Phase Transitions in the BMN Matrix Model

Yuhma Asano (Dublin IAS) 2 Feb 2018 @ICTS

This talk is based on the collaboration with V. Filev, S. Kovacik, D. O'Connor,

Outline

- 1. Introduction
- 2. Deconfinement phase transition
- 3. Lattice simulation
- 4. Summary and Discussion

Motivation

Quantum theory of gravitation

String/M theory

But

String theory is defined based on perturbation theory.

We need non-perturbative formulation.

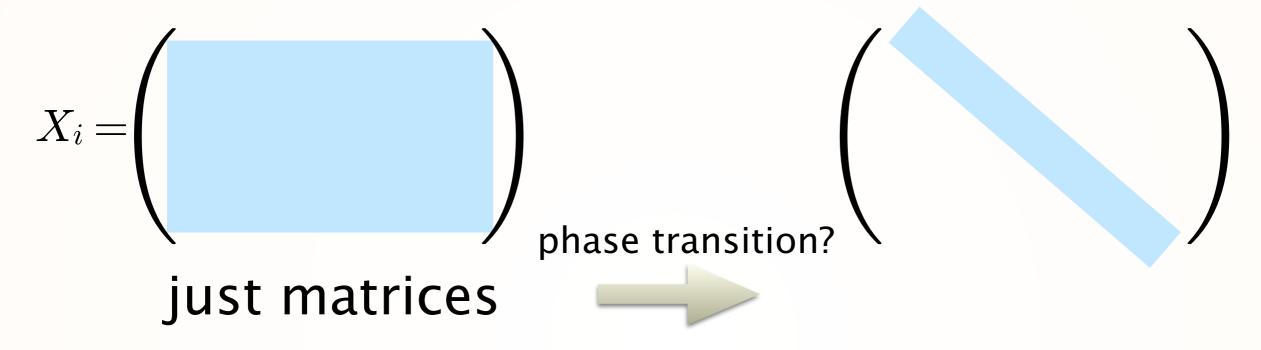
Matrix Models

[Banks-Fischler-Shenker-Susskind '96, Ishibashi-Kawai-Kitazawa-Tsuchiya '96, ...]

- The target space is regularised by matrices.
- Branes are naturally included.
- Some matrix models have gauge/gravity duality.

"Matrices = Strings"

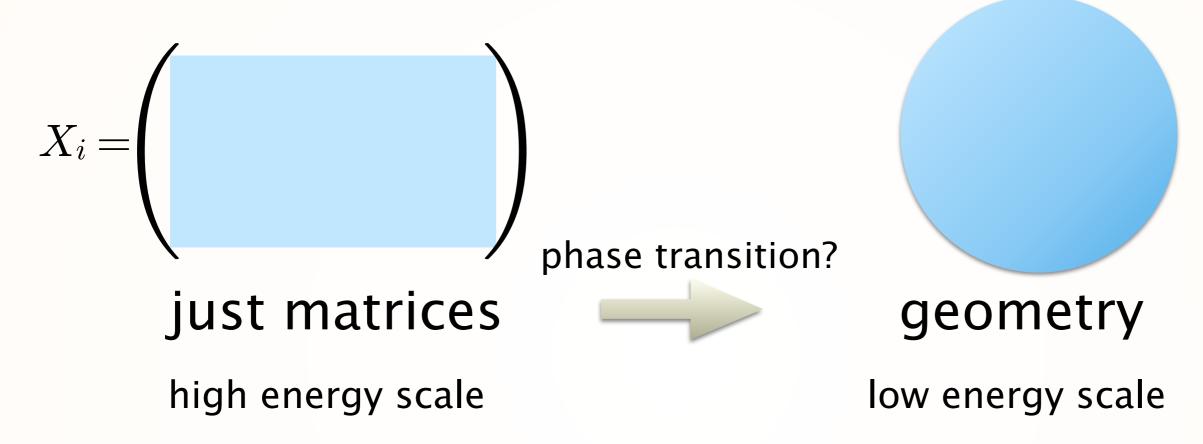
1. Introduction Emergent geometry in matrix models



high energy scale

low energy scale

1. Introduction Emergent geometry in matrix models



We choose the temperature as the energy scale.

In this talk, we focus on the thermal BMN matrix model

The action of membrane theory:

[deWit-Hoppe-Nicolai '88]

$$S = -T_{\rm M2} \int d^3\sigma \sqrt{-\det[g_{MN}(X)\partial_\mu X^M\partial_\nu X^N]} + T_{\rm M2} \int C_3$$
 membrane area potential

plane-wave geometry:

$$g_{MN}dx^{M}dx^{N} = -2dx^{+}dx^{-} + dx^{i}dx^{i} - (\frac{\mu^{2}}{9}x^{a}x^{a} + \frac{\mu^{2}}{36}x^{m}x^{m})dx^{+}dx^{+}$$

$$C_{3} = \frac{\mu}{6}\epsilon_{abc}x^{a}dx^{b}dx^{c}dx^{+} \qquad i=1,...,9 \qquad a=1,2,3 \qquad m=4,...,9$$

The action of membrane theory:

[deWit-Hoppe-Nicolai '88]

$$S = \frac{p^{+}}{8\pi} \int d^{3}\sigma \left[(D_{0}X^{i})^{2} - \frac{\mu^{2}}{9} (X^{a})^{2} - \frac{\mu^{2}}{36} (X^{m})^{2} - \frac{8\pi^{2}T_{M2}^{2}}{(p^{+})^{2}} \{X^{i}, X^{j}\}^{2} \right]$$
$$+T_{M2} \int d^{3}\sigma \, \mu X^{1} \{X^{2}, X^{3}\}$$
$$D_{0}X^{i} = \partial_{0}X^{i} + \{A, X^{i}\}$$

$$\begin{array}{c} \text{Matrix regularisation} & \frac{1}{4\pi} \int d^2\sigma \rightarrow \frac{1}{N} \operatorname{Tr} \quad \{\;,\;\} \rightarrow \frac{-iN}{2} [\;,\;] \\ & X^i(\sigma^\mu) \rightarrow \hat{X}^i(\sigma^0) & A(\sigma^\mu) \rightarrow \frac{2}{N} \hat{A}(\sigma^0) \end{array}$$

$$S = \frac{p^+}{2N} \int \! d\sigma^0 \, \mathrm{Tr} \left[(D_0 X^i)^2 - \frac{\mu^2}{9} (X^a)^2 - \frac{\mu^2}{36} (X^m)^2 \right. \\ \left. + \frac{c^2}{2} [X^i, X^j]^2 - 2ic\mu X^1 [X^2, X^3] \right] \\ D_0 X^i = \partial_0 X^i - i[A, X^i]$$
 Bosonic BMN model

plane-wave geometry:

$$g_{MN}dx^{M}dx^{N} = -2dx^{+}dx^{-} + dx^{i}dx^{i} - (\frac{\mu^{2}}{9}x^{a}x^{a} + \frac{\mu^{2}}{36}x^{m}x^{m})dx^{+}dx^{+}$$

$$C_{3} = \frac{\mu}{6}\epsilon_{abc}x^{a}dx^{b}dx^{c}dx^{+} \qquad i=1,...,9 \qquad a=1,2,3 \qquad m=4,...,9$$

Rescale X^i and σ^0 to \tilde{X}^i and t

$$a,b=1,2,3, m,n=4,...,9$$

Action of the BMN matrix model:

$$S = N \int dt \operatorname{Tr} \left[\frac{1}{2} (D_t \tilde{X}^a)^2 + \frac{1}{2} (D_t \tilde{X}^m)^2 - \frac{1}{4} \left(\frac{\mu}{3} \epsilon_{abc} \tilde{X}^c - i [\tilde{X}^a, \tilde{X}^b] \right)^2 + \frac{1}{2} [\tilde{X}^a, \tilde{X}^n]^2 \right. \\ \left. + \frac{1}{4} [\tilde{X}^m, \tilde{X}^n]^2 - \frac{\mu^2}{72} \tilde{X}^m \tilde{X}^m + \text{fermions} \right]$$

• Symmetry: $\widetilde{SU}(2|4) \supset R \times SO(3) \times SO(6)$

[Berenstein-Maldacena-Nastase '02]

• Obtained by dimensional reduction of 4D $\mathcal{N}=4$ super Yang-Mills 1D super quantum mechanics

Vacua: SU(2) generators

$$ilde{X}^a = -rac{\mu}{3} (\mathbf{1}_{N_2} \otimes L_a^{N_5})$$
 $ilde{X}^m = 0$ Number of M5-branes

Number of M2-branes

 $L_a^{[N_5]}$: representation matrix of dim. N_5 N_2 : multiplicity of this rep.

[Maldacena-SheikhJabbari-Raamsdonk '02]

BMN matrix model

 Matrix regularisation of super-membrane theory on the plane-wave background

Nonperturbative formulation of M-theory (11D SUGRA)

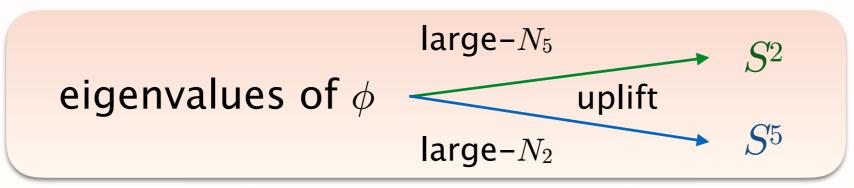
[deWit-Hoppe-Nicolai '88, Banks-Fischler-Shenker-Susskind '96]

◆M2-brane realisation: fuzzy 2-sphere

 \bigstar M5-brane realisation: SO(6) part (quantum effect)

A BPS sector realises their geometries at strong coupling.

[Y.A.-Ishiki-Shimasaki-Terashima '17]



 ϕ : a BPS operator considered to be the low energy moduli [Goro's talk]

BMN matrix model

[Lin-Lunin-Maldacena '04, Lin-Maldacena '05]

Gauge/gravity dual to IIA SUGRA on bubbling geometries

Vacua BMN matrix model

Geometries
IIA SUGRA

symmetry: $R \times SO(3) \times SO(6)$

SU(2|4)

isometry: $R \times SO(3) \times SO(6)$

vacua (SU(2) rep.)

bubbling geometries

- dim. of irreducible rep.

- NS5 charge N_5 - D2 charge N_2

- multiplicity of irred. rep.

Part of Einstein equation was obtained by ϕ in the BMN model.

nontrivial part in terms of the isometry

[Y.A.-Okada-Ishiki-Shimasaki '14]



We have some understanding of the emergent geometries.

Can we see the emergence as we decrease the temperature?

Let's look at phase transitions.

There is a "deconfinement" phase transition at large-N.

re is a deconfinement phase transition at large-
$$N$$
.
$$F = 0 \quad \text{; confined} \quad \text{[Furuuchi-Schreiber-Semenoff '03, Hadizadeh-Ramadanovic-Semenoff-Young '04]}$$

$$F = 0 \quad \text{; deconfined} \quad F \in \text{free energy}$$

At large μ , the theory becomes gauged harmonic oscillators. One-loop integration

$$\beta F = \sum_{i,j} \left(3 \ln \left| 1 - e^{-\frac{\beta\mu}{3} + i\theta_{ij}} \right| + 6 \ln \left| 1 - e^{-\frac{\beta\mu}{6} + i\theta_{ij}} \right| - 8 \ln \left| 1 + e^{-\frac{\beta\mu}{4} + i\theta_{ij}} \right| \right)$$

$$- \sum_{i,j \neq i} \ln \left| 1 - e^{i\theta_{ij}} \right|$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{n} \left\{ 1 - 3e^{-n\frac{\beta\mu}{3}} - 6e^{-n\frac{\beta\mu}{6}} + 8(-)^n e^{-n\frac{\beta\mu}{4}} \right\} |u_n|^2 \right) - \sum_{n=1}^{\infty} \frac{N}{n}$$

$$A = \operatorname{diag}(\frac{\theta_1}{\beta}, \dots, \frac{\theta_N}{\beta}) \qquad \theta_{ij} := \theta_i - \theta_j \qquad u_n := \sum_{j=1}^N e^{in\theta_j}$$

$$\beta F = \sum_{n=1}^{\infty} \left(\frac{1}{n} \left\{ 1 - 3e^{-n\frac{\beta\mu}{3}} - 6e^{-n\frac{\beta\mu}{6}} + 8(-)^n e^{-n\frac{\beta\mu}{4}} \right\} |u_n|^2 \right)$$

positive at low enough temperatures $|u_n|=0$

$$|u_n|=0$$

Gross-Witten/

transition
$$1-3e^{-\frac{\beta\mu}{3}}-6e^{-\frac{\beta\mu}{6}}-8e^{-\frac{\beta\mu}{4}}<0 \qquad |u_1|>0$$
 [Furuuchi-Schreiber-Semenoff '03]
$$F \sim O(N^2)$$

[Furuuchi-Schreiber-Semenoff '03]

Critical temperature of the deconfinement transition:

$$T_c = \beta_c^{-1} = \frac{\mu}{12 \ln 3} \left(1 + \frac{2^6 \cdot 5}{3\mu^3} + O(\mu^{-6}) \right)$$

 $P=u_1/N$ is the order parameter. (Polyakov loop)

coming from higher loops

[Spradlin-Raamsdonk-Volovich '04, Hadizadeh-Ramadanovic-Semenoff-Young '04]

$$\left(A = \operatorname{diag}\left(\frac{\theta_1}{\beta}, \dots, \frac{\theta_N}{\beta}\right) \quad \theta_{ij} := \theta_i - \theta_j \quad u_n := \sum_{j=1}^N e^{in\theta_j}\right)$$

[Costa-Greenspan-Penedones-Santos '14]

At small μ and high temperatures,

the dual geometry is approximated by a non-extremal black-0 brane:

$$ds_{11}^2 = \frac{dr^2}{1 - \frac{r_0^7}{r^7}} + r^2 d\Omega_8^2 + \frac{R^7}{r^7} dz^2 + \left(1 - \frac{r_0^7}{r^7}\right) \left(2dz - \frac{r_0^7}{R^7}dt\right) dt$$

It must asymptote to the plane-wave geometry with $R \times SO(3) \times SO(6)$.

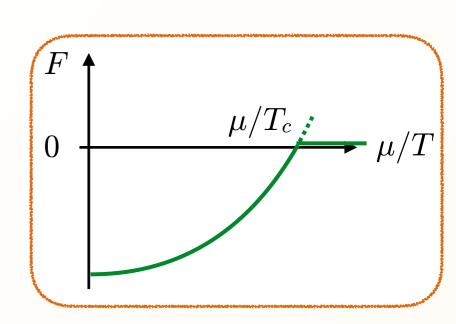
By regularity being imposed, the geometry dual to the thermal BMN with $U(1)_M \times R \times SO(3) \times SO(6)$ isometry, with perturbative μ -deformation, and with the simplest horizon topology ($S^1 \times S^8$)

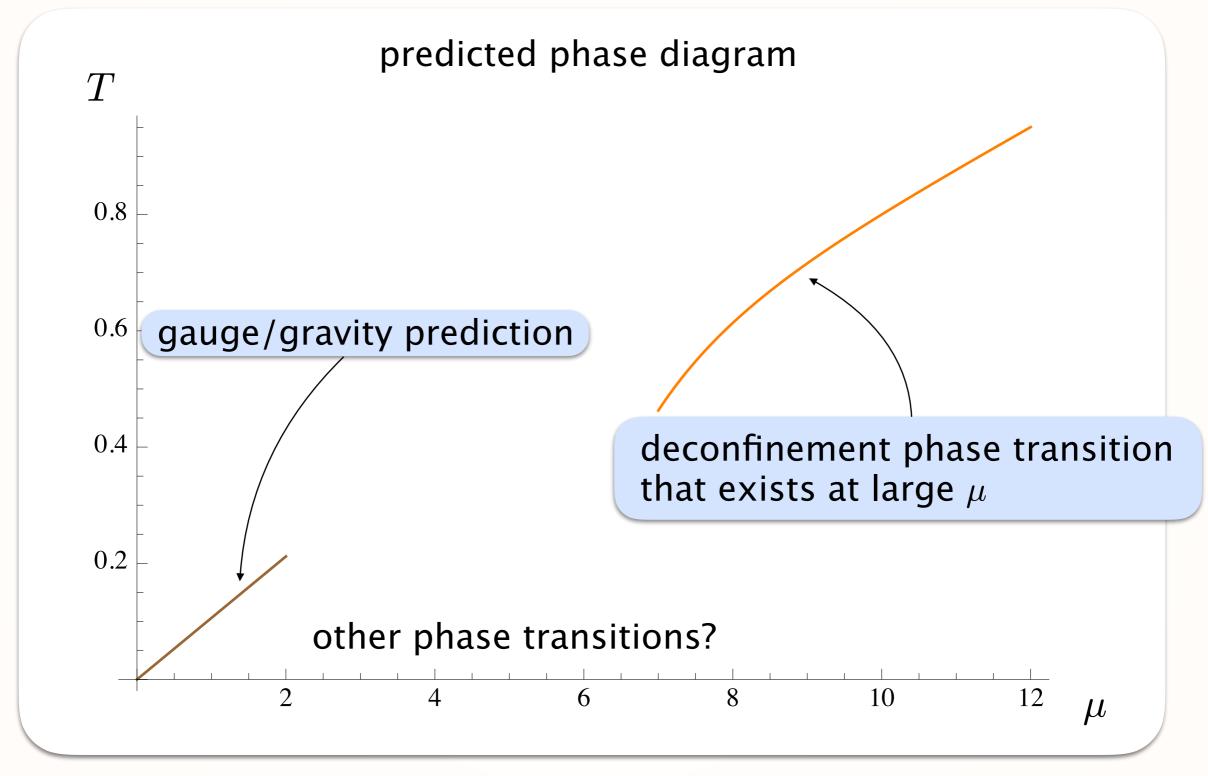
was computed.

 \leftrightarrow trivial vac. $X_a=0$

Critical temperature from the gravity side:

$$\frac{T_c}{\mu} = 0.105905(57)$$





It should have a rich structure at low temperatures, which should reflect geometrical information.

Computer simulations for Matrix theories

BFSS model (μ =0)

- Consistency with $E \sim T^{14/5}$, no confinement phase transition [Anagnostopoulos-Hanada-Nishimura-Takeuchi '07, Catterall-Wiseman '07, '08]
- α' (low–T) correction (non–lattice) [Hanada-Hyakutake-Nishimura-Takeuchi '08]
- Quantum (1/N) correction (non-lattice)[Hanada-Hyakutake-Ishiki-Nishimura '13]
- Further consistency checks of gravity prediction (lattice)

[Kadoh-Kamata '15, Filev-O'Connor '15]

- Reproduced the coeff. in the first term: $E=7.41\ T^{14/5}$ (lattice)

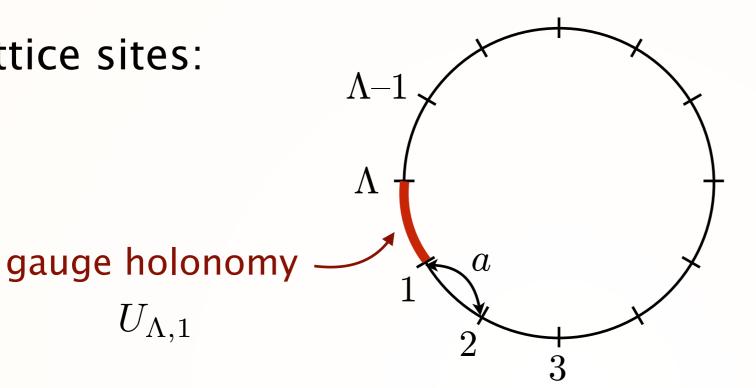
[Berkowiz-Rinaldi-Hanada-Ishiki-Shimasaki-Vranas '16]

BMN model

- Observed the deconfinement phase transition

[Catterall-Anders '10]

Lattice sites:



[Denjoe's talk]

The gauge field at the other links is 0.

$$U_{n,n+1} = 1$$

Discretisation of derivatives:

Third-order accuracy.

 $U_{\Lambda,1}$

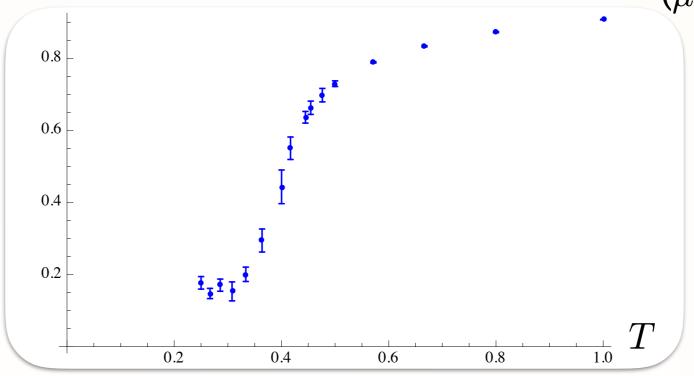
To avoid fermionic doublers, we use a Wilson mass term.

$$D_{\tau} + ra^{2n-1} \Sigma \triangle^n$$

* We choose $\Sigma = i\gamma^{456}$ (not in the SO(3)-directions) so that the dispersion relation doesn't have a term linear in μ .

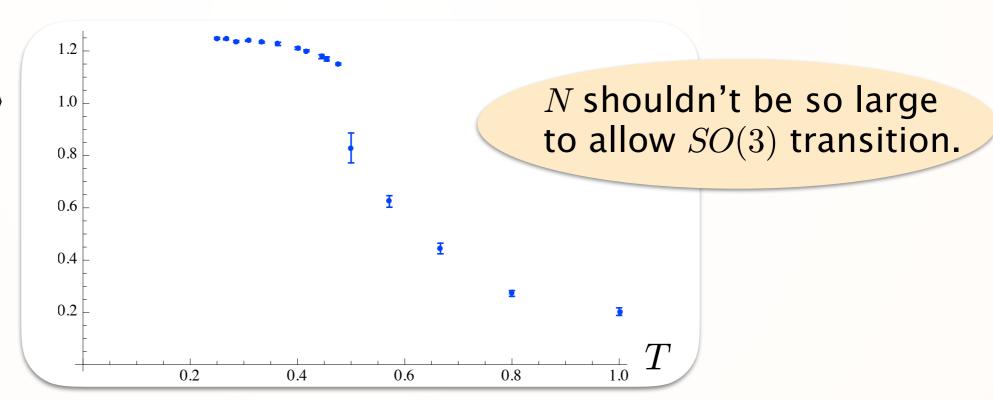
 $(\mu = 5, \Lambda = 24, N = 11)$

Polyakov loop: $\langle |P| \rangle$



Myers term:

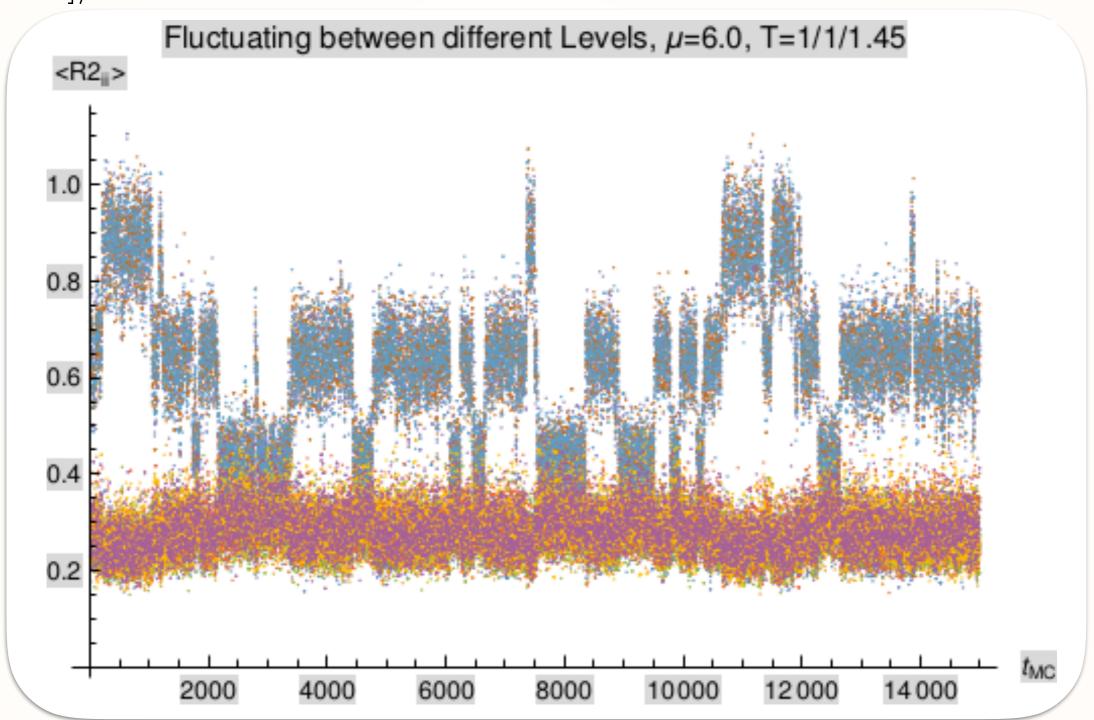
 $\sim \langle \operatorname{Tr} (iX_1[X_2, X_3]) \rangle$



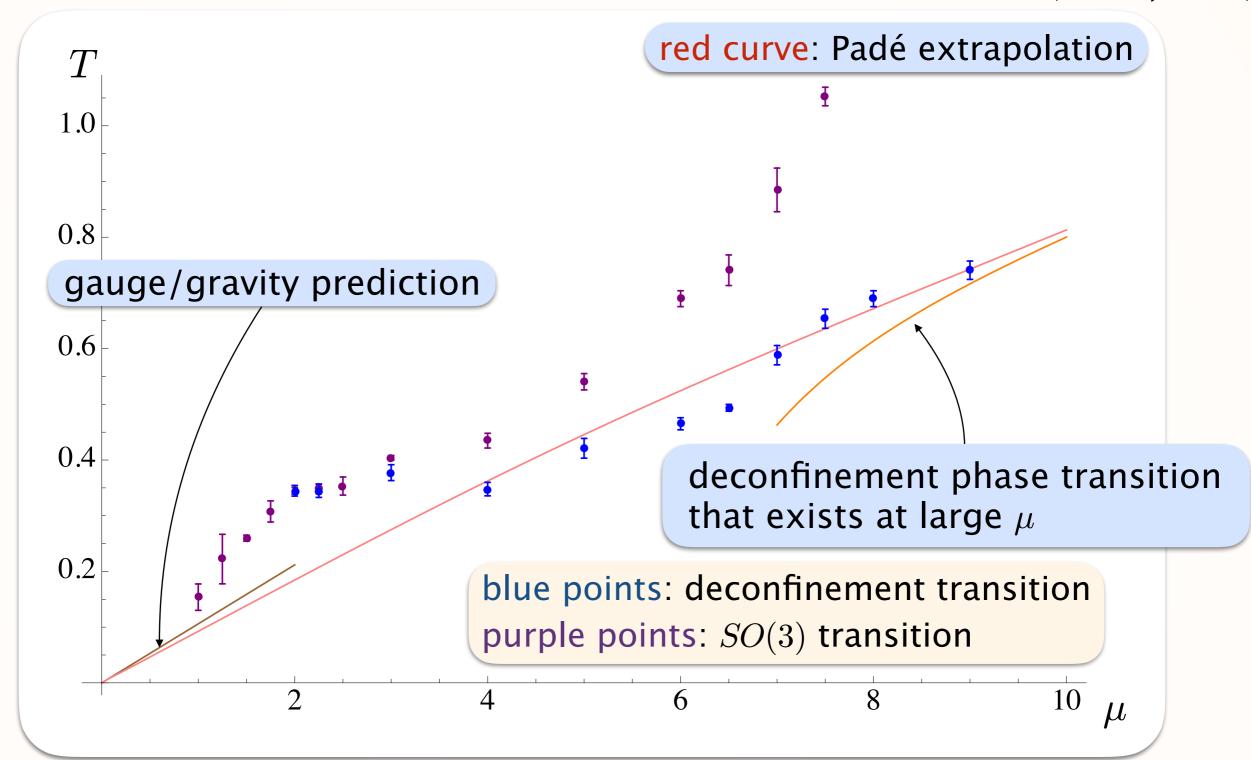
*SO(3) Casimir is also good to detect the transition.

 $\sim \operatorname{Tr}[X_i X_i]/N$

 $(\mu=6, \beta=1.45, \Lambda=24, N=8)$



 $(\Lambda = 24, N = 8)$



The simulation results agree with theoretical predictions.

4. Summary and Discussion

• We observed two phase transitions: the deconfinement transition and the SO(3) transition. They don't merge at least finite Λ and N at $2 \le \mu \le 7.5$.

Geometrical interpretation:

• Is the SO(3) transition "M5 \rightarrow M2" or "no geometry \rightarrow S^2 "?

Gauge/gravity:

- The critical temperature of the deconfinement transition looks dependent on SU(2) rep. By keeping the state at the trivial vacuum X_a =0, we may get the deconfinement transition much closer to the gravity prediction.
- The gravity dual at zero temperature has many bubbling solutions, which correspond to vacua in the BMN model.
 We expect a richer structure at lower temperatures, which should reflect geometrical information.