Simulating Rare Events in Chemistry

Nisanth N. Nair

Department of Chemistry Indian Institute of Technology Kanpur

nnair@iitk.ac.in Rare Events in Chemistry

イロト 不得 トイヨト イヨト

э

Rare Events (1)

Mountain climbing of molecular/extended systems!

• Climbing through the minimum energy pathway

• Time scale to overcome depends on the height exponentially

イロト イ理ト イヨト イヨト

Rare Events (2)

$$1/ au pprox m{k} pprox rac{m{k}_{
m B}T}{h} \exp\left(-\Delta F^{\ddagger}/m{k}_{
m B}T
ight)$$

At room	temperature:
ΔF^{\dagger} (kJ/mol)	au (approx)
2.5	0.1 ps
10	1 ps
20	0.1 ns
60	$1 \mathrm{ms}$
100	8 hr

▲□▶ ▲課▶ ▲注▶ ▲注▶ - 注: のへで

Rare Events & Computer Simulations (1)

• Classical dynamics of nuclei

$$H(\mathbf{R}^N,\mathbf{P}^N) = rac{1}{2}\sum_I^N M_I \dot{\mathbf{R}}_I^2 + U(\mathbf{R}^N)$$

• U from density functional theory Al_2O_3 ($Al_{48}O_{72}$) 1 MD step/1 fs \rightarrow 2200 CPU s

ΔF^{\dagger} (kJ/mol)	au	CPU time
2.5	0.1 ps	10 h
10	1 ps	1 month
20	0.1 ns	100 years
60	$1 \mathrm{ms}$	1.9×10^6 years
100	8 hr	10^{17} years

イロト 不得 とうき イヨト

-

Rare Events & Computer Simulations (2)

• Accelerating and sampling rare events

Thermodynamic Integration

Ciccotti et al. CPL (1989)

Umbrella Sampling

Valleau et al. JCP (1975)

Adaptive Force Bias

Rodriguez-Gomez et al. JCP (2004)

Conformational Flooding

H. Grubmüller, PRE (1995)

Transition Path Sampling

イロト 不得 とくほ とくほと

Chandler et al. JCP (1998)

Parallel Tempering

Wenzel et al. CPL (2002)

Metadynamics

Laio & Parrinello, PNAS (2002)

Minimum Free Energy Path

Ciccotti et al. JCP (2006)

- Dimensionality reduction: a set of collective coordinates is selected
 - Distance, angle, coordination number, cell vectors, RMSD, pathways etc.
- Biasing: history dependent replusive potential is slowly grown along the trajectory of the collective coordinates

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

- Dimensionality reduction: a set of collective coordinates is selected
 - Distance, angle, coordination number, cell vectors, RMSD, pathways etc.
- Biasing: history dependent replusive potential is slowly grown along the trajectory of the collective coordinates

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Dimensionality reduction: a set of collective coordinates is selected
 - Distance, angle, coordination number, cell vectors, RMSD, pathways etc.
- Biasing: history dependent replusive potential is slowly grown along the trajectory of the collective coordinates

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Dimensionality reduction: a set of collective coordinates is selected
 - Distance, angle, coordination number, cell vectors, RMSD, pathways etc.
- Biasing: history dependent replusive potential is slowly grown along the trajectory of the collective coordinates

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Dimensionality reduction: a set of collective coordinates is selected
 - Distance, angle, coordination number, cell vectors, RMSD, pathways etc.
- Biasing: history dependent replusive potential is slowly grown along the trajectory of the collective coordinates

- Configurational sampling (no guess for minima)
- No guess of "true" reaction coordinate
- System moves along minimum free energy path
- System explores new and unpredicted minima
- Underlying free energy surface can be constructed

$$F(S) = -\lim_{t o \infty} V^{\mathsf{blas}}(S,t) + \mathsf{constant}$$

- Need a set of *n* collective coordinates
- Have to fill the volume using Gaussians
- Practically n is less than 4

Wacker Reaction: Mechanistic investigations (1)

Let us focus on step **C**

A 10

(E)

ъ

Wacker Reaction: Mechanistic investigations (2)

$$\begin{bmatrix} CI \\ I \\ -Pd & -OH_2 \\ CI \end{bmatrix} + H_2O \longrightarrow \begin{bmatrix} OH_2 \\ I \\ -Pd & -OH_2 \\ CI \end{bmatrix} + CI^{-1}$$

CPMD, Planewave–DFT, USPP, 30 Ry Cutoff, $10 \times 10 \times 10$ Å³ box

Collective coordinates:

$$c(\mathrm{A}-\mathrm{B}) = \sum_{I}^{N_\mathrm{A}} \sum_{J}^{N_\mathrm{B}} rac{1-ig(R_{IJ}/R_\mathrm{A-B}^0ig)^p}{1-ig(R_{IJ}/R_\mathrm{A-B}^0ig)^{p+q}}$$

- Pd to all water oxygen coordination number
- Pd to all Cl atom coordination number

Wacker Reaction: Mechanistic investigations (2)

$$\begin{bmatrix} CI \\ I \\ -Pd - OH_2 \\ CI \end{bmatrix} + H_2O \longrightarrow \begin{bmatrix} OH_2 \\ I \\ -Pd - OH_2 \\ I \\ CI \end{bmatrix}^+ + CI^-$$

CPMD, Planewave–DFT, USPP, 30 Ry Cutoff, $10 \times 10 \times 10$ Å³ box

イロト イポト イヨト イヨト

Diffusion of Vacancies in TiO₂ Rutile

Calculations using MSINDO (semiempirical method)

K. Jug, N. N. Nair, and T. Bredow, PCCP, 7, 2616-2621 (2005).

イヨト イヨト イヨト

Peptide Synthesis on Pyrite Surface at Extreme Conditions (1)

free energy barriers in $k_{\rm B}T$ (ABW, HPW, PIW)

- Schreiner, Nair, Marx, JACS (2009)
- Nair, Schreiner, Marx, JACS (2008)
- Schreiner, Nair, Marx, JACS (2008)
- Nair, Schreiner, Marx, JACS (2006)

Peptide Synthesis on Pyrite Surface at Extreme Conditions (1)

free energy barriers in $k_{\rm B}T$ (ABW, HPW, PIW)

- Schreiner, Nair, Marx, JACS (2009)
- Nair, Schreiner, Marx, JACS (2008)
- Schreiner, Nair, Marx, JACS (2008)
- Nair, Schreiner, Marx, JACS (2006)

< A >

★ Ξ ► < Ξ ►</p>

Peptide Synthesis on Pyrite Surface at Extreme Conditions (2)

Free energy barrier decreases from $37k_{\rm B}T$ (HPW) to $20k_{\rm B}T$ (ABW) Calculations using CPMD

N. N. Nair, E. Schreiner, D. Marx, in preparation

< ロ > < 同 > < 回 > < 回 > < 回 >

Phase transition in Silicon

Tight binding calculations, NPT (Parrinello–Rahman) collective coordinates: cell vectors, thus sampling $G(\mathbf{h})$

Matrŏnák, Laio, Parrinello, PRL (2003)

イロト イポト イヨト イヨト

Applications in Biomolecular Systems

In combination with QM/MM techniques:

ATP hydrolysis reaction in ATP synthase (• Boero et al. JACS, 2006) Docking

Collective coordiantes

- Geometry based
- Coordination number based
- Cell parameters
- Energy
- Spin density
- Reaction paths
- Normal modes
- Protein–specific: helicity of backbone, dihedral correlation etc.

Laio and Gervasio, Rep. Prog. Phys. (2008)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Extended Lagrangian Metadynamics

Iannuzzi, Laio & Parrinello, Phys. Rev. Lett., 90, 238302, 2003.

Parallel Tempering Metadynamics

- If missed any slow coordinate?
- Combining parallel tempering with metadynamics
- Multiple replicas at different temperature
- Attempt exchange of replicas with nearest temperature
- Acceptance ratio accounts for different biasing potentials
 Parrinello et al. JACS (2006)

- 4 母 ト 4 ヨ ト 4 ヨ ト

Multiple Walker Metadynamics

- What if large number of CVs?
- Many walkers/replicas fill the same free energy surface
- $N_{\rm w}$ walkers reduces the total simulation time by $1/N_{\rm w}$

- Raiteri et al. J. Phys. Chem. B 110, 3533 (2006)
- N. N. Nair, E. Schreiner, D. Marx, *inSiDE* 6, 30 (2008)
- N. N. Nair, E. Schreiner, D. Marx, *in preparation*

< A >

4 E b

Multiple Walker Metadynamics

- What if large number of CVs?
- Many walkers/replicas fill the same free energy surface
- $N_{\rm w}$ walkers reduces the total simulation time by $1/N_{\rm w}$

イロト イポト イヨト イヨト

Bias Exchange Metadynamics

- How to deal with large number of coordinates?
- *N*_R replicas filling different but low dimensional CV space
- Biasing potentials are exchanged among *N*_R replicas
- Construction of *N*_R low–dimensional projection of free energy surface

Piana and Laio, JPCB (2007)

・ 一 ト ・ 三 ト ・ 三 ト

Conclusion & Outlook

- Advantages:
 - + Becoming popular method
 - + Easy implementation, usage and error control
 - + New pathways and structure prediction
 - + Reconstruction of free energy surface
- Improved metadynamics procedures
- Dream of "virtual laboratory"
- Powerful computational tool for material design and properties

- Disadvantages:
 - Definition of CCs; chemical intuition!
 - Affordable number CCs is limited 3–5

・ コ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

• Wacker Reaction: CHEMFIST computational lab Department of Chemistry, IIT Kanpur, India

www.iitk.ac.in/chcm

• Oxygen Vacancy: Prof. Karl Jug University of Hannover, Germany • Origin of Life: Prof. Dominik Marx Ruhr-Universität Bochum, Germany www.theochem.rub.de

&

Forschung Zentrum, Jülich, Germany

- Alessandro Laio (SISSA, Trieste, Italy)
- Marcella Ianuzzi
- Alessandro Curioni (IBM Zürich)

イロト イポト イヨト イヨト

THIS PAGE IS EMPTY

nnair@iitk.ac.in Rare Events in Chemistry