Geometry and Topology in Quantum Mechanics Mathematical Properties of Geometric Phases

N. Mukunda

Bengaluru

1 States of quantum systems

Pure states

Quantum system \mathcal{S}
Mixed states
Pure states \sim vectors ψ in some Hilbert space \mathcal{H}.

$$
\begin{align*}
\mathcal{B} & =\{\psi \in \mathcal{H} \mid(\psi, \psi)=1\} \subset \mathcal{H} \tag{11}\\
\psi \in \mathcal{B} & \rightarrow \text { corresponding pure state of } \mathcal{S} \tag{12}
\end{align*}
$$

Many-to-one map: ψ and $\mathrm{e}^{\mathrm{i} \alpha} \psi \rightarrow$ same pure state.

$$
\begin{equation*}
\mathcal{R}=\mathcal{B} / U(1)=\{\rho(\psi)=|\psi\rangle\langle\psi| \mid \psi \in \mathcal{B}\} \tag{13}
\end{equation*}
$$

Projection $\pi: \mathcal{B} \rightarrow \mathcal{R}:$

$$
\begin{equation*}
\psi \in \mathcal{B} \rightarrow \pi(\psi)=\rho(\psi) \in \mathcal{R} \tag{14}
\end{equation*}
$$

$\mathcal{B}=U(1)$ principal fibre bundle over base \mathcal{R}.
$\psi_{1}, \psi_{2} \in \mathcal{B} \rightarrow\left|\left(\psi_{2}, \psi_{1}\right)\right|^{2}=\operatorname{Tr}\left(\rho\left(\psi_{2}\right) \rho\left(\psi_{1}\right)\right)=$ transition probability

2 Wigner 1931 Theorem, Bargmann Invariants

Symmetry of \mathcal{S} : one-to-one onto map $\mathcal{T}: \mathcal{R} \rightarrow \mathcal{R}$ preserving $\operatorname{Tr}\left(\rho_{1} \rho_{2}\right)$.

$$
\begin{gather*}
\mathcal{R} \rightarrow \mathcal{R}: \rho_{1} \rightarrow \mathcal{T}\left(\rho_{1}\right)=\rho_{1}^{\prime}, \quad \rho_{2} \rightarrow \mathcal{T}\left(\rho_{2}\right)=\rho_{2}^{\prime}: \\
\operatorname{Tr}\left(\rho_{2}^{\prime} \rho_{1}^{\prime}\right)=\operatorname{Tr}\left(\rho_{2} \rho_{1}\right) . \tag{21}
\end{gather*}
$$

At vector level:

$$
\begin{equation*}
\mathcal{T}(\rho(\psi))=\rho\left(\psi^{\prime}\right): \psi^{\prime} \text { determined upto phase } \tag{22}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\psi \in \mathcal{B} \xrightarrow{\pi} \rho(\psi) \in \mathcal{R} \xrightarrow{\mathcal{T}} \mathcal{T}(\rho(\psi))=\rho\left(\psi^{\prime}\right) \in \mathcal{R}: \psi^{\prime} \text { fixed upto phase } \tag{23}
\end{equation*}
$$

Theorem

$$
\mathcal{T}(\rho(\psi))=\rho(U \psi) \beth_{U}^{U \text { linear unitary, }\left(U \psi_{2}, U \psi_{1}\right)=\left(\psi_{2}, \psi_{1}\right)} \text { or }
$$

Bargmann 1964 method to determine option instantly

$$
\begin{equation*}
\text { BI } \quad \Delta_{3}\left(\psi_{1}, \psi_{2}, \psi_{3}\right)=\left(\psi_{1}, \psi_{2}\right)\left(\psi_{2}, \psi_{3}\right)\left(\psi_{3}, \psi_{1}\right)=\operatorname{Tr}\left(\rho_{1} \rho_{2} \rho_{3}\right) . \tag{25}
\end{equation*}
$$

$$
\mathcal{T}: \Delta_{3}\left(\psi_{1}, \psi_{2}, \psi_{3}\right) \nearrow_{\searrow} \begin{gather*}
\Delta_{3}\left(\psi_{1}, \psi_{2}, \psi_{3}\right): U \text { linear unitary } \\
\text { or }
\end{gather*}
$$

3 Pancharatnam 1956

Pure polarization states of plane EM waves, fixed \mathbf{k}, ω

$$
\begin{equation*}
\mathbf{k}=(0,0,|\mathbf{k}|): \mathbf{k} \cdot \mathbf{E}=0, \mathbf{E}=\binom{E_{x}}{E_{y}} \text {. } \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dim} \mathcal{H}=2, \mathcal{B} \sim S^{3}, \mathcal{R}=\text { Poincaré sphere } \mathcal{P}=S^{2} \tag{32}
\end{equation*}
$$

Projection map

$$
\begin{equation*}
\mathbf{E} \in \mathcal{H} \rightarrow \frac{\mathbf{E}}{|\mathbf{E}|} \in \mathcal{B} \xrightarrow{\pi} \hat{n}=\frac{\mathbf{E}^{\dagger} \boldsymbol{\sigma} \mathbf{E}}{|\mathbf{E}|^{2}} \in S^{2},|\mathbf{E}|^{2}=\mathbf{E}^{\dagger} \mathbf{E} . \tag{33}
\end{equation*}
$$

'In phase' concept:

$$
\begin{equation*}
\mathbf{E}_{1}, \mathbf{E}_{2} \text { 'in phase' } \Leftrightarrow \mathbf{E}_{1}^{\dagger} \mathbf{E}_{2} \text { real }>0 \tag{34}
\end{equation*}
$$

Non transitive!

$$
\begin{equation*}
\mathbf{E}_{1}^{\dagger} \mathbf{E}_{2} \text { real }>0, \mathbf{E}_{2}^{\dagger} \mathbf{E}_{3} \text { real }>0 \nRightarrow \mathbf{E}_{3}^{\dagger} \mathbf{E}_{1} \text { real }>0 \tag{35}
\end{equation*}
$$

Measure of non transitivity:

$$
\begin{aligned}
\hat{n}_{1,2,3} & =\pi\left(\mathbf{E}_{1,2,3}\right) \in \mathcal{P}: \\
\arg \mathbf{E}_{3}^{\dagger} \mathbf{E}_{1} & =-\frac{1}{2} \Omega\left(\hat{n}_{1}, \hat{n}_{2}, \hat{n}_{3}\right),
\end{aligned}
$$

$$
\Omega\left(\hat{n}_{1}, \hat{n}_{2}, \hat{n}_{3}\right)=\text { Solid angle of spherical triangle on } \mathcal{P} \text {, vertices }
$$

$$
\begin{equation*}
\hat{n}_{1}, \hat{n}_{2}, \hat{n}_{3} \text {, sides geodesics. } \tag{36}
\end{equation*}
$$

4 Berry (1983) adiabatic geometric phase and generalisations
Schrodinger equation in adiabatic approximation and condition of cyclic evolution \rightarrow new phase of geometric nature in solution to Schrodinger equation.

Aharonov-Anandan: no need for adiabaticity $\}$ geometric phase Samuel-Bhandari: no need for cyclic condition $\}$ always exists

System \mathcal{S} of dimension N : \mathcal{H} has complex dimension N;
\mathcal{B} has real dimension $(2 N-1), \mathcal{R}=C P^{N-1}$ has real dimension $2(N-1)$.
Ray space $\mathcal{R}=$ Riemannian manifold, also symplectic manifold.

Geodesics in \mathcal{R} :
$\rho_{1}=\rho\left(\psi_{1}\right), \rho_{2}=\rho\left(\psi_{2}\right):$ choose ψ_{1}, ψ_{2} so that $\left(\psi_{1}, \psi_{2}\right)=\cos \theta, 0<\theta<\pi / 2$.

Then

$$
\begin{align*}
C_{\text {geo }} & =\pi\left[\mathcal{C}_{\text {geo }}\right] \subset \mathcal{R}, \\
\mathcal{C}_{\text {geo }} & =\{\psi(s) \mid 0 \leq s \leq \theta\} \subset \mathcal{B}, \\
\psi(s) & =\psi_{1} \cos s+\left(\psi_{2}-\psi_{1} \cos \theta\right) \frac{\sin s}{\sin \theta}, \quad 0 \leq s \leq \theta ; \\
\text { i.e. } \quad C_{\text {geo }} & =\{\rho(s)=|\psi(s)\rangle\langle\psi(s)| \mid 0 \leq s \leq \theta\} . \tag{43}
\end{align*}
$$

Samuel-Bhandari treatment of noncyclic case.

5 Kinematic approach to Geometric Phase

Ingredients

$$
\begin{align*}
\mathcal{C} & =\left\{\psi(s) \in \mathcal{B} \mid s_{1} \leq s \leq s_{2}\right\} \subset \mathcal{B} \\
C & =\pi[\mathcal{C}]=\left\{\rho(s)=\rho(\psi(s)) \in \mathcal{R} \mid s_{1} \leq s \leq s_{2}\right\} \subset \mathcal{R} \tag{51}
\end{align*}
$$

Two groups of transformations on curves \mathcal{C} :

Local phase changes $\mathcal{C}=\{\psi(s)\} \rightarrow \mathcal{C}^{\prime}=\left\{\psi^{\prime}(s)\right\}$,

$$
\begin{equation*}
\psi^{\prime}(s)=\mathrm{e}^{\mathrm{i} \alpha(s)} \psi(s) \tag{a}
\end{equation*}
$$

Reparametrisations

$$
\begin{gather*}
s^{\prime}=f(s), \quad \frac{\mathrm{d} f(s)}{\mathrm{d} s}>0 \tag{52}\\
\mathcal{C}=\{\psi(s)\} \rightarrow \mathcal{C}^{\prime}=\left\{\psi^{\prime}\left(s^{\prime}\right)\right\}, \psi^{\prime}\left(s^{\prime}\right)=\psi(s) . \tag{b}
\end{gather*}
$$

Simplest invariant expression:

$$
\begin{align*}
& \varphi_{g}[\mathcal{C}]=\varphi_{\text {tot }}[\mathcal{C}]-\varphi_{\text {dyn }}[\mathcal{C}], \\
& \varphi_{\text {tot }}[\mathcal{C}]=\arg \left(\psi\left(s_{1}\right), \psi\left(s_{2}\right)\right), \quad \varphi_{\text {dyn }}[\mathcal{C}]=\operatorname{Im} \int_{s_{1}}^{s_{2}} \mathrm{~d} s\left(\psi(s), \frac{\mathrm{d} \psi(s)}{\mathrm{d} s}\right) . \tag{53}
\end{align*}
$$

This is the geometric phase of AASB for general noncyclic situation.

Some differential geometric notation:

$$
\begin{equation*}
\varphi_{d y n}[\mathcal{C}]=\int_{\mathcal{C}} A, \quad A=-\mathrm{i} \psi^{+} \mathrm{d} \psi=\text { one form on } \mathcal{B} . \tag{54}
\end{equation*}
$$

This A does not 'descend' to \mathcal{R}, but $\mathrm{d} A$ does.

$$
\begin{align*}
& \mathrm{d} A=-\mathrm{id} \psi^{+} \wedge \mathrm{d} \psi=\pi^{*} \omega \\
& \omega=\text { two-form on } \mathcal{R}, \text { nondegenerate, closed, i.e., } \mathrm{d} \omega=0 \tag{55}
\end{align*}
$$

So

$$
\varphi_{g}[C]=-\int_{S} \omega, \quad S \subset \mathcal{R}, \partial S=C \cup \pi\left(\text { geodesic from } \psi\left(s_{2}\right) \text { to } \psi\left(s_{1}\right)\right)
$$

Geometric phases are symplectic areas in ray spaces.

6 General connection between BI's and Geometric Phases

$$
\begin{equation*}
\text { Choose } \psi_{1}, \psi_{2}, \psi_{3} \in \mathcal{B} \xrightarrow{\pi} \rho_{1}, \rho_{2}, \rho_{3} \in \mathcal{R} \tag{61}
\end{equation*}
$$

Then find:

$$
\begin{align*}
& \arg \Delta_{3}\left(\psi_{1}, \psi_{2}, \psi_{3}\right)=-\varphi_{g}\left[C_{12} \cup C_{23} \cup C_{31}\right]=\int_{S} \omega \\
& \partial S=C_{12} \cup C_{23} \cup C_{31}, C_{12}=\text { geodesic } \rho_{1} \text { to } \rho_{2} \text { etc. } \tag{62}
\end{align*}
$$

Easily generalised to $\Delta_{n}\left(\psi_{1}, \psi_{2}, \ldots, \psi_{n}\right), n>3$.
Simple fact:

$$
\begin{equation*}
\varphi_{g}[\text { any geodesic in } \mathcal{R}]=0 . \tag{63}
\end{equation*}
$$

7 Null Phase Curves (NPC)

These are the most general curves in \mathcal{R} for which

$$
\begin{equation*}
\varphi_{g}[\text { any NPC] }=0 . \tag{71}
\end{equation*}
$$

Definition of NPC

$$
\begin{align*}
& N=\left\{\rho(s)=\rho(\psi(s)) \in \mathcal{R} \mid s_{1} \leq s \leq s_{2}\right\} \subset \mathcal{R} \\
& \Delta_{3}\left(\psi(s), \psi\left(s^{\prime}\right), \psi\left(s^{\prime \prime}\right)\right)=\text { real }>0 \text { for all } s, s^{\prime}, s^{\prime \prime} \in\left[s_{1}, s_{2}\right] \tag{72}
\end{align*}
$$

Special 'Pancharatnam' lifts:
$N \subset \mathcal{R}$ is NPC \Leftrightarrow there are lifts $\mathcal{N}=\{\psi(s)\} \subset \mathcal{B}$ such that

$$
\begin{equation*}
\left(\psi(s), \psi\left(s^{\prime}\right)\right)=\text { real }>0 \text { for all } s, s^{\prime} \in\left[s_{1}, s_{2}\right] \tag{73}
\end{equation*}
$$

$\operatorname{Dim} \mathcal{H}=2, \mathcal{R}=S^{2}:$ NPC \equiv geodesic, great circle arc on $S^{2} ;$
$\operatorname{Dim} \mathcal{H} \geq 3$: geodesics are NPC's, but NPC's are far more numerous.
Most general BI-Geometric Phase connection:

$$
\begin{align*}
\arg \Delta_{3}\left(\psi_{1}, \psi_{2}, \psi_{3}\right) & =-\varphi_{g}\left[N_{12} \cup N_{23} \cup N_{31}\right] \\
N_{12} & =\text { any NPC } \rho_{1} \text { to } \rho_{2} \text { etc. } \tag{74}
\end{align*}
$$

8 Concluding remarks

Interesting class of geometric phases - associated with unitary representations of compact or noncompact simple Lie groups - detailed analysis possible.
In overall framework of quantum mechanics - ideas of Wigner, Pancharatnam, Bargmann deep and beautiful - their interconnections seen better thanks to Berry's profound discovery and the AASB generalisations.

Some References

[1] E. P. Wigner, Group Theory, Academic Press (NY) (1959), pp. 233-236.
[2] V. Bargmann, Jour. Math. Phys. 5, 862 (1964).
[3] S. Pancharatnam, Proc. Indian Acad. Sci. A44, 247 (1956).
[4] M. V. Berry, Proc. Roy. Soc. A392, 45 (1984).
[5] Y. Aharonov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987).
[6] J. Samuel and R. Bhandari, Phys. Rev. Lett. 60, 2339 (1988).
[7] N. Mukunda and R. Simon, Ann. Phys. (NY) 228, 205, 269 (1993).

For the theory of NPC's see: N. Mukunda, Arvind, E. Ercolessi, G. Marmo, G. Morandi and R. Simon, Phys. Rev. A67, 042114 (2003); S. Chaturvedi, E. Ercolessi, G. Morandi, A. Ibort, G. Marmo, N. Mukunda and R. Simon, Jour. Math. Phys. 54, 062106 (2013).

