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Course Outline

e Extended System Dynamics

@ Nosé-Hoover Thermostat

@ Nosé-Hoover Chain Thermostat

@ Multiple Time Scales in Molecular Dynamics
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Extended System Dynamics

Idea coming from Andersen
H. Andersen, JCP 72, 2384 (1980)
The Essense
@ Auxilary variables added to “control”
@ Coupling via momentum and/or coordinate
dependent terms to physical system

@ Fluctuations of auxilary variables made
appropriately
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Applications

@ To create ensembles other than NVE; for e.g. NV1
and NPT

@ path-integral MD
@ Car—Parrinello

@ Metadynamics, etc.

Classical non—-Hamiltonian Statistical Mechanics
Tuckerman, Mundy, & Martyna, EuroPhys. Lett. 45, 149
(1999).
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Nosé-Hoover Thermostat

@ Canonical ensemble achieveable by extended system
approach

e S. Nose, J. Chem. Phys. 81, 511 (1984)
o S. Nose, Mol. Phys. 52, 255 (1984)
e W. G. Hoover, Phys. Rev. A 31, 1695 (1985)

@ Auxilary variables have no physical meaning

@ They force the system to be in NVT while total
system (=system+auxilary) in NVE
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s: aux. variable
Q: eff. mass of s (units: energy time?)
g: some constant
P; = P;/s where P is real momentum, and P} virtual/scaled
momentum
= Ds/S
At = At/s = not a constant

A constant time step possible with g=3N for NV

Tutorial 5



Hnose
R;

P

N
1 1
I

29
P;
vPIHnose = W
—VRIHnose = _VRI U(RN)
8I_Inose _ &
Ops Q

OHpose 1 P?
— == L _ gkgT
s S (21: M; 9s

Tutorial 5




P, P

aR'/di = s dRy/dt— )~ 11
dP,/df — s d(Py/s)/dt— dP;/di — éPIds/dt
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Conserved quantity for the above E.O.M.

N
1
nose Z 2M 2 2 + U(RN) + Eszpls2 +gkgT1Ins
I

E.O.M. not derived from the above, thus not Hamiltonian
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Hoover’s formalism

Simplified by

¢ = spl/Q, and rewriting without primes

R -
B -
¢ =
S/s =

Conserved quantity:

N
Hnose = Z ) M132
I

P2+ URY) + %ng + gkgTIn's
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Integration of E.O.M. of NH Thermostat

Force is velocity dependent!
Numerical integration is not trivial!
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Nosé-Hoover: Issues

Canonical distribution not guaranteed for all cases

¢ with more than one conserved quantity
@ small systems
e high frequency vibrational modes

See Ref. Tuckerman, Liu, Ciccotti & Martyna, JCP 1186,
1678 (2001).
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Nosé-Hoover Chains
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The conserved quantity for the NHC is

N M
P2 p?
Hyic = > o § 3 L+ URN) + NpkpTC + kgT Y G (7)
=1 <M Q‘ i—2

Masses for the extended system variables are taken as

Q1 = NpkpT/w? 8)
Q = kgT/w? forj>1

where w is the frequency at which the thermostat
particles fluctuate.
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Now let us come back to integrating E.O.M.
@ Iterative velocity Verlet

P —F — P,gll 9)

and

R/(t+ At) = Ry(t) +Ry(t)At + [Fr(t)M; — C(t)Ry(t)] Aztz
Ri(t+At) = Ry(t) + [Fi(t+ At)M; — ((t + AR (t + At)

FFHOM; — C(OR(D)] 5

e not time reversible
e numerical problems
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@ Multiple time step reversible integrator
Martyna, Tuckerman, Tobias & Klein, Mol. Phys. 87,
1117 (1996)

e Uses Liouville approach
(Pronounce Liouville as Lyoo-veel)

@ One can define an evolution operator as

I'(t) = exp(iLt)I(0) (10)
iL = I'-Vr
where iL is the Liouville operator and
D= (RY,PY, (M, pl)
e I'(t) make the first order differential equations of the
system to evolve from time t = O to a time t.
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@ A Discretization of I'(t) in time

Ny
T =1] (H exp(iLuAt)> r(0) (11)

I=1 u

Here At = t/N; and u runs over all independent
variables.
.. I'(t) applied N; times in succession.
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@ Liouville operator for NHC thermostat is given by

N
L = ZRI.VR,JFZ{F;\SI?)}VRI (12)
o L o ;)
_ZCIRI'VRI-FZQ@*C.
i—=1 14

0 0
EZ: ClClJrl 8(1 + GM@

where

G = <Z MIRI kaBT)

(Ql 82— kBT> fori>1. (13
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@ For noncommuting operators A and B,
exp(A + B) # exp(A) exp(B)

@ But using Trotter approximation we have

exp(A+ B) = lim [exp(A/2N;) exp(B/N,) exp(A/2Ny)]

Ni—o00

Tutorial 5



@ Using Trotter identity to the evolution operator (for
large Ny, we get

. ) At . At .
exp(iLAt) = exp <LLNHC2> exp (LLl 2> exp(ilp At)
X eXp (iLl A2t> exp (LLNHCA;) + O(Ats)

where

and iLyyc contains all the terms from the
thermostat.
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exp (ilngcAt/2), can be further simplified using a
multiple time step approach the evolution operator from
NHC can be written as,

A LAt
exp <1LNHC2> =[] exp <'LNHC2nC> (14)
k=1

where . is the multiple time step.
n. > 1 is necessary if the frequency associated with the
NHC is high
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Yoshida and Suzuki Integration for the NHC part

AL\ e At
exp <1'LNH02> = H {H exp (iLNHC L;Jnc > (15)
k=1 |j=1

where the values of {nys, wj} are
{nys=3, w1 =ws =1/(2-2Y3),wy =1-2w,;} or

{nys =5, w1 =ws =wy =ws=1/(4-4Y3), wsz =
1—411)1}
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Algorithm

. . At . At .
exp(iLAt) = exp (lLNHCz> exp (1L1 2) exp(ilp At)
X €Xp (1L1A2t> €Xp (iLNHcA2t>

@ Operator exp(ilyycAt/2) updates {¢,(,R}

© New nuclear velocities updated by iL; and ily
(velocity Verlet)

© This again modified by the operation of
exp(ilnucAt/2)
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First operation in exp(iLAt)f (RN, PN, ¢M, pM) is

GuAt 0\ o g i

( 4 8CM>f(R 7PNaC15 7<M7Cla 7<M)
:nzz;)(GMilt/él) aagﬁf(RN7PNaC17 7<M7éla"' 7CM) (16)

:f(RNaPNagl"" 7(M7é1>"' 5 M+GMAt/4) (17)
exp(iLAL)f (RN, PV (M pM) . {y — Cu+ GuAt/4
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explax ) (x) = explags s )f(explin(x)
= flexplin(x) + a]) = f(xexplal)

i)
10

:f <RN,PN7417"' aCM7C17'” ,eXp(_gth)ijlf" 7CM))

exp( g]gl >f(RN7PN7<17"'aCMvéla"'aéM)

with

At . . . .
exp(—gg)gj_l : (1 — exp(—GAL/8)
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Rest in the next lecture...
but I expect that you follow the above derivations before
the next lecture.
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