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1

The strong interactions: hadrons, quarks and gluons

Strong interactions

One of the four fundamental forces (interactions) of Nature, besides the electromagnetic,
weak and gravitational interactions.

Binds nucleons (protons, neutrons) inside the atomic nucleus.
Affects strongly interacting particles (hadrons):

— Baryons (half-integer spin): proton, neutron, A, ¥, A €, ...
— Mesons (integer spin): m, K, n,p, ¢, J/¥, T, ...

Since the Large Hadron Collider (LHC) collides protons on protons, the dynamics of the
strong interactions plays a crucial role in all processes.

Strong interactions are short ranged: range about 1 fm (1 Fermi) = 107'> m. This leads
to typical cross-sections of 1 fm* = 10 mb (mb = millibarn).
1 fm corresponds to energies of a few hundred MeV and time-scales (life-times) of 1072* s.
Note: in the following, we will use “natural units” where h = ¢ = 1 — masses and
momenta given in MeV or GeV.
Some useful conversion factors:

h = 6.582 118 99(16) x 10722 MeV s

he = 197.326 9631(49) MeV fm

(he)? = 0.389 379 304(19) GeV? mb

Quantum Chromodynamics (QCD)

Underlying theory of the strong interactions: Quantum Chromodynamics
[Fritzsch, Gell-Mann, Leutwyler [1], 1973]

Non-abelian gauge theory of quarks and gluons with three color charges (gauge group
SU(3), N. = 3).

6 flavors of quarks (N = 6):

Quark type | Electric charge (e > 0) Quark mass Comment
u e M.(2 GeV) = 2.497020 MeV | MS-scheme

d —ze ma(2 GeV) = 5.0575 42 MeV | MS-scheme

S —z€ (2 GeV) = 10173 MeV | MS-scheme

c e me(me) = 1.277005 GeV | MS-scheme

b —z€ (M) = 4.197008 GeV | MS-scheme

%e my = 172.0 £ 1.6 GeV Pole mass

Quark mass values from Particle Data Group (PDG) 2010 [2]. Since quarks have not been
observed as free particles (confinement), it is not straightforward to define their masses.
For the top quark, which decays before it hadronizes, one usually uses the pole mass. For
the other quarks, one employs running masses in the MS-scheme at some scale 5. Note
the scale of 2 GeV for the light quarks u, d, s.
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e Hadrons are composite particles, made up of quarks, antiquarks and gluons:

— Baryons ~ qqq (3 valence quarks)

— Mesons ~ ¢q (1 valence quark + 1 valence anti-quark)
e Interaction strength of QCD at typical hadronic energy scale (proton mass):
as(1 GeV) =~ 0.5 > a~ 1/137
a = €2 /4meghc: fine-structure constant, electromagnetic coupling.

e Non-perturbative phenomena of QCD at low energies:

— Confinement: quarks and gluons are permanently confined into color-neutral hadrons
(no free quarks and gluons observed in Nature).

If we try to break up a meson into quarks, we have to put more and more energy
into the system and at some point a new quark-antiquark pair is created out of the
vacuum and we end up with two mesons (string-breaking, schematically):

P >

Source: NIC Jiilich

Confinement also leads to the finite range of the strong interactions, even though
the gluons, which mediate the force, are massless. In fact, the strong force between
the nucleons in an atomic nucleus can be described effectively by the exchange of

pions (Yukawa).



— Structure of hadrons: the intrinsic structure of hadrons, described by hadronic wave
functions, form factors and parton distribution functions, is governed by non-per-
turbative physics. Can often not be derived from theory and needs to be extracted
from data.

While the proton can be thought of to consist of three valence quarks (uud), if we
“look” closer (at shorter distances, i.e. probe at higher energies), the picture is much
more complicated with the creation of virtual quarks, antiquarks and gluons:

Source: NIKHEF

— Spontaneous chiral symmetry breaking: pions as Goldstone bosons of spontaneously
broken chiral (axial-vector) symmetry. Global symmetries for Ny massless flavors:

U(Nf)L X U(Nf)R = SU(Nf)V X SU(Nf)A X U(l)B X U(l)A — SU(NJC)V X U(l)B

The U(1) 4 symmetry is anomalous, i.e. broken by quantum effects (triangle anomaly
in (VVA)).

— Methods to study QCD at low energies: Lattice QCD, Effective Field Theories
(Chiral Perturbation Theory), Hadronic Models (quark models, resonance models,

)

e Asymptotic freedom [Gross + Wilezek [3]; Politzer [4], 1973]:

as(Q) — 0 for Q — oo (as(Mz) ~ 0.118)

= can do perturbation theory (series in «y) for large momenta @), i.e. at the LHC, for
the hard scattering of quarks and gluons.

At short distances (= at large energies), like in deep-inelastic scattering of electrons off
protons, the quarks and gluons inside hadrons behave almost like free particles (parton
model).



2 QCD Lagrangian and Feynman rules

Gauge Symmetry

Gauge symmetries play an important role in the construction of Lagrangians for the fundamen-
tal forces. Example: Quantum Electrodynamics (QED) = interaction of electrons and photons
(electromagnetic field):

. 1 y
Lqep = ¢ (V"' Dy —me) ¢ — ZFWFM

where 1 is a 4-component Dirac field (spinor) describing the electron with mass m, (Dirac
indices suppressed in Lagrangian) and

D, = 0,—1ieA, (covariant derivative)
F, = 0,A, —0A, (field strength tensor of gauge field)

Lagrangian invariant under local U(1) gauge transformations (Abelian group):

va) = Y@= ()
Aula) = Ayfa) = Ay(a) + 1 0ylo)

Non-abelian gauge symmetry (Yang-Mills)

Can generalize local gauge transformation to non-abelian groups, e.g. SU(N,), where v trans-
forms in fundamental representation of SU(N.) and the gauge-field A, now carries an index a
of the adjoint representation:

wl
e
() — Y(z) =U)(z)

~ ~

Aule) = (@)1 — A (x) = U2) A (2)U(2) + gU(l‘)(@uUT(l‘))

"
Ulx) = “"@T ¢ SU(N,)

T a = 1,...N? — 1: generators of SU(N,) in fundamental representation. Hermitean and
traceless since UTU = 1 and det U = 1. They form a Lie algebra:

[Ta7 Tb} — ifabcTc

with real and fully antisymmetric structure constants f%¢. Note that Au(x) is in the Lie algebra
of the group.
Normalization of generators in fundamental representation:

tr (TT") = %5%



QCD Lagrangian

For No = 3, Ny = 6 (preliminary version !):

. 1 A,
Lacp =4 (" Dy = M) g - Str (FWF“ )

with

Uu

d

- S

7= c

b

t

M = diag(mu7md)m87mcambamt>

A

D, = 0,—1igsA,

Au = AT, T°= 5 0= 1,...,8 (A% Gell-Mann matrices)
Fu = —[Du D))= FT
gs

EL, = 0,4, —0,A, + g.f "bCAZA‘,j (non-Abelian field strength tensor)

The covariant derivative D, is flavor diagonal and acting only on color indices, e.g. on

Lqocp invariant under local SU(3) gauge transformations U(z):

Vo= A =UY, b=t

— A —UAU+ giU(E?MUT)

=

=

A
D, — D,= UD,U' (D, is acting on everything that follows to the right !)
F, — F,=UF,U



Quantization

When one quantizes QCD, one usually employs the Faddeev-Popov trick [5] in the path integral
to fix a gauge and to define a gluon propagator. In general, ghost fields will then also appear
in the Lagrangian.

In this way we arrive at the following Lagrangian, suitable for calculations in perturbative QCD
(for simplicity, we write it down for only one flavor 1; follow largely the notations in Muta [6]):

Locp = Ez (W“fo —mé7) ’ — iFﬁyF““l’ - %(8“14:3)2 + (8”X“*)Dszb
where
Dy = 699, —ig, (T Sk A, (covariant derivative in fundamental rep.)
Dzb = 5“1’8” — s f“bcAZ (covariant derivative in adjoint rep.: ( ;dj)bc — —j fobe)

i, = 1,...,3
a,b,c = 1,...,8

The ghost fields have been denoted by x®. These are complex, anti-commuting scalar fields
and as for fermions, there is a minus sign for each closed ghost-loop in the Feynman rules.

To read off the Feynman rules, we split the Lagrangian as follows:

‘CQCD = Efree+£int

-t

'Cfree = w (Z’Y'ua,u - m)W
1 a a av v AaQ
— (0,47 = 9,47) (9 A™ — 9 A™) —

+(0"x")(0ux")

1
— (AM pAa v AaQ
25(3 AL) (0" AY)
Lig = g0 Ty I AL
2
gS aoc a a cv gS aoe rcae a C, 174
—§f be(9, AL — 8,,AM)A”“A — Zf be fed AMAI;A A

_gsfabc(ayxa*)XbAZ

The 4 interactions terms in the gauged fixed Lagrangian are all related by the original gauge
symmetry (BRST symmetry after gauge fixing) — only 1 independent coupling constant g.

In contrast to QED, we now also have vertices involving the self-interactions of 3 and 4 gluons
as they carry a color charge. This has very important consequences (confinement, asymptotic
freedom).



Feynman rules for QCD
Quark propagator:
P 1

Gluon propagator:

k

i ki
W T OO0 b vz (gw —(1- 95 >

Ghost propagator:
k 1

a— — — <« — — —}) 5ab_

Quark-gluon vertex:

ap
i i(* j Z'gs'}/uj—g

Three-gluon vertex:

aipy

gsfa1a2a3 V,U«1M2P«3 (kb k?? k3)

V;nuzuza(klv ka, k3) = (kl - kQ)u:s Jpurps T <k2 - k3),u1 Gpaps
+(k3 - /{31)“2 Gusp

(all momenta incoming)

az b2 asps

Four-gluon vertex:

a1
—q QWa1a2a3a4
s 1 2 3 g
a a aijazazas 13,24 14,32)
e e Wmuzusm - (f f Guip29pspa
12,34 14,23
+ (f - f ) GuapsGpapa
13,42 12,34
+ (f —f ) Iuipa Gz pe
azp3

fij,kl — faiajafakala
Ghost-gluon vertex:

ap

k aoc
gs "k,

LA
b - - < - - < --c



3 Dimensional regularization

The need for regularization

k
Example: quark self-energy at one loop &
i J
p—k p

Quark propagator:

?

Sij (p) :5”]/—771——2(10)’

Y (p) : 1-particle irreducible (1PI) part

In Feynman gauge (£ = 1):
d*k i
—. — (s T : Tb~
1 z](p) / (27T)4 (ng)%t ik 5klp(_ k_ M+ ic (ng)%/ lj dab
Sij(p) = 0;;2(p)

o8 [ R — H A m)y
0 = O | G i

(—i)g""
k2 + ie

with the color factor

N2 —
2N¢

(TaTa)ij = 51‘]‘01:‘, OF = for SU(NC)

Integral linearly divergent due to high-momentum region |k| — oo:

iy ¥ : . .
X(p) / d kk:Q 12 I}l_rgo K (naive power counting)

Ultraviolet (UV) divergence (= short distances)

Origin: local interaction vertex gsﬂi(x)’y“ﬂ‘}AZ(x)wj (x). Product of fields (operators) at same
space-time point .

UV regularization (UV regulator)

Mathematical procedure to make a quantum field theory finite (= regular) — each step in
calculation is well defined, in particular loop integrals which appear in perturbation theory are
finite. Physical results after renormalization (more on that later) should be unaffected, if the
regulator is removed in the end. This has to be shown for each regulator.

Infrared (IR) and collinear divergences

There are other types of divergences, if there are massless particles and k¥ — 0 (IR divergence)
or if two four-vectors k,p become collinear. Those will be discussed in other lectures at this
School.



Dimensional regularization

The preferred choice nowadays for calculations in perturbative QCD is dimensional regular-
ization. Based on the observation that multiple integrals are more convergent (in UV), if one
reduces the number of integrals. For instance, (p) converges in d = 2 space-time dimensions:

X(p) < /dk k? k—li = /dk kk_i — UV convergent

In general

I:/d%f(k) — Ireg(d):/ddkf(k), d <4

Final result /,es(d) is then analytically continued to d € C.
d — 4: single poles = appear in I,e(d) (for divergent I).

Advantages of dimensional regularization:

e Preserves Lorentz invariance, translational invariance, gauge invariance, chiral invariance,
unitarity.

e Can also be used to regularize IR and collinear divergences.

Disadvantages of dimensional regularization:

e Problem with consistent definition of Dirac matrix s (triangle anomaly in (V'VA)) or of
Levi-Civita tensor €,

e Works only for loop integrals in perturbation theory, not non-perturbatively for path
integral, as does lattice regularization.

For a discussion on how to precisely define an integration [ d?k for continuous or complex d from
the beginning (explicit mathematical construction, consistency and uniqueness), see Chapter 4
in the book “Renormalization” by Collins [8], based on Wilson’s axioms [9] for d-dimensional
integration:

1. Linearity: for all a,b € C: [d%%[af(k) +bg(k)] = a [dkf(k)+b [ dkf(k)
2. Scaling: for any number s € C: [d%%f(sk) = s7¢ [ dk f(k)

3. Translation invariance: for any vector k: [ dkf(k+ k') = [d%kf(k)

10



d-dimensional space-time (integer d for the moment !)

p o= 0,1,...,d—1

p# = (poapla"'vpd_l)
gl“/ = (+7_7"'7_)
9", = gwg" =d  (Attention!)

/ (;I:; - / (;Zj:;d (convention)

Dirac matrices in d-dimensions

Ay = 29"

wt ) p=0
") = {—fy“,,u:l,...,d—l
Y = gh=d, vt =2-d)y
tr (v,%) = 4g,, (convention)

Dimensionful coupling in d-dimensions

Action:
S = / d%r £ dimensionless = dim [£] = d (mass dimension !)

Kinetic terms:
(0,47 — 9, 47)" = dim [Af] = ——
00,0 = dim[Y] = ——
Interaction term:

Gl AT = dim [g,] + 2dim [¢,] + dim [A%] = d

d
= dim[gs] =2 — 3
Introduce arbitrary mass scale p by hand:
gs = go ,u2_g, go dimensionless
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Some useful formulae

Feynman parametrization

1 ! 1 1 ! 11—z
= dx y - 2 dSL’
AB  Jy  (zA+ (1 —2)B)? AB? o (tA+(1—=x)B)3
Generalization (proof by induction):

I INE) a1 (1 —x)
H Ap [T (o / (H i > (> i miAi)”

a;,t=1,...,n :arbitrary complex numbers

n
o = E (678 Xr = E ZT;
i=1 i=1

Momentum integrals in Minkowski space (if integral converges for some d)

/ (ddl)“d Buf(2) = 0

d d
[ Ghibar ) = % [ S k)

(and similarly for more powers of k,,)
Problem with integral that has no (external) mass or momentum scale:

[ s
(2m)* (k1)

If we lower d to make it convergent in UV, we get IR divergence and vice-versa.
Consistency of dimensional regularization requires:

dik 1
/WW:O, for all a € C

Momentum integrals in Euclidean space (after Wick rotation)

S

/ K (K?)" e ,Lla+HT(b -
(2m)? (K2 4+ A) (47r) INOINE)

For b — 0 we get (for generic d and a and non-vanishing A):

d*K 1 ) 1
/(27r) (KQ) — 0 since m — 0

12



Sketch of calculation of quark self-energy in dimensional regularization
Su(p) = C 98u4‘d/ Ak (= ¥ +m)y"
‘ T ) @R (- k)2 = m?)

Convergence in UV (large k) for d < 3. To simplify consider the case m = 0.
Perform the following steps:

e Combine denominators using Feynman parametrization.

e Interchange integrals over momentum k and Feynman parameter . Allowed since integral
convergent for d < 3.

e Shift momentum variable k — k' = k — ap, d%k’ = d’k.
e Since [ d?’ k, f(K %) = 0, the integral is actually only logarithmically divergent.
e Perform Wick rotation kj = iKj, K =K. Non-singular integral for p* < 0.

e Use scaling property of dimensional regularization.

e Some helpful identities (d?K = K9 1dKdQy):

/de = %

©o _T'(p)I(q)
/0 dtm = Bp.g) ==

1
/ dea (120 = Bp.q)
0

One obtains:

Zalp) = 2Cr (495)2ﬂ(4;f2> a \=1p (g g) ' (2 B g)

This expression can be analytically continued to the whole complex plane for d,p? € C with
the exception of the following points:

e Poles at d =4,6,8, ... froml“(2—§)

I'(z) has simple poles at z = —n,n =0,1,...; ['(z) ~ &L

n!

1
o for 2z~ —n
d

e Branch cut on the positive real axis in p?-plane from (—p?)2 >
Performing a Laurent series expansion of X4(p) near d = 4, using, for € > 0, I'(€) = L =7+ 0O(e),
v =0.57721... (Euler’s constant) and (1 —€)B(1—¢,1—¢€) = 1+ ¢+ O(€?), one obtains, with
['(x + 1) = 2I'(z), the result:

zd(p)ch(f;)ﬂ/ 4Ed—7+1—ln(4;];2>] + 04— d)

Logarithmic divergence (effectively) in original integral shows up as simple pole at d = 4. d is
“close” to 4, but d # 4 — everything is finite (regular) !

Note: in the literature there are several conventions to define dimensions d close to (smaller
than) 4 and thus some infinitesimal € > 0. Muta: d = 4 — 2¢. Peskin + Schroeder: d = 4 — e.
Sometimes d = 4 + €, e < 0 is used.
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1-loop tensor integrals: Passarino-Veltman functions

General tensor integrals of the form

ey )_/ Ak Kk kP
DP1;P2;---) = (2m)e (k2 —m2)((k+p1)?2 —m3)((k+p1+p2)? —m3)...

can be reduced to scalar 1-loop integrals (transformations of variables, partial fractions are

valid in dimensional regularization). Attention: various conventions are used in the literature,
2 2

we follow Jegerlehner [10]. Note that everywhere m? — m? — ie is implied.
Steps

1. Covariant decomposition:

1t (pyypa, ) = ot L (P by P2y, )

in terms of appropriately symmetrized tensor basis with linearly independent momenta
and g,

2. Contraction with g,,:

k> (k* —m?) +m? m2
k% —m? k% —m? =1 k% —m?
3. Contraction with p; ;:
2k -p1 = ((k+p1)°—mj) — (k* —m) — (p —mj —m})
2k - pr 11 pi-mi-m

M O @ (1)(2)

where % denotes the scalar propagator with mass m; and appropriate momenta as in
[Hetm (py, pa, . ).

Note: solving the resulting system of equations for the scalar integrals can lead to numerical
instabilities for exceptional momentum configurations (on-shell momenta, massless particles),
where special care needs to be taken.

Conventions (to conform with Passarino-Veltman [11])

/: 1672 / %
. i ) (2n)d

e Define invariant functions [y, . . . using a factor of (—1)" where n = number of propagators
and factor (—1) in front of the terms with gti#*

e Notation:

[N
=(=0)" (" P
/k(k2_m%)"'((k‘i‘]?l+p2+...+pn_1)2—m%) (=1)" ("D )

14



1. Tadpoles (One-point functions) m

1 shift 1
/kkg_mz - / k+ p)z_mQZ_A(](m) P

2
Ap(m) = —m (— — v+ In(dr) +1—In(m ))
m2
= 14 + finite, dAo(m) = 4A¢(m) + 2m?
Jore fH — pt foe #/ 1 .
- @ = = — = pH A
/,C(k—i-p)?—mQ /ka—mz /ka—mQ p L k2 —m? P Ao(m)
—_
=0
kH kY
— = —pp’A A
/k(k:—i—p)Q—mQ PP Ao + g Ago
(k —p)"(k —p)” y Ktk
- [ i+ [
EFEY p=o k? 9 1 )
R o AN i )
<~
=0 in dim. reg.
m2 m2 mA
= Ay = Ag(m), Ay =——Ag(m)=——-Ag(m) + —
d 4 8
my
2. Self-energies (Two-point functions) »
1
= By(ma, my,p°)
/k (k2 —m3) ((k +p)* —m3) ms
2
BO(mh m27p2) = m -7 + ln(4ﬂ-)

1
—/ dzIn [-p*z(1 — 2) + mi(1 — z) + mjz — i€
0

2
= — + ﬁnite, dB() = 4B0 -2

[ i
(D) R

1
By(my, mz,pQ) = 2_p2 [—Ao(ml) + Ao(mz) — (p2 + m% - m%) BD}

kHEY
/ = p'p"By — g"" By
k

1 1 2
BQl = Ao(mg) -2 (p + ml m%) Bl — m%BO — = m% + m% — p—
3p? 2 3
1 2
B = [ Aotma) = 7 mt = d) 21 2w (ot - )]

Similarly for vertex functions / form-factors (three-point functions — Cj) and box diagrams
(four-point functions — Dy).
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4 Renormalization of QCD to one loop

Renormalization
In general, Green’s functions which include loops are divergent, if we remove the regulator
(d — 4 in dim. reg.).

Important observation: the parameters in the Lagrangian (masses, couplings) and the fields are
not observable quantities — can redefine masses, couplings and fields in such a way that we
get finite results for physical quantities (observables), like S-matrix elements, physical masses
and physical couplings. A theory is called renormalizable, if only a finite number of parameters
or fields needs to be redefined.

While redefining parameters explicitly is physically intuitive, it is difficult to keep track for
higher loop computations. A systematic approach uses counter-terms and renormalization con-
stants Z. The renormalization constants Z are then adjusted in each order of perturbation
theory in such a way that Green’s functions are finite.

MS and MS renormalization schemes

Since there is an ambiguity to define the infinite piece of a Green’s function (from the loop
integral), the elimination of divergences is not unique and thus also the finite piece of the
Green’s function is not unique — renormalization scheme dependence.

Below will use the minimal subtraction (MS) scheme, where only the pole term ﬁ is subtracted
in the Green’s function to define the Z-factors. In the modified minimal subtraction (MS)
scheme, all the terms (ﬁ —v+ ln(47r)), which always appear together, are subtracted.
These are mass-independent renormalization schemes, in contrast to mass-dependent schemes,
such as the on-shell scheme (subtraction at p*> = m?) or the momentum-space subtraction

(MOM) scheme (subtraction at some off-shell momentum p? # m?).
Bare Lagrangian = Renormalized Lagrangian 4+ Counter-terms
Redefine bare fields 9, A%, x* and bare parameters g, m, { in terms of renormalized quantities:

o= 2
a 1/2 4a
Ar = 7,42,

X' = 2

gs = Zggs,r

m = ZLy,m,
5 = Z3€7’

T, Zs, Z3: quark field, gluon field and ghost field renormalization constants

Zg, Zm: coupling constant and quark mass renormalization constants

Note: to simplify the notation, we will write g, = g5, in the following.

A remark about § = Z3¢,: it is nontrivial that we can choose the same Z3 as for Aj. Reason:
longitudinal part of gluon propagator (~ k,k,) is not renormalized (no radiative corrections).
Follows from BRST invariance — generalized Ward-Takahashi / Slavnov-Taylor identities.

Inserting this into the Lagrangian yields
Loes) = Ly + Lor

L, = L, sree+ Ly ing identical to Lqoeop except that all bare quantities are replaced by renormalized
ones.

16



Counter-term Lagrangian
Lov = (Za= V)i 0t = (ZaZm — 1)myy
1 ~ *
+(Zs = 1) 5470w (98 = 9u0,) AY +(Zs = 1) ()" 0ap (—0) X7

a Gr abc a a cv
(ZlF - 1)grwr 237 wiAru (Zl - 1)5][ ’ (a#Aru - aVAr,u)A?“MAT

—(Z4 o 1)%fabefcdeAa Ab Ac,uAdV (Zl o 1)grfabc(auxg)*XbAc

ru’ trvt

where

Thw = 2,00 237, Zh= 2,237, Zi=Z272, 7y = 2,757

Y

rTOTTrH

Counter-terms treated as part of interaction Lagrangian, even if they are quadratic in the fields,

since (Z — 1) contains at least one factor of g2.

Feynman rules for counter-terms

i i[(Z2 = V)Y — (ZaZy — 1)m,] 64
a OO0 VOO0 bv i(Zs — 1)0us (Kuky — k>g,)

G <@ <) i(Z3 — 1)6,,k>

ap
% z’(ZlF — 1) Tﬂu
i J

(11/11

(Z1=1) gy f919293Y,, o (Ky, K, Kig)

Qazfi2 asp3

aypy

azft2 Qafla _7;<Z4 _ 1) Wa1a2a3a4

11 1243 e

ap
(ﬁ E (Zl - 1)grfabcku
b- - - -<--c
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Generalized Ward-Takahashi / Slavnov-Taylor identities

Important observation: the gauge coupling renormalization constant Z, can be determined by
using any of the last 4 counter-terms. One has to prove that all 4 ways lead to the same result
for Z, using the generalized Ward-Takahashi / Slavnov-Taylor identities following from BRST
symmetry and a gauge-invariant regularization, such as dimensional regularization.

If the Z, really are all the same, then one obtains the constraints (Slavov-Taylor identities in
narrow sense): )

Z_4_Zw_Z

Z3 23 ZQ Zl
Compare with QED: Z1p = Z5. In QCD: ZZ—12F # 1= Zip # Zs.

Slavnov-Taylor identities guarantee universality of renormalized coupling g,, but since the cur-

rent J; = W’YMTZ%@W is not gauge-invariant, its normalization is not unambiguously fixed
= Zir # Zy. Because of these Slavnov-Taylor identities, out of the eight renormalization
constants Zs, Z,,, Z3, Zs, Z1r, 21, Z4, 21, only five are independent.

Superficially divergent Feynman amplitudes in QCD

Power counting shows that Feynman amplitudes in QCD with

3
daiy =4 — Ng — i(NF‘i‘NFP) >0

are superficially divergent in d = 4 dimensions, where

Ng = number of external gluon fields
Nr = number of external quark fields
Npp = number of external Faddeev-Popov ghost fields

8 cases:  (Ng, Ny, Ngp) = (0,0,0),(2,0,0),(0,2,0),(0,0,2),
(1,2,0),(1,0,2), (3,0,0), (4,0,0)

First case corresponds to vacuum diagram — normalization of generating functional Z[J].
Lorentz invariance forbids (1,0, 0).
— 7 Feynman amplitudes with overall divergences:

D000Y_) 000" (O <@
daiv

5 E T mé@

ddiv =1 ddiv =0 ddiv =0 ddiv =0

Same structure as the 7 counter-terms written earlier | “Suggests” renormalizability of QCD
(overall divergence taken care of by the counter-terms).

Explicit calculation — dg;, = 0 for all diagrams (logarithmically divergent), due to gauge and
Lorentz invariance !
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1-loop calculation of renormalization constants 7

Below we give the results for the renormalization constants Z of QCD at 1-loop order in the
MS-scheme (see Muta [6] for details). The renormalized coupling constant in d dimensions is
4—d

written as g, = gg 15> , where gg is dimensionless.

(i) Gluon self-energy I1% (k)

k RS
T Y00 = magzg%m@ + +TO00Y OO
ap bl/ \\f//
(@)

(T) (FP)

(F) (CT)

0% (k) = 6w (kuky — Kgp) TL(K)

Qv
2 1 13 4 2 .
(k) = (f:)2 [_ECA (? - &«) + 3 RNy ] Y + (Z3 — 1) + finite terms
- ~—
(G)+(FP) ), N; Havors

dd
(T) ~ / q_2q =0 in dim. reg. (massless tadpole)

Color factors:
tr (T°T") = 6wTr, [*"f* = 6uCa
For SU(N.,) : Th ==, C4=N,

N | —

Gauge invariance:

kﬂn;';;‘,(k) =0

Generalized Ward-Takahashi identitity — dg;y = 0 (only logarithmic divergence). Note: only
(G) 4+ (FP) leads to gauge invariant structure. (F) itself is gauge invariant.

= no mass renormalization = gluon remains massless

Gluon field renormalization constant Zz in MS-scheme:

2
MS _ 1 _ 9Rr _1 E_ % L 4
Zg =1 (47T)2 |: QCA(3 gr) +3 RNf 4_d+o<gR)

19



(ii) FP-ghost self-energy ﬁab(k)

k
y L 6696@%
6—1—4——4—; = - €<~--<--“<- + --<-Q - <--

3_51”
4

. 2
(k) = Gupk? {—g—R2CA (

) .
™ ) —— + (Z3— 1)} + finite terms

4—d

~ k% = no mass renormalization = FP-ghost remains massless

FP-ghost field renormalization constant Z; in MS-scheme:

2
~ 9r 3_57‘ 2 4
Zy =1 _c
3 +(47r)2CA( 4 )4—d+0(93)

(iii) Quark self-energy %% (p)

et A

Y9(p) = 6 [(Am, — By) — (ZoZp — 1) m, + (Zy — 1) | + finite terms

2
__9r 2 A
A = (47)2 Cr(3+&) 1_d + O (gr)
2
g 2

B = _(4;)201:@4_ 7 + O (g3)

Color factor: -
(T°T*);; = 045Cr, for SU(N.) : Cp = ;NG

Mass and quark field renormalization constants Z,, and Z, in MS-scheme:

2
2 = 14 A-BO(gh) =1 302 10 (gh)

m (am)2” T 14
2
2
ZYS = 14+B+0(gh) :1—<j:)2CFgT—4_d+0(g§)
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(iv) Three-gluon vertex A% (ki ko, k3)

UV
4/ \*
- . + OO0 - < - 40000
+ + permutations +
abc . abc 912% 357’ 2
A;w)\(kh k27 k3) - _Zng Vuv)\(kl, k27 k?:) (471')2 OA _E + 1 + 3TRNf m + (Zl — 1)

+finite terms

Three-gluon vertex renormalization constant Z; in MS-scheme
2 3¢ 2
VS =1 IR o, [~ 4 B0 4 SN+ 0
L (4m)? |4 12+4 +3Rf4 ;1O (o)

(v) Ghost-gluon vertex A%<(k, p, p')

~ 2
Aabc k N — abc 9r 67’
v (k,p,p) = —igrf pu{@ B 20 T

(Zl — 1)] + finite terms

Ghost-gluon vertex renormalization constant Z; in MS-scheme

- 2
oMS _ 1 _ QR & 4
! (47)2 3Cag =g 1O k)
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(vi) Quark-gluon vertex A% " (k,p,p')

3+€r

2
atj a g
Ay (k,p, ") = gr7,.T5; { . (

2
(ir)? Cy+ fTC'F) —— + (Zir — 1)} + finite terms

4—d

Quark-gluon vertex renormalization constant Z;r in MS-scheme

9%k (3 +&
(4m)?

CA+§TCF)L+O( ?)

2l =1- 1—d

(vii) Four-gluon vertex Afi-%t (ki ... ky)

XX
Y-

2

aj...a _ aj...a gR 2 4 2
Am.,.ui(kl kg = VVM1 i {(47?)2 {(_§ + 57) Ca+ gTRNf} 1 d + (24— 1)

+finite terms
Four-gluon vertex renormalization constant Z, in MS-scheme
2 2 4 2
zMs — 1= IR |24 ) Oy STRNs| 1 O
. (47)? g Tor ) CatgTey| =g+ ()
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Conclusions

All the 1-loop divergences in the 7 superficially divergent Feynman amplitudes can be cancelled
by the counter-terms with an appropriate choice of the Z-factors.
— Proven renormalizability of QCD at 1-loop order

Note: We did not use gauge symmetry so far (except for & = Z3¢,). Can check that

ZMS ZMS ZMS ZMS 2 3+¢, 2
s = A= = s =1 e (M) o

Slavnov-Taylor identity satisfied at 1-loop order in MS-scheme (dimensional regularization pre-
serves gauge invariance), but ZM> # ZMS

Gauge coupling renormalization constant 7, in MS-scheme

As mentioned earlier, we have four different ways to calculate Z,, all of them are equivalent
owing to the Slavnov-Taylor identities. From a practical point of view, perhaps the easiest way
of calculating Z, is to use the definition

Z

Zy=—"1
7373

g

where Z, appears in the ghost-gluon vertex, Zs in the ghost self-energy and Zs in the gluon
self-energy. Using the relations given above, one obtains

g2R (110A —4TRNf) 2
(4m)? 6 4—d

ZyS =1- + O (g3)

Note: whereas Z;,Zs and Zs all depend on the renormalized gauge parameter &, Z;\AS is
independent of &.. This is also true for

2
MS _ 9r 2 4
M5 =1 — (4W)230F4—d + O (gg)
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5 Renormalization group and running o;
Renormalization — two-fold ambiguity:

1. Arbitrariness of renormalization condition: how to define divergent and finite pieces
of Green’s functions (= arbitrariness of splitting bare Lagrangian in renormalized La-
grangian and counter-terms).

2. Arbitrariness in choosing renormalization scale ug.

— Many different expressions for physical quantities. But they all describe one unique physical
reality, starting from a unique bare Lagrangian: connected by a finite renormalization.

Consider coupling and mass renormalization, i.e. relation between renormalized and bare quan-
tities (not necessarily using dimensional regularization):

gr = Z;lgs, m, = Z'm, at scale ug

9, = (Z;)_lgs, m, = (Z)"'m, at scale 'y
Physical quantities, such as S-matrix elements, should be the same:

S"(pi; gry i, ) = S(pis Gry My 4R) (p; : fixed set of external momenta)

Transformation from scheme (g,, m,, ur) to (g.,m.,, uy)

r_ _ Zg
9r = Z99r, g = 7
g

r_ _ L,
m, = ZnMy, Zm = Z_’
m

is done by a finite renormalization (in ratios z,, z, the divergent pieces cancel out by construc-
tion of Z-factors) — physical predictions invariant under finite renormalization (transformations
pr — pp form an Abelian group) — renormalization group (RG) equations.

In practice, we can calculate S-matrix elements only in perturbation theory and truncate the
series after the first few orders, e.g. to order g

S'(pi; ghoml, i) — S(pis Gy M, pr) = O (g7)

= scheme dependence of physical quantities, like cross-sections at the LHC
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Renormalization group equations for QCD in MS (MS)-scheme

For QCD and using dimensional regularization, we can rephrase the invariance of physical quan-
tities under finite renormalization as follows. First we recall that the bare and the renormalized
coupling constants acquire a mass dimension in d # 4:

4—d
gs = g(]luo2

iea
9r = 9RUE

where go and gr are dimensionless coupling constants. The mass scale y for the bare coupling
gs is a fixed scale, while the mass scale ug for the renormalized coupling g, is a variable
parameter. jp is identified with the renormalization scale in the MS (or MS)-scheme.

With the relation between bare and renormalized quantities, we can therefore write

4—d

i) = (1) " 2y

mp(pr) = Zn(pr)"'m

where mg = m, (to make the notation similar).

The bare parameters g and m are regarded as fixed constants and are free from any dependence
on the renormalization scale pugr. We therefore get the following set of differential equations for
the running of gz and mg:

d d i
MRdu—Rgs =0 = 'uRdu_R (Zg IR IR ) = (1)
20 = -t (Zmn) = 2)
MRdMR = MRd - mMR) =
d A—d  up(dZ _
1 —gr = = — -= = — funct
(1) = NRdMRgR B3, 4] 5 IR Z, (dMR> JR, B — function
d MR dZm
2) = pp——mpr=— - m =5 | 7—
(2) HR d/LRmR Mmpg7. g 7 ( d/ﬂ%)

In QCD, there is a similar equation for the running of the renormalized gauge fixing parameter
&g = &,.. Note that the divergences in the Z-factors cancel out = 3 and ~,, are finite functions,
if we remove the regulator (in dim. reg. d — 4). Differential equations describe how ggr(ur),
mg(pur) (and Eg(pgr)) change with ug, such that physical quantities are independent of the
renormalization scale pg.

In general renormalization scheme: Z = Z(ggr(ur), mr(pr),{r(1tr), tr) — complicated, cou-

pled set of differential equations. In MS (MS) scheme a great simplification occurs:

M = M (g), S =1M5(gR)

= Equation (1) decouples !
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QCD [-function (in MS-scheme) and asymptotic freedom

1 11C, — 4TRN;
(47)? 6

2
Z;\/IS = 1- Ang% (m) +0 (g;) ) All =

ﬁMS@R)

(#) g+ 2A14% (é) 3" (gr) + O (g7)

Therefore

1 11C, — 4TrN;
(47)2 3

BM(gr) = —Bogh + O (9%),  Bo=

In the MS scheme, Z}]\ds is always of the form

25 1 4 Agp) (ﬁ) + Blgn) (ﬁ—d)g 4o

Then

Asymptotic freedom

If By > 0, gr(pur) — 0 with increasing pur = asymptotic freedom (— for large ugr we can trust
perturbation theory).

QCD: 3y > 0, if 11C4 — 4TxNy > 0. For real world, N. = 3. SU(3) : C4 = 3,Tp = 1 =
asymptotically free for Ny < 16, i.e. QCD with Ny = 6 flavors as observed so far in Nature, is
asymptotically free.
If there are no quarks in theory (pure gluodynamics): Ny = 0 = always §, > 0 = always
asymptotically free.

Origin of asymptotic freedom: self-interactions of gluons (3-gluon and 4-gluon vertices).

Neglecting higher order terms of gg in the S-function, the differential equation

dgr . 3
HR din = ﬁogR

can easily be solved
9% (fir)
2 (7 iR
1+ g% (iir)fo In (@)

where [ig is some fixed reference scale, e.g. fir = My, where

Q%U:f% =0.1184(7)  (PDG 2010 [2))

9r(1R) =

a)S(Myz) =

Since g%(pur) — 0 as g increases, the approximate solution of the differential equation becomes
better and better.
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Running o

The B-function in the MS-scheme is now known to four-loop order

Blgr) = —Bogh — Bigh — Bagk — Bsgh + O (9i)
G L 1Ca—ATaNy
(47)? 3
1 [34 5
= a1 (5 er) T
1 [2857 1415 205 158 44
%= {Hoj - (2—70,% + =5~ CaCr — 20%) TrNy + (2—70A + gCF) Tz%N?}
where N1 A .
N.=3 - N.=3
Ca c 3, Cr N, 3 R=3

The results at 1-loop, 2-loop and 3-loop order were evaluated in Refs. [12], [13], [14], respectively.
See Ref. [15] for the 4-loop result (3.

Comparison of the running of « (4-loop running, 3-loop matching at quark mass thresholds)
with experimental data shows excellent agreement and confirms the behavior of asymptotic
freedom:

0.5 July 2009
a.(Q) | .

A a Deep Inelastic Scattering

04| oe ¢'e Annihilation ]
o® Heavy Quarkonia

03¢

0.2+

0.1t

= QCD ay(Mz)=0.1184=0.0007
1 100

Y QIGev]

Source: Bethke [16]
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