Twisted matrix models: Recent results and future prospects

A. González-Arroyo

Instituto de Física Teórica UAM/CSIC Departamento de Física Teórica, UAM

Collaborators: M. Okawa, M Garcia Perez , M. Koren, L. Keegan and F. Chamizo

February 2, 2018

1

¹Talk given at ICTS February 2018

Twisted matrix models

- Class of matrix models which, in the large N limit, are <u>claimed</u> to be equivalent to large N lattice field theories theories at infinite volume.
- Their equivalence at all values of the lattice coupling implies their equivalence in the continuum limit also.
- A common feature of these theories is the presence of integer fluxes in their formulation.
- These theories can be considered in some cases regularized versions of non-commutative field theories.

TEK model (GA Okawa 1983)

This is the first of these models and the best studied. The partition function is this

$$Z = \prod_{\mu} \left(\int dV_{\mu} \right) \, \mathrm{e}^{-S_{\mathrm{TEK}}}$$

with

$$S_{
m TEK} = -rac{N}{\lambda_L} \sum_{\mu,
u} z_{\mu
u} {
m Tr}(V_\mu V_
u V_\mu^\dagger V_
u^\dagger) + {
m h.c.}$$

and
$$z_{\mu\nu}=z_{\nu\mu}^*=e^{2\pi i n_{\mu\nu}/N}$$
, where $n_{\mu\nu}\in (Z/NZ)^d$

 \clubsuit SU(N) Lattice gauge theory with twisted boundary conditions in a lattice of size $L^d=1$. Obviously bigger sizes L>1 can also be considered.

The claim is that this matrix model with an adequate choice of the twist tensor $n_{\mu\nu}$ is equivalent to large N gauge theories at infinite volume.

Choice of twist

- \clubsuit The non-perturbative proof of equivalence (*Eguchi Kawai* 1982) demands that the model remains invariant under a sufficiently large subgroup of the center symmetry group \mathbb{Z}_N^d $V_\mu \longrightarrow z_\mu V_\mu$
- Our analysis in perturbation theory (GA Okawa 1983) demands that twist tensor is orthogonal and irreducible.

In 4D a simple symmetric example: $N = \hat{L}^2$ and $|n_{\mu\nu}| = k\hat{L}$ and k coprime with \hat{L} .

QUESTION

How to choose the flux k to ensure center symmetry and also to minimize finite N corrections?

Finite N corrections in Perturbation Theory

Perturbation theory gives information on the effect of finite N. Illustrated by the dependence of $R \times T$ Wilson loops on L, N and k.

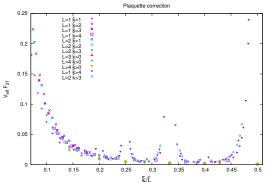
- Part of the corrections amount to finite size effects on a lattice of size $L_{\rm eff}^4$ (with $L_{\rm eff}=L\sqrt{N}$). Thus loop sizes $R\ll L_{\rm eff}$. This determines the range of \sqrt{N} values to be those of standard lattice calculations: $\sqrt{N}=17,\ldots,29,37$.
- The second correction comes from inefficient suppression of non-planar contributions.
 The choice of k and k̄ can be very important

The choice of k and k can be very important $(\bar{k}k = 1 \mod N)$.

Perturbative calculation of Wilson loops to order λ^2 (Garcia Perez, AGA, Okawa 2017): Non-planar diagram contribution goes as $\delta W_2(R \times R) \sim (\frac{R}{L_{\rm eff}})^4 c(k, N, L)$

Non Planar contribution to order λ^2

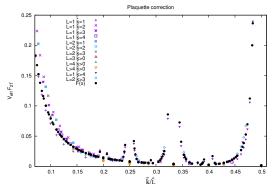
Plot of c(k, N, L), the coefficient in $1/L_{\rm eff}^4$, as function of \bar{k}/\sqrt{N}



Strong dependence on \bar{k}/\sqrt{N}

Non Planar contribution to order λ^2

The coefficient is mostly controlled by $Z_{\min} = \min_n n ||n\bar{k}/\sqrt{N}||$ Plot of c(k, N, L) compared with $F(\bar{k}/N) = c_0/Z_{\min}^{2.5}$ with $c_0 = 0.00025$



Slight dependence on co

Results at intermediate λ

- Signs of center symmetry breaking observed (*Ishikawa-Okawa, Vairinhos-Teper, Azeyanagi et al, Bietenholz et al*)
- All problematic cases correspond to $k/\hat{L},~\bar{k}/\hat{L} < 0.1$ (GA, Okawa 2010).
 - No signs of symmetry breaking observed whenever k/\hat{L} , $\bar{k}/\hat{L} > 0.1$ for $N < 37^2 = 1369$
- Direct test of equivalence (AGA, Okawa 2014)

Testing the equivalence

- Direct test on the lattice (AGA, Okawa 2014):
 - a) $R \times R$ Wilson loops ($L^4 = 16^4$ lattice with PBC,

$$b = 1/\lambda_L$$
). Extrapolated from $N = [8, 16]$

b) TEK $L = 1^4$ lattice N = 1369

	R=1 b=0.36	R=4 b=0.36	R=1 b=0.37	R=4 b=0.37
a)	0.558012(12)	0.005851(26)	0.578978(17)	0.009966(45)
b)	0.558019(11)	0.005861(13)	0.578959(5)	0.009926(3)

• Direct test in the continuum limit (AGA, Okawa 2013) String tension from Wilson loops: $\Lambda_{\overline{MS}}/\sqrt{\sigma}$ 0.515(3)

N=3.5.6.8 $L^4 = 32^4$ PBC extrapolated

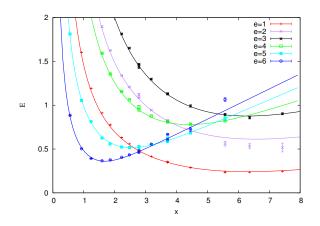
0.513(6)

TFK I =1 N=841

Lessons from SU(N) gauge theory on $T_2 \times \mathbb{R}$

- This simpler system serves a testing ground of the interplay between L, N and $n_{12} = k$.
- The main observables are the ground state energies in each electric flux sector $E(\vec{e}, k, N, L, \lambda) = \lambda \mathcal{E}(\vec{e}, k, N, x)$ with $x = \lambda NL/(4\pi)$.
- For some values of k and N there is a condensation of some fluxes at intermediate values of k: Tachyonic instabilities
- By Morita duality this system is a NC field theory on the non-commutative torus of size LN and NC dimensionless parameter $\bar{\theta}=\bar{k}/N$
- Our lattice study (*Garcia Perez*, *GA*, *Koren*, *Okawa*) exploring $N \in [5, 89]$, $L \in [1, 28]$ and $x \in [0.2, 8]$ shows that \mathcal{E}^2 described by a function $G_{\text{pert}} + G_{\text{string}} \sim \left(\frac{a+bx+cx^2+dx^4}{x^2}\right)$

Size dependence of energies N = 17 k = 3



Implications (Chamizo GA 2017)

The minimum of $\min_{\vec{e}} \mathcal{E}(\vec{e})$ is a function of $Z_{\min}(k, N)$ (as before with $\sqrt{N} \to N$)

- If $Z_{\min}(k, N) > 0.1$ there are no tachyonic instabilities.
- For almost all N there exist k which avoids instabilities (Huang 2015)
- Removing the almost is equivalent to an unproven mathematical conjecture (Zaremba 1974)
- The optimal choice (maximal Z_{\min}) is given by the Fibonacci numbers: $N=F_p$ and $k=\bar{k}=F_{p-2}$
- Defining the NC theory on the NC torus as limit of ordinary theories without tachyonic instabilities (Alvarez-Gaumé Barbón 2001) is only possible for irrationals belonging to Cantor-type set (zero measure, positive Haussdorff dimension).

What can be done?

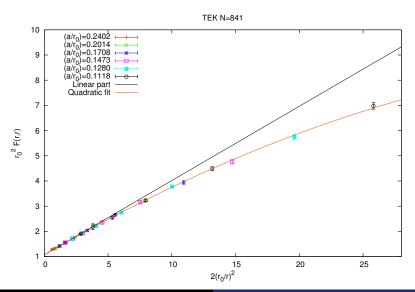
Alternative to extrapolations to compute physical quantities of the large N gauge theory. Apart from string tension

A continuum observable for Wilson loops

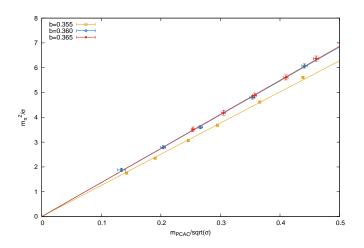
$$F(r) = -\frac{\partial \log W(r,t)}{\partial r \partial t}\Big|_{t=r}$$

- The Meson spectrum and decay constants. The method has been tested and continuum limit results are under way (*Garcia Perez, GA, Okawa 2016, 2018?*)
- The gradient flow running coupling (Garcia Perez, GA, Keegan, Okawa 2015)
- Others: Yang-Mills at finite temperature (Das and Kogut),
 Chiral condensate, Glueball spectrum(?)
- Large N Yang-Mills theory in 2 and 3 dimensions is been studied: Mesons and Glueballs!!
- Non-perturbative behaviour of Non-commutative Field theories

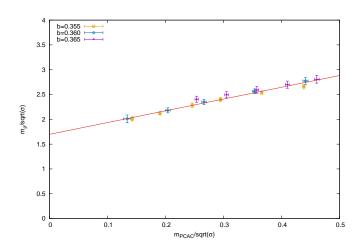
Wilson loop observable

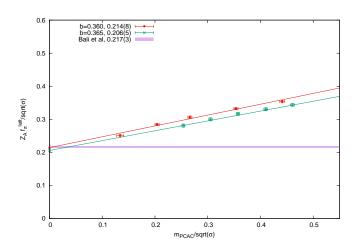


Pion mass and Chiral symmetry



Rho mass





Other twisted matrix models

- A Yang-Mills theory in d dimensions with N_f fermions in the adjoint rep (GA Okawa 2013)
 - Mass anomalous dimension for $N_f=2$: // $\gamma_*=0.269\pm0.002\pm0.05$ (Garcia Perez, GA, Keegan, Okawa 2015)
 - Fundamental Meson spectrum

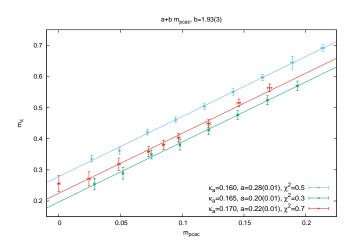
$\mathcal{N} = 1$ SUSY Yang-Mills?

- \spadesuit Yang-Mills theory in d dimensions in the Veneziano limit for certain values of N_f/N
- ♣ Non-gauge matrix models in the large *N* limit such as principal chiral model in *d* dimensions.

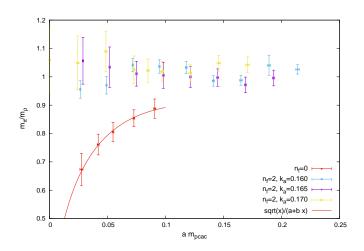
$$\partial_{\mu}\Phi \longrightarrow \Gamma_{\mu}\Phi\Gamma_{\mu}^{\dagger}$$

with
$$\Gamma_{\mu}\Gamma_{\nu}=e^{2\pi i/N}\Gamma_{\nu}\Gamma_{\mu}$$

Pion mass



Mass Ratio $m_ ho/m_\pi$



Conclusions

• Twisted matrix models provide a useful instrument to study of large N gauge and non-gauge theories in the large N limit. They provide an alternative to extrapolations for pure gauge systems. Their advantage is crutial in theories with dynamical fermions. To minimize finite N errors it is convenient to choose fluxes having large values of Z_{\min} .