mathbb{R}} = \mathrm{SL}(2, \mathbb{R})$

۲

- The topological invariant of $\rho \in \mathcal{R}(S, \mathrm{SL}(2, \mathbb{R}))$ in this case is an integer (basically the **Euler class**) $d \in \mathbb{Z} \cong \pi_1(G^{\mathbb{R}})$
 - $\mathcal{R}_d := \{ \rho \in \mathcal{R}(S, \mathrm{SL}(2, \mathbb{R})) : \text{ with Euler class } d \}$

- A B N A B N

3

The topological invariant of ρ ∈ R(S, SL(2, ℝ)) in this case is an integer (basically the Euler class) d ∈ ℤ ≃ π₁(G^ℝ)

 $\mathcal{R}_d := \{ \rho \in \mathcal{R}(S, \mathrm{SL}(2, \mathbb{R})) : \text{ with Euler class } d \}$

Theorem (Milnor, 1958)

 \mathcal{R}_d is empty unless

$$|d| \le g - 1$$

伺 と く ヨ と く ヨ と

The topological invariant of ρ ∈ R(S, SL(2, ℝ)) in this case is an integer (basically the Euler class) d ∈ ℤ ≃ π₁(G^ℝ)

 $\mathcal{R}_d := \{ \rho \in \mathcal{R}(S, \mathrm{SL}(2, \mathbb{R})) : \text{ with Euler class } d \}$

Theorem (Milnor, 1958)

 \mathcal{R}_d is empty unless

$$|d| \le g - 1$$

• An SL(2, \mathbb{R})-Higgs bundle is a tuple (L, β, γ) L line bundle over $X \quad \beta \in H^0(X, L^2K)$ and $\gamma \in H^0(X, L^{-2}K)$ Equivalently it can be seen as an SL(2, \mathbb{C})-Higgs bundle (V, φ) with $V = L \oplus L^{-1}$ and $\varphi = \begin{pmatrix} 0 & \beta \\ \gamma & 0 \end{pmatrix}$ • Milnor's inequality follows from the semistability of (V, φ)

・ 白 ・ ・ ヨ ・ ・

(Hitchin, 1987)

Theorem (Goldman, 1988; Hitchin 1987)

- \mathcal{R}_d is connected if |d| < g 1
- \mathcal{R}_d has 2^{2g} connected components if |d| = g 1

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (Goldman, 1988; Hitchin 1987)

- \mathcal{R}_d is connected if |d| < g 1
- \mathcal{R}_d has 2^{2g} connected components if |d| = g 1
- Let $\mathcal{R}_{\max} := \mathcal{R}_d$ for |d| = g 1
- Each connected component of \mathcal{R}_{\max} consists entirely of **Fuchsian representations** (discrete and faithful) and can be identified with the **Teichmüller space** $\mathcal{T} = \mathcal{T}(S)$ of the surface S (**Goldman**, 1980)

(同) (三) (三) (二)

Theorem (Goldman, 1988; Hitchin 1987)

- \mathcal{R}_d is connected if |d| < g 1
- \mathcal{R}_d has 2^{2g} connected components if |d| = g 1
- Let $\mathcal{R}_{\max} := \mathcal{R}_d$ for |d| = g 1
- Each connected component of \mathcal{R}_{\max} consists entirely of **Fuchsian representations** (discrete and faithful) and can be identified with the **Teichmüller space** $\mathcal{T} = \mathcal{T}(S)$ of the surface S (**Goldman**, 1980)
- Question: Are there other simple groups with similar features to those of $SL(2, \mathbb{R})$. More precisely, whose moduli space has connected components not distinguished by the topological invariant and consisting entirely of discrete and faithful representations?

・ロト ・部ト ・ヨト ・ヨト ・ヨ

Theorem (Goldman, 1988; Hitchin 1987)

- \mathcal{R}_d is connected if |d| < g-1
- \mathcal{R}_d has 2^{2g} connected components if |d| = g 1
- Let $\mathcal{R}_{\max} := \mathcal{R}_d$ for |d| = g 1
- Each connected component of \mathcal{R}_{max} consists entirely of **Fuchsian representations** (discrete and faithful) and can be identified with the **Teichmüller space** $\mathcal{T} = \mathcal{T}(S)$ of the surface S (**Goldman**, 1980)
- Question: Are there other simple groups with similar features to those of SL(2, \mathbb{R}). More precisely, whose moduli space has connected components not distinguished by the topological invariant and consisting entirely of discrete and faithful representations?
- **Split** real groups
- Non-compact groups of **Hermitian type**

- Split real form: in the Cartan decomposition $\mathfrak{g}^{\mathbb{R}} = \mathfrak{h}^{\mathbb{R}} \oplus \mathfrak{m}^{\mathbb{R}}$, the space $\mathfrak{m}^{\mathbb{R}}$ contains a maximal abelian subalgebra of $\mathfrak{g}^{\mathbb{R}}$
- Every complex semisimple Lie group has a split real form **Examples**: $SL(n, \mathbb{R})$, $Sp(2n, \mathbb{R})$, SO(n, n), SO(n, n+1)

.

- Split real form: in the Cartan decomposition $\mathfrak{g}^{\mathbb{R}} = \mathfrak{h}^{\mathbb{R}} \oplus \mathfrak{m}^{\mathbb{R}}$, the space $\mathfrak{m}^{\mathbb{R}}$ contains a maximal abelian subalgebra of $\mathfrak{g}^{\mathbb{R}}$
- Every complex semisimple Lie group has a split real form **Examples**: $SL(n, \mathbb{R})$, $Sp(2n, \mathbb{R})$, SO(n, n), SO(n, n+1)

• Consider
$$G^{\mathbb{R}} = \mathrm{SL}(n, \mathbb{R})$$

A basis for the **invariant polynomials** on $\mathfrak{sl}(n, \mathbb{C})$ is provided by the coefficients of the characteristic polynomial of a trace-free matrix,

$$\det(x - A) = x^{n} + p_{1}(A)x^{n-2} + \ldots + p_{n-1}(A),$$

where $\deg(p_i) = i + 1$.

• Consider the Hitchin map

$$p: \mathcal{M}(X, \mathrm{SL}(n, \mathbb{C})) \to \bigoplus_{i=1}^{n-1} H^0(K^{i+1})$$

defined by $p(E,\varphi) = (p_1(\varphi), \dots, p_{n-1}(\varphi)),$

- Hitchin (1992) constructed a section of this map giving an isomorphism between the vector space $\bigoplus_{i=1}^{n-1} H^0(K^{i+1})$ and a connected component of the moduli space $\mathcal{M}(X, \mathrm{SL}(n, \mathbb{R})) \subset \mathcal{M}(X, \mathrm{SL}(n, \mathbb{C}))$
- This is called a **Hitchin component** (coincides with a Teichmüller component $\cong H^0(X, K^2)$ when $G^{\mathbb{R}} = \mathrm{SL}(2, \mathbb{R})$)

• Consider the Hitchin map

$$p: \mathcal{M}(X, \mathrm{SL}(n, \mathbb{C})) \to \bigoplus_{i=1}^{n-1} H^0(K^{i+1})$$

defined by $p(E,\varphi) = (p_1(\varphi), \dots, p_{n-1}(\varphi)),$

- Hitchin (1992) constructed a section of this map giving an isomorphism between the vector space $\bigoplus_{i=1}^{n-1} H^0(K^{i+1})$ and a **connected component** of the moduli space $\mathcal{M}(X, \mathrm{SL}(n, \mathbb{R})) \subset \mathcal{M}(X, \mathrm{SL}(n, \mathbb{C}))$
- This is called a **Hitchin component** (coincides with a Teichmüller component $\cong H^0(X, K^2)$ when $G^{\mathbb{R}} = SL(2, \mathbb{R})$)
- Hitchin gives a general construction for any split real form

• Consider the Hitchin map

$$p: \mathcal{M}(X, \mathrm{SL}(n, \mathbb{C})) \to \bigoplus_{i=1}^{n-1} H^0(K^{i+1})$$

defined by $p(E,\varphi) = (p_1(\varphi), \dots, p_{n-1}(\varphi)),$

• Hitchin (1992) constructed a section of this map giving an isomorphism between the vector space $\bigoplus_{i=1}^{n-1} H^0(K^{i+1})$ and a **connected component** of the moduli space

 $\mathcal{M}(X, \mathrm{SL}(n, \mathbb{R})) \subset \mathcal{M}(X, \mathrm{SL}(n, \mathbb{C}))$

- This is called a **Hitchin component** (coincides with a Teichmüller component $\cong H^0(X, K^2)$ when $G^{\mathbb{R}} = SL(2, \mathbb{R})$)
- Hitchin gives a general construction for any split real form
- General construction of a section of the Hitchin map for arbitrary G^ℝ (G–Peón-Nieto–Ramanan, 2018)

• Every representation in the Hitchin component can be deformed to a representation factoring as $\pi_1(S) \to \operatorname{SL}(2,\mathbb{R}) \to G^{\mathbb{R}}$, where $\pi_1(S) \to \operatorname{SL}(2,\mathbb{R})$ is in a Teichmüller component and $\operatorname{SL}(2,\mathbb{R}) \to G^{\mathbb{R}}$ is the **principal representation**

.

- Every representation in the Hitchin component can be deformed to a representation factoring as $\pi_1(S) \to \operatorname{SL}(2,\mathbb{R}) \to G^{\mathbb{R}}$, where $\pi_1(S) \to \operatorname{SL}(2,\mathbb{R})$ is in a Teichmüller component and $\operatorname{SL}(2,\mathbb{R}) \to G^{\mathbb{R}}$ is the **principal representation**
- A Hitchin component consists entirely of **discrete and faithful** representations (**Labourie**, 2006)

- Every representation in the Hitchin component can be deformed to a representation factoring as $\pi_1(S) \to \operatorname{SL}(2,\mathbb{R}) \to G^{\mathbb{R}}$, where $\pi_1(S) \to \operatorname{SL}(2,\mathbb{R})$ is in a Teichmüller component and $\operatorname{SL}(2,\mathbb{R}) \to G^{\mathbb{R}}$ is the **principal representation**
- A Hitchin component consists entirely of **discrete and faithful** representations (**Labourie**, 2006)
- The Hitchin component is unique if G^ℝ is a split form of adjoint type (i.e. without centre)

- Every representation in the Hitchin component can be deformed to a representation factoring as $\pi_1(S) \to \operatorname{SL}(2,\mathbb{R}) \to G^{\mathbb{R}}$, where $\pi_1(S) \to \operatorname{SL}(2,\mathbb{R})$ is in a Teichmüller component and $\operatorname{SL}(2,\mathbb{R}) \to G^{\mathbb{R}}$ is the **principal representation**
- A Hitchin component consists entirely of **discrete and faithful** representations (**Labourie**, 2006)
- The Hitchin component is unique if G^ℝ is a split form of adjoint type (i.e. without centre)
- The Hitchin component for PSL(3, ℝ) parameterizes convex projective structures on the surface (Choi–Goldman, 1993)
- In general, the Hitchin component parameterizes certain type of **geometric structures** modeled on certain homogeneous spaces (**Guichard–Wienhard**, 2012)

Oscar García-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller

G^ℝ of Hermitian type means that G^ℝ/H^ℝ admits a complex structure compatible with the Riemannian structure of G^ℝ/H^ℝ, making G^ℝ/H^ℝ a Kähler manifold

- G^ℝ of Hermitian type means that G^ℝ/H^ℝ admits a complex structure compatible with the Riemannian structure of G^ℝ/H^ℝ, making G^ℝ/H^ℝ a Kähler manifold
- If G^ℝ is simple the centre of h^ℝ is one-dimensional and the almost complex structure on G^ℝ/H^ℝ is defined by a generating element in J ∈ Z(h^ℝ)
- This complex structure defines a decomposition

 $\mathfrak{m} = \mathfrak{m}_+ \oplus \mathfrak{m}_-,$

where \mathfrak{m}_+ and \mathfrak{m}_- are the (1,0) and the (0,1) part of \mathfrak{m} respectively

- G^ℝ of Hermitian type means that G^ℝ/H^ℝ admits a complex structure compatible with the Riemannian structure of G^ℝ/H^ℝ, making G^ℝ/H^ℝ a Kähler manifold
- If G^ℝ is simple the centre of h^ℝ is one-dimensional and the almost complex structure on G^ℝ/H^ℝ is defined by a generating element in J ∈ Z(h^ℝ)
- This complex structure defines a decomposition

 $\mathfrak{m} = \mathfrak{m}_+ \oplus \mathfrak{m}_-,$

where \mathfrak{m}_+ and \mathfrak{m}_- are the (1,0) and the (0,1) part of \mathfrak{m} respectively

• Classical connected simple groups of Hermitian type: $SU(p,q), Sp(2n, \mathbb{R}), SO^*(2n), SO_0(2, n)$

- G^ℝ of Hermitian type means that G^ℝ/H^ℝ admits a complex structure compatible with the Riemannian structure of G^ℝ/H^ℝ, making G^ℝ/H^ℝ a Kähler manifold
- If G^ℝ is simple the centre of h^ℝ is one-dimensional and the almost complex structure on G^ℝ/H^ℝ is defined by a generating element in J ∈ Z(h^ℝ)
- This complex structure defines a decomposition

 $\mathfrak{m} = \mathfrak{m}_+ \oplus \mathfrak{m}_-,$

where \mathfrak{m}_+ and \mathfrak{m}_- are the (1,0) and the (0,1) part of \mathfrak{m} respectively

- Classical connected simple groups of Hermitian type: $SU(p,q), Sp(2n, \mathbb{R}), SO^*(2n), SO_0(2, n)$
- Two exceptional real forms of E_6^{-14} and E_7^{-25}

 Let (E, φ) be a G^ℝ-Higgs bundle over X. The decomposition m = m₊ ⊕ m_− gives a vector bundle decomposition

$$E(\mathfrak{m}) = E(\mathfrak{m}_+) \oplus E(\mathfrak{m}_-)$$

4 B b 4 B

 Let (E, φ) be a G^ℝ-Higgs bundle over X. The decomposition m = m₊ ⊕ m_− gives a vector bundle decomposition

$$E(\mathfrak{m}) = E(\mathfrak{m}_+) \oplus E(\mathfrak{m}_-)$$

• Hence

 $\varphi = (\beta, \gamma) \in H^0(X, E(\mathfrak{m}_+) \otimes K) \oplus H^0(X, E(\mathfrak{m}_-) \otimes K)$

 Let (E, φ) be a G^ℝ-Higgs bundle over X. The decomposition m = m₊ ⊕ m_− gives a vector bundle decomposition

$$E(\mathfrak{m}) = E(\mathfrak{m}_+) \oplus E(\mathfrak{m}_-)$$

• Hence

$$\varphi = (\beta, \gamma) \in H^0(X, E(\mathfrak{m}_+) \otimes K) \oplus H^0(X, E(\mathfrak{m}_-) \otimes K)$$

• The torsion-free part of $\pi_1(H)$ is isomorphic to \mathbb{Z} (most of the time $\pi_1(H^{\mathbb{R}}) \cong \mathbb{Z}$) and hence the topological invariant of either a representation of $\pi_1(X)$ in $G^{\mathbb{R}}$, or of a $G^{\mathbb{R}}$ -Higgs bundle, is essentially given by an **integer** $d \in \mathbb{Z}$, known as the **Toledo invariant**

Theorem (Milnor–Wood inequality)

The Toledo invariant d satisfies

$$|d| \le \operatorname{rank}(G^{\mathbb{R}}/H^{\mathbb{R}})(g-1)$$

- Proved for the classical groups for representations by **Domic–Toledo** (1987) and for Higgs bundles by **Bradlow–G–Gothen** (2001)
- General proof for representations by Burger–Iozzi–Wienhard (2003), and for Higgs bundles by Biquard–G–Rubio (2017)

.

G^ℝ/H^ℝ can be realized as a bounded symmetric domain D in m₊, say (Cartan for the classical groups and Harish-Chandra in general)

4 3 5 4 3 5

- G^ℝ/H^ℝ can be realized as a bounded symmetric domain D in m₊, say (Cartan for the classical groups and Harish-Chandra in general)
- \mathcal{D} is called of **tube type** if it is biholomorphic to a tube T_{Ω} over a cone Ω
- The **Poincaré disc**, the domain for $G^{\mathbb{R}} = \mathrm{SU}(1, 1)$, is of tube type. The tube is the Poincaré upper-half plane and the biholomorphism is the **Cayley transform**

- G^ℝ/H^ℝ can be realized as a bounded symmetric domain D in m₊, say (Cartan for the classical groups and Harish-Chandra in general)
- \mathcal{D} is called of **tube type** if it is biholomorphic to a tube T_{Ω} over a cone Ω
- The **Poincaré disc**, the domain for $G^{\mathbb{R}} = SU(1, 1)$, is of tube type. The tube is the Poincaré upper-half plane and the biholomorphism is the **Cayley transform**
- The Shilov boundary of D is the smallest closed subset Š of the topological boundary ∂D for which every function f continuous on D and holomorphic on D satisfies that

$$|f(z)| \le \max_{w \in \check{S}} |f(w)|$$
 for every $z \in \mathcal{D}$

向下 イヨト イヨト

- G^ℝ/H^ℝ can be realized as a bounded symmetric domain D in m₊, say (Cartan for the classical groups and Harish-Chandra in general)
- \mathcal{D} is called of **tube type** if it is biholomorphic to a tube T_{Ω} over a cone Ω
- The **Poincaré disc**, the domain for $G^{\mathbb{R}} = \mathrm{SU}(1, 1)$, is of tube type. The tube is the Poincaré upper-half plane and the biholomorphism is the **Cayley transform**
- The Shilov boundary of D is the smallest closed subset Š of the topological boundary ∂D for which every function f continuous on D and holomorphic on D satisfies that

$$|f(z)| \le \max_{w \in \check{S}} |f(w)|$$
 for every $z \in \mathcal{D}$

D is of tube type if and only if Š is a compact symmetric space of the form H^R/H'^R. In this case Ω = H^R_{*}/H'^R is its non-compact dual symmetric space

- The symmetric spaces defined by $\operatorname{Sp}(2n, \mathbb{R})$, $\operatorname{SO}_0(2, n)$ are of tube type.
- The symmetric space defined by SU(p,q) is of tube type if and only if p = q.
- The symmetric space defined by $SO^*(2n)$ is of tube type if and only if n is even.
- The E_7^{-25} Hermitian real form is of tube type
- The E_6^{-14} Hermitian real form is **not** of tube type
- Every bounded symmetric domain has a maximal tube subdomain

伺下 イラト イラト

 Want to study the Maximal Toledo invariant moduli space in the tube case (non-tube reduces to the tube case)
 M_{max}(X, G^ℝ) := M_d(X, G^ℝ) for |d| = rank(G^ℝ/H^ℝ)(g-1)

Theorem (Cayley Correspondence)

Let $G^{\mathbb{R}}$ be a such $G^{\mathbb{R}}/H^{\mathbb{R}}$ is a Hermitian symmetric space of tube type, and let $\Omega = H^{\mathbb{R}}_*/H'^{\mathbb{R}}$ be the non-compact dual of the Shilov boundary $\check{S} = H^{\mathbb{R}}/H'^{\mathbb{R}}$ of $G^{\mathbb{R}}/H^{\mathbb{R}}$. Then

$$\mathcal{M}_{\max}(X, G^{\mathbb{R}}) \cong \mathcal{M}_{K^2}(X, H^{\mathbb{R}}_*),$$

where $\mathcal{M}_{K^2}(H^{\mathbb{R}}_*)$ is the moduli space of K^2 -twisted $H^{\mathbb{R}}_*$ -Higgs bundles

- Proved for the classical groups by **Bradlow–G–Gothen** (2006) **G–Gothen–Mundet** (2013) ($G^{\mathbb{R}} = \operatorname{Sp}(2n, \mathbb{R})$)
- General case proved by **Biquard–G–Rubio** (2017)

Oscar García-Prada ICMAT-CSIC, Madrid Hi

- The connected components of *M*(*X*, *G*^ℝ) are not fully distinguished by the usual topological invariants. The dual group *H*^ℝ_{*} detects **new hidden invariants** (for example for *G*^ℝ = Sp(2n, ℝ), *H*^ℝ_{*} = GL(n, ℝ) Stiefel–Whitney classes
- *R*_{max}(*S*, *G*^ℝ) consists entirely of discrete and faithful representations (Burger–Iozzi–Labourie–Wienhard, 2006)
- The mapping class group of S acts properly on *R*_{max}(S, G^ℝ) (Wienhard, 2006)
- All common features with **Hitchin components**

ヨト イヨト イヨト

- The connected components of *M*(*X*, *G*^ℝ) are not fully distinguished by the usual topological invariants. The dual group *H*^ℝ_{*} detects **new hidden invariants** (for example for *G*^ℝ = Sp(2n, ℝ), *H*^ℝ_{*} = GL(n, ℝ) Stiefel–Whitney classes
- *R*_{max}(*S*, *G*^ℝ) consists entirely of discrete and faithful representations (Burger–Iozzi–Labourie–Wienhard, 2006)
- The mapping class group of S acts properly on *R*_{max}(S, G^ℝ) (Wienhard, 2006)
- All common features with **Hitchin components**
- We define a higher Teichmüller component of *R*(*S*, *G*^ℝ) or *M*(*X*, *G*^ℝ) as one that has this kind of properties

伺 とう マラ とう とう

- The connected components of *M*(*X*, *G*^ℝ) are not fully distinguished by the usual topological invariants. The dual group *H*^ℝ_{*} detects **new hidden invariants** (for example for *G*^ℝ = Sp(2*n*, ℝ), *H*^ℝ_{*} = GL(*n*, ℝ) **Stiefel–Whitney classes**
- $\mathcal{R}_{\max}(S, G^{\mathbb{R}})$ consists entirely of discrete and faithful representations (**Burger–Iozzi–Labourie–Wienhard**, 2006)
- The mapping class group of S acts properly on $\mathcal{R}_{\max}(S, G^{\mathbb{R}})$ (Wienhard, 2006)
- All common features with **Hitchin components**
- We define a higher Teichmüller component of *R*(*S*, *G*^ℝ) or *M*(*X*, *G*^ℝ) as one that has this kind of properties
- Question: Are there other groups besides split and hermitian real forms for which higher Teichmüller components exist?

Higher Teichmüller components for $G^{\mathbb{R}} = SO(p, q)$

- Joint work with M. Aparicio, S. Bradlow, B. Collier, P. Gothen and A. Oliveira, Comptes Rendus Mathematiques (2018), and Inventiones Math. (2019)
- SO(p, q)-Higgs bundle: triple (V, W, η) where V and W are respectively rank p and rank q vector bundles with orthogonal structures such that det $(W) \simeq det(V)$, and $\eta: W \to V \otimes K$

周 ト イヨト イヨト

Higher Teichmüller components for $G^{\mathbb{R}} = SO(p, q)$

- Joint work with M. Aparicio, S. Bradlow, B. Collier, P. Gothen and A. Oliveira, Comptes Rendus Mathematiques (2018), and Inventiones Math. (2019)
- SO(p, q)-Higgs bundle: triple (V, W, η) where V and W are respectively rank p and rank q vector bundles with orthogonal structures such that det $(W) \simeq det(V)$, and $\eta: W \to V \otimes K$
- For p > 2, rank p orthogonal bundles on X are classified topologically by their **first and second Stiefel–Whitney classes**, $sw_1 \in H^1(X, \mathbb{Z}_2)$ and $sw_2 \in H^2(X, \mathbb{Z}_2)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Higher Teichmüller components for $G^{\mathbb{R}} = SO(p, q)$

- Joint work with M. Aparicio, S. Bradlow, B. Collier,
 P. Gothen and A. Oliveira, Comptes Rendus Mathematiques (2018), and Inventiones Math. (2019)
- SO(p,q)-Higgs bundle: triple (V, W, η) where V and W are respectively rank p and rank q vector bundles with orthogonal structures such that det $(W) \simeq det(V)$, and $\eta: W \to V \otimes K$
- For p > 2, rank p orthogonal bundles on X are classified topologically by their **first and second Stiefel–Whitney classes**, $sw_1 \in H^1(X, \mathbb{Z}_2)$ and $sw_2 \in H^2(X, \mathbb{Z}_2)$
- Since det(W) \simeq det(V) $sw_1(V) = sw_1(W)$, the components of the moduli space $\mathcal{M}(\mathrm{SO}(p,q))$ are thus **partially** labeled by triples $(a, b, c) \in \mathbb{Z}_2^{2g} \times \mathbb{Z}_2 \times \mathbb{Z}_2$, where $a = sw_1(V) \in H^1(X, \mathbb{Z}_2), b = sw_2(V) \in H^2(X, \mathbb{Z}_2)$, and $c = sw_2(W) \in H^2(X, \mathbb{Z}_2)$

イロト イボト イヨト イヨト

Higher Teichmüller components for $G^{\mathbb{R}} = SO(p,q)$

$$\mathcal{M}(\mathrm{SO}(p,q)) = \prod_{(a,b,c) \in \mathbb{Z}_2^{2g} \times \mathbb{Z}_2 \times \mathbb{Z}_2} \mathcal{M}^{a,b,c}(\mathrm{SO}(p,q))$$

Theorem

Assume that $2 . For every <math>(a, b, c) \in \mathbb{Z}_2^{2g} \times \mathbb{Z}_2 \times \mathbb{Z}_2$ the space $\mathcal{M}^{a,b,c}(\mathrm{SO}(p,q))$ has a non-empty connected component denoted by $\mathcal{M}_{\mathrm{top}}^{a,b,c}(\mathrm{SO}(p,q))$

• Define

$$\mathcal{M}_{top}(SO(p,q)) = \prod_{a,b,c} \mathcal{M}_{top}^{a,b,c}(SO(p,q))$$

• Our main result shows that the moduli space $\mathcal{M}(\mathrm{SO}(p,q))$ has additional **exotic** components disjoint from the components of $\mathcal{M}_{\mathrm{top}}(\mathrm{SO}(p,q))$

Higher Teichmüller components for $G^{\mathbb{R}} = SO(p, q)$

Theorem (Generalized Cayley Correspondence)

Fix integers (p,q) such that $2 . For each choice of <math>a \in \mathbb{Z}_2^{2g}$ and $c \in \mathbb{Z}_2$, the moduli space $\mathcal{M}(\mathrm{SO}(p,q))$ has a connected component disjoint from $\mathcal{M}_{\mathrm{top}}(\mathrm{SO}(p,q))$. This component is isomorphic to

$$\mathcal{M}^{a,c}_{K^p}(\mathrm{SO}(1,q-p+1)) \times H^0(K^2) \times \cdots \times H^0(K^{2p-2})$$

Higher Teichmüller components for $G^{\mathbb{R}} = SO(p, q)$

Theorem (Generalized Cayley Correspondence)

Fix integers (p,q) such that $2 . For each choice of <math>a \in \mathbb{Z}_2^{2g}$ and $c \in \mathbb{Z}_2$, the moduli space $\mathcal{M}(\mathrm{SO}(p,q))$ has a connected component disjoint from $\mathcal{M}_{\mathrm{top}}(\mathrm{SO}(p,q))$. This component is isomorphic to

$$\mathcal{M}_{K^p}^{a,c}(\mathrm{SO}(1,q-p+1)) \times H^0(K^2) \times \cdots \times H^0(K^{2p-2})$$

• **Conjecture**: These exotic components are higher Teichmüller components (i.e. consist entirely of discrete and faithful representations)

Higher Teichmüller components for $G^{\mathbb{R}} = SO(p, q)$

Theorem (Generalized Cayley Correspondence)

Fix integers (p,q) such that $2 . For each choice of <math>a \in \mathbb{Z}_2^{2g}$ and $c \in \mathbb{Z}_2$, the moduli space $\mathcal{M}(\mathrm{SO}(p,q))$ has a connected component disjoint from $\mathcal{M}_{\mathrm{top}}(\mathrm{SO}(p,q))$. This component is isomorphic to

$$\mathcal{M}_{K^p}^{a,c}(\mathrm{SO}(1,q-p+1)) \times H^0(K^2) \times \cdots \times H^0(K^{2p-2})$$

- **Conjecture**: These exotic components are higher Teichmüller components (i.e. consist entirely of discrete and faithful representations)
- Evidence: Notion of **positivity** recently introduced by Guichard and Wienhard
- The only classical groups admiting positive structures are: split groups, hermitian groups of tube type and groups locally isomorphic to SO(p, q)!!!

- Let $P \subset G^{\mathbb{R}}$ be a parabolic subgroup. Let $L \subset P$ be the Levi factor of P. The homogeneous space $G^{\mathbb{R}}/L$ is the unique open $G^{\mathbb{R}}$ orbit in $G^{\mathbb{R}}/P \times G^{\mathbb{R}}/P$, and points $(x, y) \in G^{\mathbb{R}}/P \times G^{\mathbb{R}}/P$ in this open orbit are called **transverse**.
- Let $\partial_{\infty} \pi_1(S)$ be the **Gromov boundary** of $\pi_1(S)$. Topologically $\partial_{\infty} \pi_1(S) \cong \mathbb{RP}^1$.

- Let P ⊂ G^ℝ be a parabolic subgroup. Let L ⊂ P be the Levi factor of P. The homogeneous space G^ℝ/L is the unique open G^ℝ orbit in G^ℝ/P × G^ℝ/P, and points (x, y) ∈ G^ℝ/P × G^ℝ/P in this open orbit are called transverse.
- Let $\partial_{\infty} \pi_1(S)$ be the **Gromov boundary** of $\pi_1(S)$. Topologically $\partial_{\infty} \pi_1(S) \cong \mathbb{RP}^1$.
- A representation ρ : π₁(S) → G^ℝ is P-Anosov if there exists a unique continuous boundary map ξ_ρ : ∂_∞π₁(S) → G^ℝ/P satisfying
 Equivariance: ξ(γ ⋅ x) = ρ(γ) ⋅ ξ(x) for all γ ∈ π₁(S) and

all $x \in \partial_{\infty} \pi_1(S)$.

- Transversality: for all distinct $x, y \in \partial_{\infty} \pi_1(S)$ the generalized flags $\xi(x)$ and $\xi(y)$ are transverse.

- Dynamics preserving

The map ξ_{ρ} is called the *P*-Anosov boundary curve

- Anosov representations were introduced by **Labourie** (2006) and have many interesting geometric and dynamic properties
- Anosov representations are discrete and faithful and define an open subset of the moduli space of representations $\mathcal{R}(G^{\mathbb{R}})$. The set of Anosov representations is however not closed.

- Anosov representations were introduced by **Labourie** (2006) and have many interesting geometric and dynamic properties
- Anosov representations are discrete and faithful and define an open subset of the moduli space of representations $\mathcal{R}(G^{\mathbb{R}})$. The set of Anosov representations is however not closed.
- The special cases of Hitchin representations and maximal representations define connected components of Anosov representations. Both Hitchin representations and maximal representations satisfy an additional "positivity" property which is a closed condition. For Hitchin representations this was proved by **Labourie** (2006) and **Fock–Goncharov** (2006), and for maximal representations by **Burger–Iozzi–Wienhard** (2010).

• These notions of positivity have recently been unified and generalized by **Guichard and Wienhard** (2016)

B b d B b

- These notions of positivity have recently been unified and generalized by **Guichard and Wienhard** (2016)
- $P \subset G^{\mathbb{R}}$ parabolic subgroup , L Levi factor, $U \subset P$ unipotent subgroup
- A pair $(G^{\mathbb{R}}, P)$ admits a positive structure if there is a certain semigroup $U_{>0} \subset U$, which gives rise to a well defined notion of **positively oriented triples** of pairwise transverse points in $G^{\mathbb{R}}/P$

- These notions of positivity have recently been unified and generalized by **Guichard and Wienhard** (2016)
- $P \subset G^{\mathbb{R}}$ parabolic subgroup , L Levi factor, $U \subset P$ unipotent subgroup
- A pair (G^ℝ, P) admits a positive structure if there is a certain semigroup U_{>0} ⊂ U, which gives rise to a well defined notion of **positively oriented triples** of pairwise transverse points in G^ℝ/P
- If the pair $(G^{\mathbb{R}}, P)$ admits a positive structure, then a P-Anosov representation $\rho : \pi_1(S) \to G$ is called **positive** if the Anosov boundary curve $\xi : \partial_{\infty} \pi_1(S) \to G^{\mathbb{R}}/P$ sends positively ordered triples in $\partial_{\infty} \pi_1(S)$ to positive triples in $G^{\mathbb{R}}/P$

・ 同 ト ・ ヨ ト ・ ヨ ト

- These notions of positivity have recently been unified and generalized by **Guichard and Wienhard** (2016)
- $P \subset G^{\mathbb{R}}$ parabolic subgroup , L Levi factor, $U \subset P$ unipotent subgroup
- A pair (G^ℝ, P) admits a positive structure if there is a certain semigroup U_{>0} ⊂ U, which gives rise to a well defined notion of **positively oriented triples** of pairwise transverse points in G^ℝ/P
- If the pair $(G^{\mathbb{R}}, P)$ admits a positive structure, then a P-Anosov representation $\rho : \pi_1(S) \to G$ is called **positive** if the Anosov boundary curve $\xi : \partial_{\infty} \pi_1(S) \to G^{\mathbb{R}}/P$ sends positively ordered triples in $\partial_{\infty} \pi_1(S)$ to positive triples in $G^{\mathbb{R}}/P$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Conjecture (Guichard–Labourie–Wienhard): If $(G^{\mathbb{R}}, P)$ admits a notion of positivity, then the set of P-positive Anosov representations is open and closed in $\mathcal{R}(S, G^{\mathbb{R}})$, and hence define connected components

- Conjecture (Guichard–Labourie–Wienhard): If $(G^{\mathbb{R}}, P)$ admits a notion of positivity, then the set of P-positive Anosov representations is open and closed in $\mathcal{R}(S, G^{\mathbb{R}})$, and hence define connected components
- The **only** classical groups admiting positive structures are: split groups, hermitian groups of tube type and groups locally isomorphic to SO(p, q)!!!

- Conjecture (Guichard–Labourie–Wienhard): If $(G^{\mathbb{R}}, P)$ admits a notion of positivity, then the set of P-positive Anosov representations is open and closed in $\mathcal{R}(S, G^{\mathbb{R}})$, and hence define connected components
- The **only** classical groups admiting positive structures are: split groups, hermitian groups of tube type and groups locally isomorphic to SO(p, q)!!!
- Higher Teichmüller components: connected components of $\mathcal{R}(S, G^{\mathbb{R}})$ consisting of positive Anosov representations. These components are not labeled by primary topological invariants

伺下 イヨト イヨト

• Our SO(p, q) exotic components contain positive representations. If the the Guichard–Labourie–Wienhard conjecture is true, they will consist entirely of positive representations

4 3 5 4 3 5

- Our SO(p, q) exotic components contain positive representations. If the the Guichard–Labourie–Wienhard conjecture is true, they will consist entirely of positive representations
- The real forms of F_4 , E_6 , E_7 and E_8 whose restricted root system is of type F_4 admit positive structures

- Our SO(p,q) exotic components contain positive representations. If the Guichard–Labourie–Wienhard conjecture is true, they will consist entirely of positive representations
- The real forms of F_4 , E_6 , E_7 and E_8 whose restricted root system is of type F_4 admit positive structures
- As we have seen, if $G^{\mathbb{R}}$ is a Hermitian group of tube type and for $G^{\mathbb{R}} = \mathrm{SO}(p,q)$ there is a Cayley correspondence for the maximal and exotic components, respectively

- Our SO(p, q) exotic components contain positive representations. If the the Guichard–Labourie–Wienhard conjecture is true, they will consist entirely of positive representations
- The real forms of F_4 , E_6 , E_7 and E_8 whose restricted root system is of type F_4 admit positive structures
- As we have seen, if $G^{\mathbb{R}}$ is a Hermitian group of tube type and for $G^{\mathbb{R}} = \mathrm{SO}(p,q)$ there is a Cayley correspondence for the maximal and exotic components, respectively
- It turns out that there is a larger class of groups for which there are components emerging from a generalized Cayley correspondence (**Cayley components**). These are groups corresponding to what we call **magical nilpotents**. These are precisely the groups admitting a positive structure.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Our SO(p,q) exotic components contain positive representations. If the Guichard–Labourie–Wienhard conjecture is true, they will consist entirely of positive representations
- The real forms of F_4 , E_6 , E_7 and E_8 whose restricted root system is of type F_4 admit positive structures
- As we have seen, if $G^{\mathbb{R}}$ is a Hermitian group of tube type and for $G^{\mathbb{R}} = \mathrm{SO}(p,q)$ there is a Cayley correspondence for the maximal and exotic components, respectively
- It turns out that there is a larger class of groups for which there are components emerging from a generalized Cayley correspondence (**Cayley components**). These are groups corresponding to what we call **magical nilpotents**. These are precisely the groups admitting a positive structure.
- Conjecture: Higher Teichmüller components (:= those consisting of positive representations) coincide with Cayley components,

Oscar García-Prada ICMAT-CSIC, Madrid Higgs bundles

- $e \in \mathfrak{g}$ nilpotent i.e. $\mathrm{ad}_e : \mathfrak{g} \to \mathfrak{g}$ nilpotent endomorphism.
- N ⊂ g → nilpotent cone. G acts on N by conjugation, with finitely many orbits.

- < E > < E >

- $e \in \mathfrak{g}$ nilpotent i.e. $\mathrm{ad}_e : \mathfrak{g} \to \mathfrak{g}$ nilpotent endomorphism.
- $N \subset \mathfrak{g} \rightsquigarrow$ nilpotent cone. G acts on N by conjugation, with finitely many orbits.
- There is a unique open dense orbit. Nilpotents in it are called **principal**.

伺 ト イヨト イヨト

- $e \in \mathfrak{g}$ nilpotent i.e. $\mathrm{ad}_e : \mathfrak{g} \to \mathfrak{g}$ nilpotent endomorphism.
- $N \subset \mathfrak{g} \rightsquigarrow$ nilpotent cone. G acts on N by conjugation, with finitely many orbits.
- There is a unique open dense orbit. Nilpotents in it are called **principal**.

伺 ト イヨト イヨト

- $e \in \mathfrak{g}$ nilpotent i.e. $\mathrm{ad}_e : \mathfrak{g} \to \mathfrak{g}$ nilpotent endomorphism.
- N ⊂ g → nilpotent cone. G acts on N by conjugation, with finitely many orbits.
- There is a unique open dense orbit. Nilpotents in it are called **principal**.
- (Jacobson–Morosov): There is a bijection

$$N \setminus \{0\}/G \xrightarrow{\cong} \{\mathfrak{sl}_2 \mathbb{C} \hookrightarrow \mathfrak{g}\}/G$$
$$e \longmapsto \langle f, h, e \rangle$$

with $\operatorname{ad}_h(e) = 2e$, $\operatorname{ad}_h(f) = -2f$, $\operatorname{ad}_e(f) = h$.

周 ト イヨト イヨト

- $e \in \mathfrak{g}$ nilpotent i.e. $\mathrm{ad}_e : \mathfrak{g} \to \mathfrak{g}$ nilpotent endomorphism.
- N ⊂ g → nilpotent cone. G acts on N by conjugation, with finitely many orbits.
- There is a unique open dense orbit. Nilpotents in it are called **principal**.
- (Jacobson–Morosov): There is a bijection

$$\begin{split} N \setminus \{0\}/G &\xrightarrow{\cong} \{\mathfrak{sl}_2 \mathbb{C} \hookrightarrow \mathfrak{g}\}/G \\ e &\longmapsto \langle f, h, e \rangle \end{split}$$
 with $\mathrm{ad}_h(e) = 2e, \, \mathrm{ad}_h(f) = -2f, \, \mathrm{ad}_e(f) = h. \end{split}$

• $e \in N \setminus \{0\} \longrightarrow \mathfrak{sl}_2 \mathbb{C} \hookrightarrow \mathfrak{g} \longrightarrow \mathrm{PSL}_2 \mathbb{C} \hookrightarrow G \longrightarrow \mathrm{PSL}_2 \mathbb{R} \hookrightarrow G^{\mathbb{R}}$

(同) (三) (三) (二)

- $e \in \mathfrak{g}$ nilpotent i.e. $\operatorname{ad}_e : \mathfrak{g} \to \mathfrak{g}$ nilpotent endomorphism.
- N ⊂ g → nilpotent cone. G acts on N by conjugation, with finitely many orbits.
- There is a unique open dense orbit. Nilpotents in it are called **principal**.
- (Jacobson–Morosov): There is a bijection

$$\begin{split} N \setminus \{0\}/G &\xrightarrow{\cong} \{\mathfrak{sl}_2 \mathbb{C} \hookrightarrow \mathfrak{g}\}/G \\ e &\longmapsto \langle f, h, e \rangle \end{split}$$

with $\operatorname{ad}_h(e) = 2e$, $\operatorname{ad}_h(f) = -2f$, $\operatorname{ad}_e(f) = h$.

- $e \in N \setminus \{0\} \longrightarrow \mathfrak{sl}_2 \mathbb{C} \hookrightarrow \mathfrak{g} \longrightarrow \mathrm{PSL}_2 \mathbb{C} \hookrightarrow G \longrightarrow \mathrm{PSL}_2 \mathbb{R} \hookrightarrow G^{\mathbb{R}}$
- This gives $\iota_e : \mathcal{T} \hookrightarrow \mathcal{M}(G^{\mathbb{R}})$ (where \mathcal{T} be the Teichmüller component in $\mathcal{M}(\mathrm{PSL}_2 \mathbb{R})$), whose image depends only on the conjugacy class of e.

• For most nilpotents, $\iota_e(\mathcal{T})$ lies in a connected component of $\mathcal{M}(G^{\mathbb{R}})$ containing Higgs bundles with $\varphi \equiv 0$, corresponding to compact representations $\pi_1(S) \to H^{\mathbb{R}} \subset G^{\mathbb{R}}$, hence not discrete and faithful.

- For most nilpotents, $\iota_e(\mathcal{T})$ lies in a connected component of $\mathcal{M}(G^{\mathbb{R}})$ containing Higgs bundles with $\varphi \equiv 0$, corresponding to compact representations $\pi_1(S) \to H^{\mathbb{R}} \subset G^{\mathbb{R}}$, hence not discrete and faithful.
- However there is a set of nilpotents of g, which we named **magical**, for which that does not happen...

- For most nilpotents, $\iota_e(\mathcal{T})$ lies in a connected component of $\mathcal{M}(G^{\mathbb{R}})$ containing Higgs bundles with $\varphi \equiv 0$, corresponding to compact representations $\pi_1(S) \to H^{\mathbb{R}} \subset G^{\mathbb{R}}$, hence not discrete and faithful.
- However there is a set of nilpotents of g, which we named **magical**, for which that does not happen...
- To every magical nilpotent of \mathfrak{g} there is an associated canonical real form $\mathfrak{g}^{\mathbb{R}}$ of \mathfrak{g} .

ヨト イヨト イヨト

- For most nilpotents, $\iota_e(\mathcal{T})$ lies in a connected component of $\mathcal{M}(G^{\mathbb{R}})$ containing Higgs bundles with $\varphi \equiv 0$, corresponding to compact representations $\pi_1(S) \to H^{\mathbb{R}} \subset G^{\mathbb{R}}$, hence not discrete and faithful.
- However there is a set of nilpotents of g, which we named **magical**, for which that does not happen...
- To every magical nilpotent of g there is an associated canonical real form g^ℝ of g.
- Before properly defining these objects, let us state our main results — joint with Steve Bradlow, Brian Collier, Peter Gothen and André Oliveira (BCGGO)

伺下 イヨト イヨト

Theorem 1 (BCGGO)

A real form $G^{\mathbb{R}}$ is such that $\mathfrak{g}^{\mathbb{R}}$ arises as the canonical real form of a magical nilpotent of \mathfrak{g} if and only if it is either:

- split;
- Hermitian of tube type;
- locally isomorphic to SO(p,q) with 1 ;
- locally isomorphic to E_6^2 , E_7^{-5} , E_8^{-24} or F_4^4 .

Theorem 1 (BCGGO)

A real form $G^{\mathbb{R}}$ is such that $\mathfrak{g}^{\mathbb{R}}$ arises as the canonical real form of a magical nilpotent of \mathfrak{g} if and only if it is either:

- split;
- Hermitian of tube type;
- locally isomorphic to SO(p,q) with 1 ;
- locally isomorphic to E_6^2 , E_7^{-5} , E_8^{-24} or F_4^4 .

This coincides precisely with the classification of groups admitting a positive structure, obtained by Guichard–Wienhard.

Theorem 1 (BCGGO)

A real form $G^{\mathbb{R}}$ is such that $\mathfrak{g}^{\mathbb{R}}$ arises as the canonical real form of a magical nilpotent of \mathfrak{g} if and only if it is either:

- split;
- Hermitian of tube type;
- locally isomorphic to SO(p,q) with 1 ;
- locally isomorphic to E_6^2 , E_7^{-5} , E_8^{-24} or F_4^4 .

This coincides precisely with the classification of groups admitting a positive structure, obtained by Guichard–Wienhard.

Corollary

A real form $G^{\mathbb{R}}$ arises as the canonical real form of a magical nilpotent of \mathfrak{g} if and only if it admits a positive structure.

Theorem 2 (BCGGO)

Let $e \in \mathfrak{g}$ be a magical nilpotent, with corresponding canonical real form $\mathfrak{g}^{\mathbb{R}}$. If $G^{\mathbb{R}}$ is a Lie group with Lie algebra $\mathfrak{g}^{\mathbb{R}}$, there exists a union of connected components $\mathcal{H}_e(G^{\mathbb{R}})$ of $\mathcal{M}(G^{\mathbb{R}})$ s.t.:

Theorem 2 (BCGGO)

Let $e \in \mathfrak{g}$ be a magical nilpotent, with corresponding canonical real form $\mathfrak{g}^{\mathbb{R}}$. If $G^{\mathbb{R}}$ is a Lie group with Lie algebra $\mathfrak{g}^{\mathbb{R}}$, there exists a union of connected components $\mathcal{H}_e(G^{\mathbb{R}})$ of $\mathcal{M}(G^{\mathbb{R}})$ s.t.:

• Higgs bundles in $\mathcal{H}_e(G^{\mathbb{R}})$ have nowhere vanishing φ , so there are no representations in $\mathcal{H}_e(G^{\mathbb{R}})$ which factor through the maximal compact $H^{\mathbb{R}} \subset G^{\mathbb{R}}$.

Theorem 2 (BCGGO)

Let $e \in \mathfrak{g}$ be a magical nilpotent, with corresponding canonical real form $\mathfrak{g}^{\mathbb{R}}$. If $G^{\mathbb{R}}$ is a Lie group with Lie algebra $\mathfrak{g}^{\mathbb{R}}$, there exists a union of connected components $\mathcal{H}_e(G^{\mathbb{R}})$ of $\mathcal{M}(G^{\mathbb{R}})$ s.t.:

- Higgs bundles in $\mathcal{H}_e(G^{\mathbb{R}})$ have nowhere vanishing φ , so there are no representations in $\mathcal{H}_e(G^{\mathbb{R}})$ which factor through the maximal compact $H^{\mathbb{R}} \subset G^{\mathbb{R}}$.
- $\iota_e(\mathcal{T}(S)) \subset \mathcal{H}_e(G^{\mathbb{R}})$ and an open set of $\mathcal{H}_e(G^{\mathbb{R}})$ consists of positive representations.

Theorem 2 (BCGGO)

Let $e \in \mathfrak{g}$ be a magical nilpotent, with corresponding canonical real form $\mathfrak{g}^{\mathbb{R}}$. If $G^{\mathbb{R}}$ is a Lie group with Lie algebra $\mathfrak{g}^{\mathbb{R}}$, there exists a union of connected components $\mathcal{H}_e(G^{\mathbb{R}})$ of $\mathcal{M}(G^{\mathbb{R}})$ s.t.:

- Higgs bundles in $\mathcal{H}_e(G^{\mathbb{R}})$ have nowhere vanishing φ , so there are no representations in $\mathcal{H}_e(G^{\mathbb{R}})$ which factor through the maximal compact $H^{\mathbb{R}} \subset G^{\mathbb{R}}$.
- $\iota_e(\mathcal{T}(S)) \subset \mathcal{H}_e(G^{\mathbb{R}})$ and an open set of $\mathcal{H}_e(G^{\mathbb{R}})$ consists of positive representations.
- $\mathcal{H}_e(G^{\mathbb{R}})$ can be parameterized as

$$\mathcal{H}_e(G^{\mathbb{R}}) \cong \mathcal{M}_{K^{m_c+1}}(G^{\mathbb{R}}_{\mathcal{C}}) \times \bigoplus_{j=1, \ j \neq c}^N H^0(X, K^{m_j+1})$$

with $G_{\mathcal{C}}^{\mathbb{R}}$ a real Lie group — the **Cayley partner** of $G^{\mathbb{R}}$ – and $m_1, \ldots, m_N \in \mathbb{N}$ depending only on (the conjugacy class of) *e*.

Previously known cases

• The parameterization of Theorem 2 is given by a morphism

$$\Psi: \mathcal{M}_{K^{m_c+1}}(G_{\mathcal{C}}^{\mathbb{R}}) \times \bigoplus_{j=1, j \neq c}^{N} H^0(X, K^{m_j+1}) \hookrightarrow \mathcal{M}(G^{\mathbb{R}})$$

which recovers the known cases (split, Hermitian, SO(p,q)).

.

• The parameterization of Theorem 2 is given by a morphism

$$\Psi: \mathcal{M}_{K^{m_c+1}}(G_{\mathcal{C}}^{\mathbb{R}}) \times \bigoplus_{j=1, j \neq c}^{N} H^0(X, K^{m_j+1}) \hookrightarrow \mathcal{M}(G^{\mathbb{R}})$$

which recovers the known cases (split, Hermitian, SO(p,q)).

G^ℝ split → G^ℝ_C = ℝ⁺, m_i are the exponents of g and Ψ is just the Hitchin section.

The Conjecture

Using our parameterization, we also proved that

Theorem 3 (BCGGO)

There are no representations in $\mathcal{H}_e(G^{\mathbb{R}})$ which factor through proper parabolic subgroups of $G^{\mathbb{R}}$.

This should imply that every representations in the components are positive.

The Conjecture

Using our parameterization, we also proved that

Theorem 3 (BCGGO)

There are no representations in $\mathcal{H}_e(G^{\mathbb{R}})$ which factor through proper parabolic subgroups of $G^{\mathbb{R}}$.

This should imply that every representations in the components are positive.

Conjecture

- The connected components of $\mathcal{H}_e(G^{\mathbb{R}})$ are higher Teichmüller components.
- Any higher Teichmüller component arises as a connected component of $\mathcal{H}_e(G^{\mathbb{R}})$ for some magical e and corresponding $G^{\mathbb{R}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

The Conjecture

Using our parameterization, we also proved that

Theorem 3 (BCGGO)

There are no representations in $\mathcal{H}_e(G^{\mathbb{R}})$ which factor through proper parabolic subgroups of $G^{\mathbb{R}}$.

This should imply that every representations in the components are positive.

Conjecture

- The connected components of $\mathcal{H}_e(G^{\mathbb{R}})$ are higher Teichmüller components.
- Any higher Teichmüller component arises as a connected component of $\mathcal{H}_e(G^{\mathbb{R}})$ for some magical e and corresponding $G^{\mathbb{R}}$.

Rest of the talk: (1) define the objects appearing in **Theorem** 2; (2) give an idea of the parametrization Ψ_{\Box} of $\mathcal{H}_{e}(G_{\Xi}^{\mathbb{R}})$.

• Non-zero nilpotent $e \in \mathfrak{g}$

э

• Non-zero nilpotent $e \in \mathfrak{g} \quad \rightsquigarrow \quad \langle f, h, e \rangle \cong \mathfrak{sl}_2 \mathbb{C} \hookrightarrow \mathfrak{g}$

$$[h,e] = 2e, \ \ [h,f] = -2f, \ \ [e,f] = h.$$

э

- < E > < E >

• Non-zero nilpotent $e \in \mathfrak{g} \quad \rightsquigarrow \quad \langle f, h, e \rangle \cong \mathfrak{sl}_2 \mathbb{C} \hookrightarrow \mathfrak{g}$

$$[h, e] = 2e, \ [h, f] = -2f, \ [e, f] = h.$$

- $\bullet\,$ Two different decompositions of $\mathfrak{g}\colon$
 - as an $\mathfrak{sl}_2\mathbb{C}$ -module:

$$\mathfrak{g} = \bigoplus_{j=0}^{N} W_j = W_0 \oplus \bigoplus_{j=1}^{N} W_j$$

伺下 イヨト イヨト

 $W_j \rightsquigarrow \text{direct sum of } n_j \geq 0 \text{ copies of the unique}$ (j+1)-dimensional irreducible $\mathfrak{sl}_2\mathbb{C}$ -representation. N.B: W_0 is a subalgebra of \mathfrak{g} .

• Non-zero nilpotent $e \in \mathfrak{g} \quad \rightsquigarrow \quad \langle f, h, e \rangle \cong \mathfrak{sl}_2 \mathbb{C} \hookrightarrow \mathfrak{g}$

$$[h,e] = 2e, \ [h,f] = -2f, \ [e,f] = h.$$

- $\bullet\,$ Two different decompositions of $\mathfrak{g}\colon$
 - as an $\mathfrak{sl}_2\mathbb{C}$ -module:

$$\mathfrak{g} = \bigoplus_{j=0}^{N} W_j = W_0 \oplus \bigoplus_{j=1}^{N} W_j$$

 $W_j \rightsquigarrow \text{direct sum of } n_j \ge 0 \text{ copies of the unique}$ (j+1)-dimensional irreducible $\mathfrak{sl}_2\mathbb{C}$ -representation. N.B: W_0 is a subalgebra of \mathfrak{g} .

• ad_h-weight decomposition: $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ with $\operatorname{ad}_h|_{\mathfrak{g}_j} = j \operatorname{Id}$, ad_e : $\mathfrak{g}_j \to \mathfrak{g}_{j+2}$ and $\operatorname{ad}_f : \mathfrak{g}_j \to \mathfrak{g}_{j-2}$.

- < E > < E >

• Non-zero nilpotent $e \in \mathfrak{g} \quad \rightsquigarrow \quad \langle f, h, e \rangle \cong \mathfrak{sl}_2 \mathbb{C} \hookrightarrow \mathfrak{g}$

$$[h,e] = 2e, \ [h,f] = -2f, \ [e,f] = h.$$

- Two different decompositions of $\mathfrak{g} {:}$
 - as an $\mathfrak{sl}_2\mathbb{C}$ -module:

$$\mathfrak{g} = \bigoplus_{j=0}^{N} W_j = W_0 \oplus \bigoplus_{j=1}^{N} W_j$$

 $W_j \rightsquigarrow \text{direct sum of } n_j \ge 0 \text{ copies of the unique}$ (j+1)-dimensional irreducible $\mathfrak{sl}_2\mathbb{C}$ -representation. N.B: W_0 is a subalgebra of \mathfrak{g} .

- ad_h -weight decomposition: $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}} \mathfrak{g}_j$ with $\operatorname{ad}_h|_{\mathfrak{g}_j} = j \operatorname{Id}$, $\operatorname{ad}_e : \mathfrak{g}_j \to \mathfrak{g}_{j+2}$ and $\operatorname{ad}_f : \mathfrak{g}_j \to \mathfrak{g}_{j-2}$.
- $\mathfrak{g}^e = \ker(\mathrm{ad}_e) \rightsquigarrow \text{Centralizer of } e$:

$$\mathfrak{g}^e = \oplus_{j=0}^N V_j$$

with $V_j = W_j \cap \mathfrak{g}_j$ the highest weight subspaces $(V_0 = W_0)$.

• Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$\sigma_e:\mathfrak{g}\longrightarrow\mathfrak{g}$$

by

$$\sigma_e|_{W_0} = \mathrm{Id}; \quad \sigma_e|_{\mathrm{ad}_f^k(V_j)} = (-1)^{k+1} \mathrm{Id}, \ j \ge 1, k \ge 0.$$

э

• Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$\sigma_e:\mathfrak{g}\longrightarrow\mathfrak{g}$$

by

$$\sigma_e|_{W_0} = \mathrm{Id}; \quad \sigma_e|_{\mathrm{ad}_f^k(V_j)} = (-1)^{k+1} \mathrm{Id}, \ j \ge 1, k \ge 0.$$

Definition

The nilpotent e is **magical** if σ_e is a Lie algebra involution.

• Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$\sigma_e:\mathfrak{g}\longrightarrow\mathfrak{g}$$

by

$$\sigma_e|_{W_0} = \mathrm{Id}; \quad \sigma_e|_{\mathrm{ad}_f^k(V_j)} = (-1)^{k+1} \mathrm{Id}, \ j \ge 1, k \ge 0.$$

Definition

The nilpotent e is **magical** if σ_e is a Lie algebra involution.

• (Kostant, Hitchin): Every principal nilpotent is magical.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$\sigma_e:\mathfrak{g}\longrightarrow\mathfrak{g}$$

by

$$\sigma_e|_{W_0} = \mathrm{Id}; \quad \sigma_e|_{\mathrm{ad}_f^k(V_j)} = (-1)^{k+1} \mathrm{Id}, \ j \ge 1, k \ge 0.$$

Definition

The nilpotent e is **magical** if σ_e is a Lie algebra involution.

• (Kostant, Hitchin): Every principal nilpotent is magical.

・ 同 ト ・ ヨ ト ・ モ ト …

• $e \text{ magical} \rightsquigarrow \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m} \ (\pm 1 \text{-eigenspaces of } \sigma_e)$

• Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$\sigma_e:\mathfrak{g}\longrightarrow\mathfrak{g}$$

by

$$\sigma_e|_{W_0} = \mathrm{Id}; \quad \sigma_e|_{\mathrm{ad}_f^k(V_j)} = (-1)^{k+1} \mathrm{Id}, \ j \ge 1, k \ge 0.$$

Definition

The nilpotent e is **magical** if σ_e is a Lie algebra involution.

- (Kostant, Hitchin): Every principal nilpotent is magical.
- $e \text{ magical} \rightsquigarrow \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m} \ (\pm 1 \text{-eigenspaces of } \sigma_e) \rightsquigarrow \text{ real form } \mathfrak{g}^{\mathbb{R}} \text{ defined by } \mathfrak{g}^{\mathbb{R}} = \mathfrak{h}^{\mathbb{R}} \oplus \mathfrak{m}^{\mathbb{R}}.$

・ 同 ト ・ ヨ ト ・ モ ト …

• Define the vector space involution associated to the nilpotent $e \in \mathfrak{g}$

$$\sigma_e:\mathfrak{g}\longrightarrow\mathfrak{g}$$

by

$$\sigma_e|_{W_0} = \mathrm{Id}; \quad \sigma_e|_{\mathrm{ad}_f^k(V_j)} = (-1)^{k+1} \mathrm{Id}, \ j \ge 1, k \ge 0.$$

Definition

The nilpotent e is **magical** if σ_e is a Lie algebra involution.

- (Kostant, Hitchin): Every principal nilpotent is magical.
- $e \text{ magical} \rightsquigarrow \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m} \ (\pm 1 \text{-eigenspaces of } \sigma_e) \rightsquigarrow \text{ real form } \mathfrak{g}^{\mathbb{R}} \text{ defined by } \mathfrak{g}^{\mathbb{R}} = \mathfrak{h}^{\mathbb{R}} \oplus \mathfrak{m}^{\mathbb{R}}.$

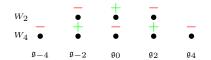
< A >

- A B N A B N

• $\mathfrak{g}^{\mathbb{R}} \rightsquigarrow$ canonical real form associated to e.

•
$$\mathfrak{g} = \mathfrak{sl}_3\mathbb{C};$$

 $e = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $f = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$

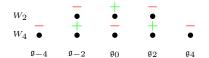


э

伺 ト イヨト イヨト

•
$$\mathfrak{g} = \mathfrak{sl}_3\mathbb{C};$$

 $e = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $f = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$ $h = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$



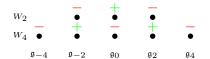
э

伺 ト イヨト イヨト

$$\dim \mathfrak{h}^{\mathbb{R}} = 3 \Longrightarrow \mathfrak{g}^{\mathbb{R}} = \mathfrak{sl}_3 \mathbb{R}.$$

• $\mathfrak{g} = \mathfrak{sl}_3\mathbb{C};$

$$e = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \quad f = \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix} \quad h = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$



$$\dim \mathfrak{h}^{\mathbb{R}} = 3 \Longrightarrow \mathfrak{g}^{\mathbb{R}} = \mathfrak{sl}_3 \mathbb{R}.$$

In general, the canonical real form of the principal nilpotent is the split one.

•
$$\mathfrak{g} = \mathfrak{sp}_{2n}\mathbb{C}$$
;
 $e = \begin{pmatrix} 0 & I_n \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ I_n & 0 \end{pmatrix}, \quad h = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix},$
 w_2
 $n_2 = \frac{n(n+1)}{2}$
 $u_{0} = \frac{n(n-1)}{2}$
 \mathfrak{g}_{-2}
 \mathfrak{g}_0
 \mathfrak{g}_2

Oscar García-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller

э

•
$$\mathfrak{g} = \mathfrak{sp}_{2n}\mathbb{C}$$
;
 $e = \begin{pmatrix} 0 & I_n \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ I_n & 0 \end{pmatrix}, \quad h = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix}.$
 W_2
 $n_2 = \frac{n(n+1)}{2}$
 \dots
 m_0
 m_0
 m_0
 m_0
 m_0
 m_1
 m_2
 m_1
 m_2
 m_1
 m_1
 m_2
 m_1
 m_1
 m_2
 m_1
 m_2
 m_1
 m_2
 m_1
 m_2
 m_1
 m_1
 m_2
 m_1
 m_2
 m_1
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_1
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2
 m_2
 m_2
 m_2
 m_2
 m_2
 m_1
 m_2
 m_2

$$\dim \mathfrak{h}^{\mathbb{R}} = n^2 \Longrightarrow \mathfrak{g}^{\mathbb{R}} = \mathfrak{s}\mathfrak{p}_{2n}\mathbb{R}.$$

э

۲

$$\mathfrak{g} = \mathfrak{sp}_{2n}\mathbb{C};$$

$$e = \begin{pmatrix} 0 & I_n \\ 0 & 0 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ I_n & 0 \end{pmatrix}, \quad h = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix},$$

$$W_2$$

$$u_2 = \frac{n(n+1)}{2}$$

$$u_2 = \frac{n(n+1)}{2}$$

$$u_3 = \frac{w_0}{1}$$

$$u_4 = \frac{w_0}{1}$$

$$u_5 = \frac{w_0}{1}$$

$$u_6 = \frac{w_0}{1}$$

$$u_6 = \frac{w_0}{1}$$

$$u_6 = \frac{w_0}{1}$$

$$u_6 = \frac{w_0}{1}$$

$$\dim \mathfrak{h}^{\mathbb{R}} = n^2 \Longrightarrow \mathfrak{g}^{\mathbb{R}} = \mathfrak{sp}_{2n} \mathbb{R}.$$

• The same nilpotent e thought of as an element in $\mathfrak{g} = \mathfrak{sl}_{2n}\mathbb{C}$ is also magical, and dim $\mathfrak{h}^{\mathbb{R}} = 2n^2 - 1$ so $\mathfrak{g}^{\mathbb{R}} = \mathfrak{su}_{n,n}$.

- 34

Let $e \in \mathfrak{g}$ be a magical nilpotent element. Then:

э

э

Let $e \in \mathfrak{g}$ be a magical nilpotent element. Then:

only odd dimensional irreducible \$\$\mathbf{sl}_2\$\$C-representations appear in the decomposition of \$\$\mathbf{g}\$:

$$\mathfrak{g} = \bigoplus_{j=0}^{N} W_{2m_j} = W_0 \oplus \bigoplus_{j=1}^{N} W_{2m_j};$$

Let $e\in\mathfrak{g}$ be a magical nilpotent element. Then:

only odd dimensional irreducible \$\$\mathbf{sl}_2\$\$C-representations appear in the decomposition of \$\$\mathbf{g}\$:

$$\mathfrak{g} = \bigoplus_{j=0}^{N} W_{2m_j} = W_0 \oplus \bigoplus_{j=1}^{N} W_{2m_j};$$

• For $j \ge 1$, define

$$Z_{2m_j} = W_{2m_j} \cap \mathfrak{g}_0.$$

- < E > < E >

э

Let $e \in \mathfrak{g}$ be a magical nilpotent element. Then:

 only odd dimensional irreducible sl₂C-representations appear in the decomposition of g:

$$\mathfrak{g} = \bigoplus_{j=0}^{N} W_{2m_j} = W_0 \oplus \bigoplus_{j=1}^{N} W_{2m_j};$$

• For $j \ge 1$, define

$$Z_{2m_j} = W_{2m_j} \cap \mathfrak{g}_0.$$

- A B N A B N

• $\operatorname{ad}_{f}^{m_{j}}: V_{2m_{j}} \xrightarrow{\cong} Z_{2m_{j}}.$

Let $e \in \mathfrak{g}$ be a magical nilpotent element. Then:

 only odd dimensional irreducible sl₂C-representations appear in the decomposition of g:

$$\mathfrak{g} = \bigoplus_{j=0}^{N} W_{2m_j} = W_0 \oplus \bigoplus_{j=1}^{N} W_{2m_j};$$

• For $j \ge 1$, define

$$Z_{2m_j} = W_{2m_j} \cap \mathfrak{g}_0.$$

- < E > < E >

э

Let $e\in\mathfrak{g}$ be a magical nilpotent element. Then:

only odd dimensional irreducible \$\$\mathbf{sl}_2\$\$C-representations appear in the decomposition of \$\$\mathbf{g}\$:

$$\mathfrak{g} = \bigoplus_{j=0}^{N} W_{2m_j} = W_0 \oplus \bigoplus_{j=1}^{N} W_{2m_j};$$

• For $j \ge 1$, define

$$Z_{2m_j} = W_{2m_j} \cap \mathfrak{g}_0.$$

•
$$\operatorname{ad}_{f}^{m_{j}}: V_{2m_{j}} \xrightarrow{\cong} Z_{2m_{j}}.$$

• $[Z_{2m_{i}}, Z_{2m_{j}}] \subset W_{0}$ for all i, j ($\Leftrightarrow e$ magical);
• $[Z_{2m_{i}}, Z_{2m_{j}}] = 0$ for all $i \neq j$;
• \exists at most one $c \in \{1, \ldots, N\}$ such that $[Z_{2m_{c}}, Z_{2m_{c}}] \neq 0$
 $(\Leftrightarrow n_{2m_{c}} > 1).$
• $\Longrightarrow Z_{2m_{j}} = \mathbb{C}$ for $j \neq c.$

Oscar García-Prada ICMAT-CSIC, Madrid

• Define a Lie algebra involution $\theta_e : \mathfrak{g}_0 \to \mathfrak{g}_0$ (recall that $\mathfrak{g}_0 = \mathfrak{g}^h$) by

$$\theta_e|_{W_0} = \mathrm{Id}, \quad \theta_e|_{Z_{2m_j}} = -\mathrm{Id}.$$

э

• Define a Lie algebra involution $\theta_e : \mathfrak{g}_0 \to \mathfrak{g}_0$ (recall that $\mathfrak{g}_0 = \mathfrak{g}^h$) by

$$\theta_e|_{W_0} = \mathrm{Id}, \quad \theta_e|_{Z_{2m_j}} = -\mathrm{Id}.$$

• $\mathfrak{g}_0 = W_0 \oplus Z_{2m_c} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C} \ (\pm 1 \text{ eigenspaces}).$

• = • • = •

э

- Define a Lie algebra involution $\theta_e : \mathfrak{g}_0 \to \mathfrak{g}_0$ (recall that $\mathfrak{g}_0 = \mathfrak{g}^h$) by
- $\theta_e|_{W_0} = \mathrm{Id}, \quad \theta_e|_{Z_{2m_j}} = -\mathrm{Id}.$ $\mathfrak{g}_0 = W_0 \oplus Z_{2m_c} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C} \ (\pm 1 \text{ eigenspaces}).$ \rightsquigarrow a real form $\mathfrak{g}_0^{\mathbb{R}} = W_0^{\mathbb{R}} \oplus Z_{2m_c}^{\mathbb{R}} \oplus \mathbb{R} \oplus \cdots \oplus \mathbb{R}.$

- A B A A B A -

• Define a Lie algebra involution $\theta_e : \mathfrak{g}_0 \to \mathfrak{g}_0$ (recall that $\mathfrak{g}_0 = \mathfrak{g}^h$) by

$$\begin{split} \theta_e|_{W_0} &= \mathrm{Id}, \quad \theta_e|_{Z_{2m_j}} = - \mathrm{Id}\,.\\ \bullet \ \mathfrak{g}_0 &= W_0 \oplus Z_{2m_c} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C} \ (\pm 1 \text{ eigenspaces}).\\ \bullet & \rightsquigarrow \text{ a real form } \mathfrak{g}_0^{\mathbb{R}} = W_0^{\mathbb{R}} \oplus Z_{2m_c}^{\mathbb{R}} \oplus \mathbb{R} \oplus \cdots \oplus \mathbb{R}.\\ \bullet \ \mathrm{Let} \ \mathfrak{g}_{\mathcal{C}}^{\mathbb{R}} &= W_0^{\mathbb{R}} \oplus Z_{2m_c}^{\mathbb{R}}. \end{split}$$

• Define a Lie algebra involution $\theta_e : \mathfrak{g}_0 \to \mathfrak{g}_0$ (recall that $\mathfrak{g}_0 = \mathfrak{g}^h$) by

 $\theta_e|_{W_0} = \mathrm{Id}, \quad \theta_e|_{Z_{2m_j}} = -\mathrm{Id}.$

- $\mathfrak{g}_0 = W_0 \oplus Z_{2m_c} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}$ (±1 eigenspaces).
- \rightsquigarrow a real form $\mathfrak{g}_0^{\mathbb{R}} = W_0^{\mathbb{R}} \oplus Z_{2m_c}^{\mathbb{R}} \oplus \mathbb{R} \oplus \cdots \oplus \mathbb{R}.$
- Let $\mathfrak{g}_{\mathcal{C}}^{\mathbb{R}} = W_0^{\mathbb{R}} \oplus Z_{2m_c}^{\mathbb{R}}$.
- Cayley partner of $G^{\mathbb{R}} \rightsquigarrow$ the group $G_{\mathcal{C}}^{\mathbb{R}}$ with Lie algebra $\mathfrak{g}_{\mathcal{C}}^{\mathbb{R}}$ and maximal compact the subgroup of $G^{\mathbb{R}}$ with Lie algebra $W_0^{\mathbb{R}}$.

• Define a Lie algebra involution $\theta_e : \mathfrak{g}_0 \to \mathfrak{g}_0$ (recall that $\mathfrak{g}_0 = \mathfrak{g}^h$) by

$$\theta_e|_{W_0} = \mathrm{Id}, \quad \theta_e|_{Z_{2m_i}} = -\mathrm{Id}.$$

- $\mathfrak{g}_0 = W_0 \oplus Z_{2m_c} \oplus \mathbb{C} \oplus \cdots \oplus \mathbb{C}$ (±1 eigenspaces).
- \rightsquigarrow a real form $\mathfrak{g}_0^{\mathbb{R}} = W_0^{\mathbb{R}} \oplus Z_{2m_c}^{\mathbb{R}} \oplus \mathbb{R} \oplus \cdots \oplus \mathbb{R}.$
- Let $\mathfrak{g}_{\mathcal{C}}^{\mathbb{R}} = W_0^{\mathbb{R}} \oplus Z_{2m_c}^{\mathbb{R}}$.
- Cayley partner of $G^{\mathbb{R}} \rightsquigarrow$ the group $G_{\mathcal{C}}^{\mathbb{R}}$ with Lie algebra $\mathfrak{g}_{\mathcal{C}}^{\mathbb{R}}$ and maximal compact the subgroup of $G^{\mathbb{R}}$ with Lie algebra $W_0^{\mathbb{R}}$.
- Now we know the objects:

$$\mathcal{H}_e(G^{\mathbb{R}}) \cong \mathcal{M}_{K^{m_c+1}}(G_{\mathcal{C}}^{\mathbb{R}}) \times \bigoplus_{j=1, j \neq c} H^0(X, K^{m_j+1})$$
$$= \mathcal{M}_{K^{m_c+1}}(G_{\mathcal{C}}^{\mathbb{R}}) \times \prod_{j=1, j \neq c}^N \mathcal{M}_{K^{m_j+1}}(\mathbb{R}^+)$$

N

• $(E_T, f) \rightsquigarrow$ the PSL₂ \mathbb{R} -Higgs bundle induced by the SL₂ \mathbb{R} -Higgs bundle

$$(K^{1/2} \oplus K^{-1/2}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}).$$

•
$$f|_{K^{1/2}} = 1: K^{1/2} \to K^{-1/2} \otimes K.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• $(E_T, f) \rightsquigarrow$ the PSL₂ \mathbb{R} -Higgs bundle induced by the SL₂ \mathbb{R} -Higgs bundle

$$(K^{1/2} \oplus K^{-1/2}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}).$$

•
$$f|_{K^{1/2}} = 1: K^{1/2} \to K^{-1/2} \otimes K.$$

• $E_T \rightsquigarrow$ frame bundle of K, with structure group $T = \mathbb{C}^*$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• $(E_T, f) \rightsquigarrow$ the PSL₂ \mathbb{R} -Higgs bundle induced by the SL₂ \mathbb{R} -Higgs bundle

$$(K^{1/2} \oplus K^{-1/2}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}).$$

•
$$f|_{K^{1/2}} = 1: K^{1/2} \to K^{-1/2} \otimes K.$$

• $E_T \rightsquigarrow$ frame bundle of K, with structure group $T = \mathbb{C}^*$.

•
$$\mathfrak{t} = \langle h \rangle \subset \mathfrak{sl}_2 \mathbb{C}.$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

• $(E_T, f) \rightsquigarrow$ the PSL₂ \mathbb{R} -Higgs bundle induced by the SL₂ \mathbb{R} -Higgs bundle

$$(K^{1/2} \oplus K^{-1/2}, f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}).$$

•
$$f|_{K^{1/2}} = 1: K^{1/2} \to K^{-1/2} \otimes K.$$

• $E_T \rightsquigarrow$ frame bundle of K, with structure group $T = \mathbb{C}^*$.

•
$$\mathfrak{t} = \langle h \rangle \subset \mathfrak{sl}_2 \mathbb{C}.$$

- $C \rightsquigarrow$ the subgroup of G whose Lie algebra is $W_0 \subset \mathfrak{g}$.
- C is the complexification of the maximal compact subgroup of the Cayley partner $G_C^{\mathbb{R}}$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

$$\Psi: \mathcal{M}_{K^{m_c+1}}(G_{\mathcal{C}}^{\mathbb{R}}) \times \bigoplus_{j=1, j \neq c}^{N} H^0(X, K^{m_j+1}) \longrightarrow \mathcal{M}(G^{\mathbb{R}})$$

Oscar García-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller

э

-

< /□ > < □ >

$$\Psi: \mathcal{M}_{K^{m_c+1}}(G_{\mathcal{C}}^{\mathbb{R}}) \times \bigoplus_{j=1, j \neq c}^{N} H^0(X, K^{m_j+1}) \longrightarrow \mathcal{M}(G^{\mathbb{R}})$$
$$((E_C, \psi_{m_c}), \psi_{m_1}, \dots, \psi_{m_N}) \longmapsto \left((E_T * E_C)(H), f + \sum_{j=1}^{N} \phi_{m_j}\right),$$
where $\phi_{m_j} = \operatorname{ad}_f^{-m_j}(\psi_{m_j})$ and $(E_T * E_C)(H)$ is the *H*-bundle obtained from extension of structure group to *H*. Note that:

Oscar García-Prada ICMAT-CSIC, Madrid Higgs bundles and higher Teichmüller

伺下 イヨト イヨト

э

$$\Psi: \mathcal{M}_{K^{m_c+1}}(G_{\mathcal{C}}^{\mathbb{R}}) \times \bigoplus_{j=1, j \neq c}^{N} H^0(X, K^{m_j+1}) \longrightarrow \mathcal{M}(G^{\mathbb{R}})$$

$$((E_C, \psi_{m_c}), \psi_{m_1}, \dots, \psi_{m_N}) \longmapsto \left((E_T * E_C)(H), f + \sum_{j=1}^{N} \phi_{m_j} \right),$$
here $\phi_{m_c} = \operatorname{ad}_{-m_j}^{-m_j}(\psi_{m_c})$ and $(E_T * E_C)(H)$ is the *H*-bundle

where $\phi_{m_j} = \operatorname{ad}_f^{(m_j)}(\psi_{m_j})$ and $(E_T * E_C)(H)$ is the *H*-bundle obtained from extension of structure group to *H*. Note that:

• ad_h -decomposition preserved by T and C. So

$$(E_T * E_C)(\mathfrak{g}) = \bigoplus_j (E_T * E_C)(\mathfrak{g}_j);$$

$$\Psi: \mathcal{M}_{K^{m_c+1}}(G^{\mathbb{R}}_{\mathcal{C}}) \times \bigoplus_{j=1, j \neq c}^{N} H^0(X, K^{m_j+1}) \longrightarrow \mathcal{M}(G^{\mathbb{R}})$$
$$(E_C, \psi_{m_c}), \psi_{m_1}, \dots, \psi_{m_N}) \longmapsto \left((E_T * E_C)(H), f + \sum_{j=1}^{N} \phi_{m_j} \right),$$

where $\phi_{m_j} = \operatorname{ad}_f^{-m_j}(\psi_{m_j})$ and $(E_T * E_C)(H)$ is the *H*-bundle obtained from extension of structure group to *H*. Note that:

• ad_h -decomposition preserved by T and C. So

$$(E_T * E_C)(\mathfrak{g}) = \bigoplus_{j} (E_T * E_C)(\mathfrak{g}_j);$$

• $\operatorname{ad}_f : (E_T * E_C)(\mathfrak{g}_j) \longrightarrow (E_T * E_C)(\mathfrak{g}_{j-2}) \otimes K;$

$$\Psi: \mathcal{M}_{K^{m_c+1}}(G_{\mathcal{C}}^{\mathbb{R}}) \times \bigoplus_{j=1, j \neq c}^{N} H^0(X, K^{m_j+1}) \longrightarrow \mathcal{M}(G^{\mathbb{R}})$$
$$(E_C, \psi_{m_c}), \psi_{m_1}, \dots, \psi_{m_N}) \longmapsto \left((E_T * E_C)(H), f + \sum_{j=1}^{N} \phi_{m_j} \right),$$

where $\phi_{m_j} = \operatorname{ad}_f^{-m_j}(\psi_{m_j})$ and $(E_T * E_C)(H)$ is the *H*-bundle obtained from extension of structure group to *H*. Note that:

• ad_h -decomposition preserved by T and C. So

$$(E_T * E_C)(\mathfrak{g}) = \bigoplus_{j} (E_T * E_C)(\mathfrak{g}_j);$$

• $\operatorname{ad}_f : (E_T * E_C)(\mathfrak{g}_j) \longrightarrow (E_T * E_C)(\mathfrak{g}_{j-2}) \otimes K;$
• $\operatorname{ad}_f^{m_j} : (E_T * E_C)(V_{2m_j}) \otimes K \xrightarrow{\cong} (E_T * E_C)(Z_{2m_j}) \otimes K^{m_j+1};$

$$\Psi: \mathcal{M}_{K^{m_c+1}}(G_{\mathcal{C}}^{\mathbb{R}}) \times \bigoplus_{j=1, j \neq c}^{N} H^0(X, K^{m_j+1}) \longrightarrow \mathcal{M}(G^{\mathbb{R}})$$
$$((E_C, \psi_{m_c}), \psi_{m_1}, \dots, \psi_{m_N}) \longmapsto \left((E_T * E_C)(H), f + \sum_{j=1}^{N} \phi_{m_j} \right),$$

where $\phi_{m_j} = \operatorname{ad}_f^{-m_j}(\psi_{m_j})$ and $(E_T * E_C)(H)$ is the *H*-bundle obtained from extension of structure group to *H*. Note that:

• ad_h -decomposition preserved by T and C. So

$$(E_T * E_C)(\mathfrak{g}) = \bigoplus_{j} (E_T * E_C)(\mathfrak{g}_j);$$

• $\operatorname{ad}_f : (E_T * E_C)(\mathfrak{g}_j) \longrightarrow (E_T * E_C)(\mathfrak{g}_{j-2}) \otimes K;$
• $\operatorname{ad}_f^{m_j} : (E_T * E_C)(V_{2m_j}) \otimes K \xrightarrow{\cong} (E_T * E_C)(Z_{2m_j}) \otimes K^{m_j+1};$
• $f + \sum_{j=1}^N \phi_{m_j} \in H^0(X, (E_T * E_C)(\mathfrak{m}) \otimes K).$

$$\Psi: \mathcal{M}_{K^{m_c+1}}(G_{\mathcal{C}}^{\mathbb{R}}) \times \bigoplus_{j=1, j \neq c}^{N} H^0(X, K^{m_j+1}) \longrightarrow \mathcal{M}(G^{\mathbb{R}})$$
$$(E_C, \psi_{m_c}), \psi_{m_1}, \dots, \psi_{m_N}) \longmapsto \Big((E_T * E_C)(H), f + \sum_{j=1}^{N} \phi_{m_j} \Big),$$

where $\phi_{m_j} = \operatorname{ad}_f^{-m_j}(\psi_{m_j})$ and $(E_T * E_C)(H)$ is the *H*-bundle obtained from extension of structure group to *H*. Note that:

• ad_h -decomposition preserved by T and C. So

$$(E_T * E_C)(\mathfrak{g}) = \bigoplus_{j} (E_T * E_C)(\mathfrak{g}_j);$$

• $\operatorname{ad}_f : (E_T * E_C)(\mathfrak{g}_j) \longrightarrow (E_T * E_C)(\mathfrak{g}_{j-2}) \otimes K;$
• $\operatorname{ad}_f^{m_j} : (E_T * E_C)(V_{2m_j}) \otimes K \xrightarrow{\cong} (E_T * E_C)(Z_{2m_j}) \otimes K^{m_j+1};$
• $f + \sum_{j=1}^N \phi_{m_j} \in H^0(X, (E_T * E_C)(\mathfrak{m}) \otimes K).$

Theorem 4 (BCGGO)

 Ψ is an isomorphism onto its image, which is open and closed in $\mathcal{M}(G^{\mathbb{R}})$.

Oscar García-Prada ICMAT-CSIC, Madrid

 $\mathcal{O} \land \mathcal{O}$