Universalities in gauge theories

B. Lucin

Existence of the 't Hooft large-N limit

 m_0^2++/σ Glueball masse and mass anomalous

Conclusions

SU(N) gauge theories beyond large N: universalities of spectral ratios

Biagio Lucini

NUMSTRINGS2018, ICTS, Bangalore, India, 1st February 2018

Outline

Universalities in gauge theories

B. Lucini

Existence of th 't Hooft large-N limit

 m_0^2++/σ Glueball masse and mass anomalous

- lacktriangledown Existence of the 't Hooft large-N limit
- 2 Universality of $m_{0^{++}}^2/\sigma$
- 3 Glueball masses and mass anomalous dimension
- Conclusions

Outline

Universalities in gauge theories

B. Lucini

Existence of the 't Hooft large- $\!N\!$ limit

 $m_{0}^{2}++/\sigma$ Glueball masse and mass anomalous dimension

- lacktriangledown Existence of the 't Hooft large-N limit
- 2 Universality of $m_{0^{++}}^2/\sigma$
- Glueball masses and mass anomalous dimension
- 4 Conclusions

The 't Hooft's large-N limit

Universalities in gauge theories

B. Lucin

Existence of the 't Hooft large- $\!N\!$ limit

 $m_{0}^{2}++/\sigma$ Glueball masses and mass anomalous dimension

Conclusions

The Conjecture

In the limit $N\to\infty$ and $g\to 0$ with $\lambda=g^2N$ fixed, physical quantities in SU(N) gauge theories can be expressed as functions of 1/N (if N_f fermions in the fundamental representations are present) or $1/N^2$ (in the Yang-Mills case), with a finite large-N limit and a convergent series expansion about that limit down to some $N=N^*$

Relevance

- Explanation of observed QCD features (OZI rules, stability of particles, . . .)
- Potential for analytic calculations
- Connection with gauge-string dualities

Support

Large-N extrapolation of lattice results

[For a review, see B. Lucini and M. Panero, Phys. Rept. 526 (2013) 93]

Large-N limit on the lattice

Universalities in gauge theories

B. Lucini

Existence of the 't Hooft large- $\!N\!$ limit

oniversality of $m_{\,\,0}^2++/\sigma$ Glueball masses and mass anomalous dimension

Conclusion

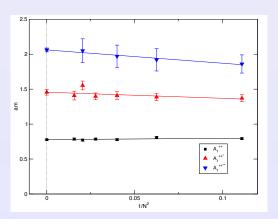
The lattice approach allows us to go beyond perturbative and diagrammatic arguments. In SU(N) YM, for a given observable

- Continuum extrapolation
 - Determine its value at fixed a and N
 - Extrapolate to the continuum limit
 - Extrapolate to $N \to \infty$ using a power series in $1/N^2$
- Fixed lattice spacing
 - ullet Choose a in such a way that its value in physical units is common to the various N
 - ullet Determine the value of the observable for that a at any N
 - Extrapolate to $N \to \infty$ using a power series in $1/N^2$

Study performed for various observables both at zero and finite temperature for $2 \le N \le 8$ (and N=17!)

The A^{++} glueball channel

Universalities in gauge theories


B. Lucini

Existence of the 't Hooft large- $\!N\!$ limit

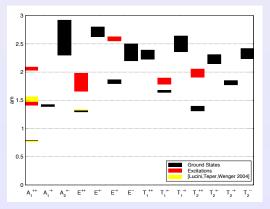
Universality of $m_0^2 + + \frac{1}{\sigma}$

Glueball masses and mass anomalous dimension

Conclusions

Lattice spacing fixed by requiring $aT_c=1/6$ [B. Lucini, A. Rago and E. Rinaldi, JHEP 1008 (2010) 119]

The glueball spectrum at $aT_c = 1/6$


Universalities in gauge theories

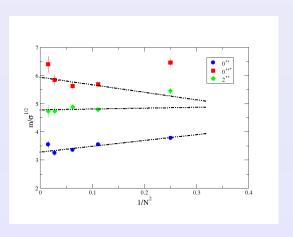
B. Lucini

Existence of the 't Hooft large- $\!N\!$ limit

Universality of m_0^2++/σ

Glueball masse and mass anomalous

[B. Lucini, A. Rago and E. Rinaldi, JHEP 1008 (2010) 119]


Large-N extrapolation of glueball masses

Universalities in gauge theories

B. Lucini

Existence of the 't Hooft large-N limit

Universality of m_0^2++/σ Glueball masse and mass anomalous

[B. Lucini, M. Teper and U. Wenger, JHEP 0406 (2004) 012]

Glueball masses at $N=\infty$

Universalities in gauge theories

B. Lucini

Existence of the 't Hooft large- $\!N\!$ limit

Universality of m_0^2++/σ Glueball masse and mass

Conclusions

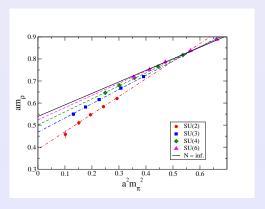
$$0^{++} \qquad \frac{m}{\sqrt{\sigma}} = 3.28(8) + \frac{2.1(1.1)}{N^2}$$

$$0^{++*} \qquad \frac{m}{\sqrt{\sigma}} = 5.93(17) - \frac{2.7(2.0)}{N^2}$$

$$\frac{m}{\sqrt{\sigma}} = 4.78(14) + \frac{0.3(1.7)}{N^2}$$

Accurate $N = \infty$ value, small $\mathcal{O}(1/N^2)$ correction

$m_{ ho}$ vs. m_{π}^2 at $N=\infty$


Universalities in gauge theories

B. Lucini

Existence of the 't Hooft large-N limit

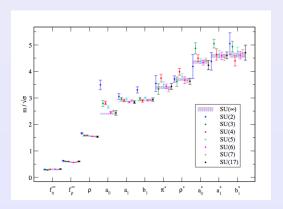
 $m_{0}^{2}++/\sigma$ Glueball masse and mass anomalous

Conclusions

[L. Del Debbio, B. Lucini, A. Patella and C. Pica, JHEP 0803 (2008) 062]

[see also G. Bali and F. Bursa, JHEP 0809 (2008) 110]

The meson spectrum approaching $N=\infty$


Universalities in gauge theories

B. Lucini

Existence of the 't Hooft large- $\!N\!$ limit

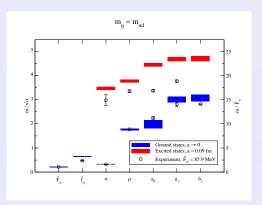
Universality of m_0^2++/σ Glueball mass

Conclusions

[G. Bali et al,, JHEP 1306 (2013) 071]

Comparison with QCD

Universalities in gauge theories


B. Lucini

Existence of the 't Hooft large- $\!N\!$ limit

Universality of m_0^2++/σ Glueball mass

Glueball masse and mass anomalous dimension

Conclusions

 $\sqrt{\sigma}$ fixed from the condition $\hat{F}_{\infty}=85.9~{\rm MeV},\,m_{ud}$ from $m_{\pi}=138~{\rm MeV}$ [G. Bali *et al*,, JHEP 1306 (2013) 071]

What do we learn?

Universalities in gauge theories

Existence of the 't Hooft large- $\!N\!$ limit

Universality of $m_{\,\,0}^2++/\sigma$ Glueball masses and mass anomalous dimension

- Lowest-lying mesons broadly compatible with QCD, excitations off by 20% (however, excitations less controlled in our calculation)
- The calculated large-N masses $m_{\rho}=753(14)~{
 m MeV}$ and of the $m_{\phi}=981(44)~{
 m MeV}$ are remarkably close to their experimental values $m_{\rho}=775$ and $m_{\phi}=1019~{
 m MeV}$
- Observed degeneracy of (ρ, a_0) and (a_1, π^*) (predicted by χ PT)

Outline

Universalities in gauge theories

B. Lucini

Existence of the 't Hooft large-N limit

Universality of $m_0^2++^{/\sigma}$

Glueball mass and mass anomalous dimension

- $oxed{1}$ Existence of the 't Hooft large-N limit
- 2 Universality of $m_{0^{++}}^2/\sigma$
- Glueball masses and mass anomalous dimension
- Conclusions

Casimir scaling of the string tension and of the scalar glueball mass

Universalities in gauge theories

B. Lucin

Existence of the 't Hooft large-N limit

Universality of m_0^2++/σ Glueball masses and mass

and mass anomalous dimension

Conclusions

The conjecture

In a Yang-Mills theory, the ratio m_{0++}^2/σ is proportional to the ratio of the quadratic Casimir of the adjoint over that of the fundamental representation of the gauge group, with the proportionality constant η being **universal** (i.e. dependent only on the dimensionality):

$$\frac{m_{0++}^2}{\sigma} = \eta(0^{++}) \frac{C_2(A)}{C_2(F)}$$

Relevance

Mechanisms of colour confinement

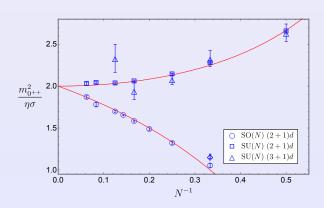
Support

- Lattice data on glueball masses
- Semi-analytic arguments

[Hong, Lee, Lucini, Piai and Vadacchino, Phys. Lett. B775 (2017) 89, arXiv:1705.00286]

Testing with lattice results

Universalities in gauge theories


B. Lucini

Existence of th 't Hooft large-N

Universality of $m_0^2 + + \sqrt{\sigma}$

Glueball masses and mass anomalous dimension

Conclusions

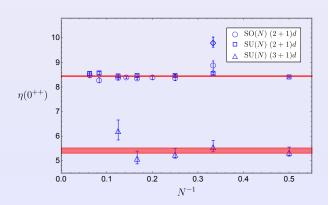

```
SU(N) data in d=3+1 from Lucini, Teper, Wenger, hep-lat/0404008
```

 $\mathsf{SU}(N)$ data in d=2+1 from Athenodorou, Lau, Teper, arXiv:1504.08126

 $\mathsf{SO}(N)$ data in d=2+1 from Lau, Teper, arXiv:1701.06941

(Also Sp(4) result in d=2+1 from Bennett $\it et\,al.$, arXiv:1712.04220)

Universality of η


Universalities in gauge theories

B. Lucini

Existence of the ${}^{\prime}$ t Hooft large-N limit

Universality of m_0^2++/σ

and mass anomalous

$$\eta(0^{++}) \equiv \frac{m_{0^{++}}^2}{\sigma} \cdot \frac{C_2(F)}{C_2(A)} = \begin{cases} 5.41(12) \,, \; \chi^2 \simeq 1 \; \text{for} \; d = 3+1 \\ 8.440(14)(76) \,, \; \chi^2 \simeq 1.9 \; \text{for} \; d = 2+1 \end{cases}$$

Some (semi-)analytic derivations

Universalities in gauge theories

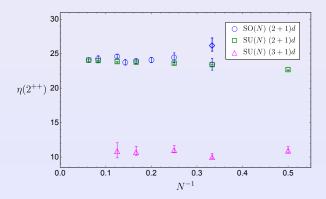
Existence of the 't Hooft large-N limit

Universality of m_0^2++/σ Glueball masses and mass anomalous

- Ground-state calculation in d=2+1 (Leigh, Minik, Yelnikov, 2007)
- Constituent gluon model (Buisseret, Bicudo, . . .)
- Bethe-Salpeter equation (Hong et al., 2017)
- Glueball as a dilaton (Hong et al., 2017)
- Sum rules (Hong et al., 2017)
- Coulomb gauge Hamiltonian (Greensite, private communication, 2017)

Casimir scaling of $m_{2^{++}}^2/\sigma$?

Universalities in gauge theories


B. Lucini

Existence of the 't Hooft large-N

Universality of $m_0^2++\sigma$

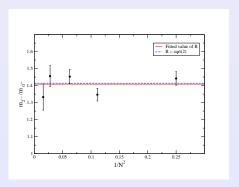
Glueball masses and mass anomalous

Conclusion:

Data are inconclusive: bad constant ansatz for d=2+1, plausible constant ansatz for d=3+1

Universality of $m_{2^{++}}/m_{0^{++}}$?

Universalities in gauge theories


B. Lucini

Existence of th 't Hooft large- N

Universality of $m_0^2++^{/\sigma}$

and mass anomalous

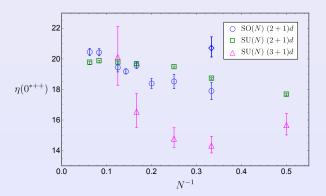
Conclusions

Fit result:
$$m_{2^{++}}/m_{0^{++}}=1.409(26),\,\chi^2\simeq 1.5$$

In d=3+1, is $m_{2^{++}}/m_{0^{++}}=\sqrt{2}$ independently of the gauge group?

(No) Casimir scaling of $m_{0^{++*}}^2/\sigma$

Universalities in gauge theories


B. Lucini

Existence of the 't Hooft large-N

Universality of m_0^2++/σ

Glueball masses and mass anomalous

Conclusions

No clear sign of universality in either d=2+1 or d=3+1

Outline

Universalities in gauge theories

B. Lucini

Existence of the 't Hooft large-N limit

Universality of $m_0^2++{}^{/\sigma}$

Glueball masses and mass anomalous dimension

- \blacksquare Existence of the 't Hooft large-N limit
 - 2 Universality of $m_{0^{++}}^2/\sigma$
- 3 Glueball masses and mass anomalous dimension
- 4 Conclusions

Mass anomalous dimension and glueballs

Universalities in gauge theories

B. Lucin

Existence of the 't Hooft large-N' limit

Universality of $m_0^2++\sigma$

Glueball masses and mass anomalous dimension

Conclusions

The conjecture

In an asymptotically free $\mathrm{SU}(N)$ gauge theory with N_f fermions in the fundamental or a two index irreducible representation of the gauge group, the anomalous dimension of the fermion condensate is a monotonically increasing function of the glueball mass ratio m_{2++}/m_{0++}

Relevance

Studies of nearly-conformal and conformal gauge theories in relation to novel strongly interacting dynamics beyond the standard model

Support

- Gauge-string duality
- Lattice calculations
- [A. Athenodorou et al., JHEP 1606 (2016) 114, arXiv:1605.04258]

Phases of a gauge theory

Universalities in gauge theories

B. Lucin

Existence of the 't Hooft large-N limit

Universality of m_0^2++/σ

Glueball masses and mass anomalous dimension

Conclusions

At fixed N a critical number of flavours N_f^{cu} exists above which asymptotic freedom is lost

Banks and Zaks conjectured that an N_f^{tu} exists such that a non-trivial infrared fixed point appears for $N_f^{tu} \leq N_f \leq N_f^{cu}$ (conformal window)

At fixed fermion representation N_f^{tu} depends on the number of flavours

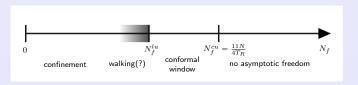
Near the BZ point naive scaling arguments can not be applied and walking can arise

Phases of a gauge theory

Universalities in gauge theories

B. Lucin

Existence of the 't Hooft large-N limit


Universality of m_0^2++/σ

Glueball masses and mass anomalous dimension

Conclusions

At fixed N a critical number of flavours N_f^{cu} exists above which asymptotic freedom is lost

Banks and Zaks conjectured that an N_f^{lu} exists such that a non-trivial infrared fixed point appears for $N_f^{lu} \leq N_f \leq N_f^{cu}$ (conformal window)

At fixed fermion representation N_f^{lu} depends on the number of flavours

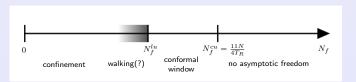
Near the BZ point naive scaling arguments can not be applied and walking can arise

Phases of a gauge theory

Universalities in gauge theories

B. Lucin

Existence of the ${}^{\prime}$ t Hooft large-N limit


Universality of m_0^2++/σ

Glueball masses and mass anomalous dimension

Conclusions

At fixed N a critical number of flavours N_f^{cu} exists above which asymptotic freedom is lost

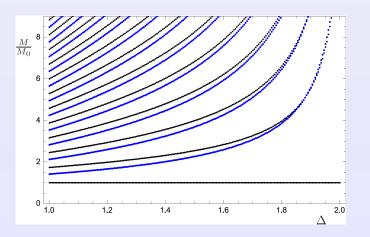
Banks and Zaks conjectured that an N_f^{lu} exists such that a non-trivial infrared fixed point appears for $N_f^{lu} \leq N_f \leq N_f^{cu}$ (conformal window)

At fixed fermion representation N_f^{lu} depends on the number of flavours

Near the BZ point naive scaling arguments can not be applied and walking can arise

Glueball masses and anomalous dimension in the GPPZ model

Universalities in gauge theories



Existence of the 't Hooft large-N limit

Universality of $m_0^2++{}^{/\sigma}$

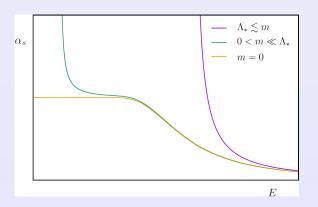
Glueball mass and mass anomalous

Conclusion

Mass of the 2^{++} glueball monotonically increases with $\Delta=1+\gamma^{\star}$

Near-conformality and lattice calculations

Universalities in gauge theories



Existence of th 't Hooft large- I limit

Universality of $m_0^2++{}^{/\sigma}$

Glueball masses and mass anomalous dimension

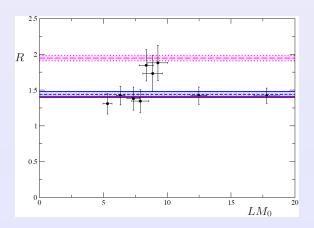
Conclusions

Strategy

Compute $R=m_{2^{++}}/m_{0^{++}}$ as a function of the box size measured in units of $m_{0^{++}}$

Results for SU(2) with two adjoint flavours

Universalities in gauge theories


B. Lucin

Existence of the 't Hooft large-N limit

Universality of $m_0^2++^{/\sigma}$

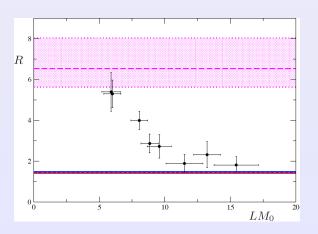
Glueball masses and mass anomalous dimension

Conclusions

Reference value $\gamma^{\star}=0.371(20)$ [value from Del Debbio $\it et al., arXiv:1512.08242]$

Results for SU(2) with one adjoint flavour

Universalities in gauge theories


B. Lucini

Existence of the 't Hooft large-N limit

Universality of m_0^2++/σ

Glueball mass and mass anomalous dimension

Conclusions

Reference value $\gamma^{\star}=0.925(25)$ [value from Athenodorou at al., arXiv:1412.5994]

Outline

Universalities in gauge theories

B. Lucini

Existence of th 't Hooft large-N limit

 m_0^2++/σ Glueball masse and mass

- Existence of the 't Hooft large-N limit
- 2 Universality of $m_{0^{++}}^2/\sigma$
- Glueball masses and mass anomalous dimension
- 4 Conclusions

Conclusions

Universalities in gauge theories

B. Lucin

Existence of the
't Hooft large-
N

Iimit

 $m_{0}^{2}++/\sigma$ Glueball masses and mass anomalous dimension

Conclusions

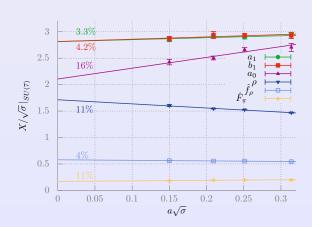
Numerical results obtained in the framework of lattice gauge theories suggest that

- A large-N limit à la 't Hooft can be constructed in SU(N) gauge theories, with finite-N observables being close (in the sense of a perturbative expansion in 1/N or 1/N²) to the latter all the way down to the physical case of SU(3)
- In Yang-Mills gauge theories, the ratio of the scalar glueball mass squared over the string tension is proportional to a ratio of quadratic Casimirs, with the proportionality constant being universal (i.e. depending only on the dimension)
- The ratio of the tensor and scalar glueball is $\sqrt{2}$
- In theories with fermions in the fundamental or a two-index representation, the ratio of the tensor over the scalar glueball is a universal monotonically increasing function of the chiral condensate anomalous dimension

Future directions include

- to further explore numerically those conjectures
- to obtain more information from analytic arguments
- to understand the mechanisms that determine those universalities
- to identify potential violations

Continuum meson spectrum – SU(7)


Universalities in gauge theories

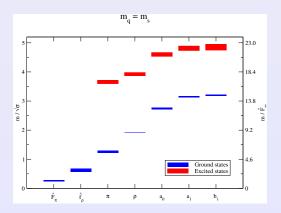
B. Lucini

Existence of the 't Hooft large-N limit

Universality of $m_0^2++^{/\sigma}$

Glueball masse and mass anomalous

The strange meson spectrum


Universalities in gauge theories

B. Lucini

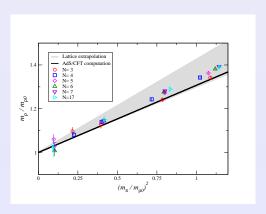
Existence of the 't Hooft large-N limit

Universality of m_0^2++/σ

Glueball masses and mass anomalous

$$m_s$$
 fixed from $m_\pi(m_s) = (m_{K^\pm}^2 + m_{k^0}^2 - m_{\pi^\pm}^2)^{1/2} = 686.9 \; \mathrm{MeV}$

Meson masses from gauge-string duality


Universalities in gauge theories

B. Lucini

Existence of the 't Hooft large- N limit

Universality of m_0^2++/σ Glueball masses and mass

Conclusions

Ads/CFT data from Erdmenger *et al.*, Eur.Phys.J. A35 (2008) 81-133 [arXiv:0711.4467]

Universalities in gauge theories

B. Lucin

Existence of the 't Hooft large-N limit

 m_0^2++/σ Glueball masse and mass

Conclusions

Relevant quadratic Casimir ratios

$$\frac{C_2(A)}{C_2(F)} = \begin{cases} \frac{2N^2}{N^2 - 1} \text{ for } SU(N) \\ \\ \frac{2(N-2)}{N-1} \text{ for } SO(N) \\ \\ \frac{4(N+1)}{2N+1} \text{ for } Sp(2N) \end{cases}$$