Abstract:

Let $\$ k \$$ be any field.
In this talk we shall consider rings of the form $\$ A=k[X, Y, Z, T] /(X \wedge m Y-F(X, Z, T)) \$, \$ m>1 \$$, and present several equivalent criteria for such a ring \$A\$ to satisfy:
(i) $\$ \mathrm{~A}[\mathrm{~W}]$ \cong $k\left[\mathrm{X} _1, \mathrm{X} _2, \mathrm{X} _3, \mathrm{X} _4\right] \$$.
(ii) \$A \backslash cong $k\left[X _1, ~ X _2, ~ X _3\right] \$$.

For instance, a necessary and sufficient condition for the above ring \$A\$ to be a polynomial ring is that $\$ F(0, Z, T) \$$ is a variable in $\$ k[Z, T] \$$.
Another equivalent condition is that \$A\$ is a UFD, \$\K_1(A)=k^*\$ and a certain invariant called '`Derksen invariant'' is trivial.
It follows from these criteria that when ch $\$ \mathrm{l}>0$, there exists
an infinite family of non-isomorphic rings which satisfy (i) but violates (ii);
in particular, \{\it $\$ \backslash A \wedge 3 _k \$$ is not cancellative when ch $\left.\$ \mathrm{k}>0 \$\right\}$.
Note that the rings of the above type \$A\$ include Asanuma's candidates for a counter-example
to the Linearisation/Cancellation Conjecture
in positive characteristic as well as the Russell-Koras' threefold.

