Topology and Strongly Interacting Fermions

Simon Catterall (Syracuse)

ICTS Bangalore, 2018

Goal

Describe a continuum theory of strongly interacting fermions which exhibits an exotic phase structure:

- For strong coupling vacuum populated by four fermion condensate.
- This breaks no symmetries but nevertheless fermions acquire masses
- Argue that this phase is separated from a massless symmetric phase by one or more phase transitions.
- One of these transitions can be understood as arising from the condensation of topological defects in an auxiliary field.
- Show that the model discretizes to a staggered fermion model that has been examined recently using numerical simulation

A staggered fermion model

Four *reduced* staggered fermions in 4D coupled thru $G^2\chi^1\chi^2\chi^3\chi^4$ (model proposed by Chandrasekharan)

Massless phase *G* small. *Massive* phase $G \to \infty$ Both phases $<\chi^1\chi^2>=0$

Simon Catterall (Syracuse)

Questions ..

- Is massive symmetric phase lattice artifact ? Is it bordered by 1st order phase transition ?
- Is there an intermediate symmetry broken phase ? (NJL scenario)
- If phase transition(s) continuous what is continuum theory ?

In this talk:

- Construct a continuum theory which yields this lattice model
- Show how topological defects can explain the four fermion condensate phase and the presence of a fermion mass at strong coupling.
- Argue that possible to modify model so that a single BKT-like transition separates massless from massive phases. New CFT for strongly interacting fermions in 4D?

Starting Point

Consider 4 Majorana spinors with action

$$S = \int d^4 x \, \sum_{A=1}^4 \overline{\psi}^A \gamma . \partial \, \psi^A$$

The global symmetry is $G = SO_F(4) \times SO_{Lorenz}(4)$ under which

$$\psi \to L_{\alpha\beta} \psi^B_{\beta} F^T_{BA}$$

Focus on diagonal subgroup *D* where L = F under which $\psi \rightarrow \Psi$ with Ψ a 4 × 4 matrix

$$S = \int d^4 x \operatorname{Tr} (\Psi \gamma . \partial \Psi) \quad \text{with } \overline{\Psi} = C \Psi^T C^{-1} = \Psi$$

take 4 copies and add SO(4) invariant interaction

$$\delta S = G^2 \int d^4 x \operatorname{Tr} \left(\Psi^a \Psi^b \right) \operatorname{Tr} \left(\Psi^c \Psi^d \right) \epsilon^{abcd}$$

Notice ..

Interaction breaks global symmetry *G* down to diagonal subgroup *D* (twisted Lorentz symmetry) Additional *SO*(4) symmetry prevents bilinear mass terms

Introduce lattice

$$\Psi^{a}(y) = \sum_{b}^{16} \gamma^{x+b} \chi^{a}(x+b) \text{ with } b_{\mu} = 0, 1 \quad \gamma^{x+b} = \prod_{\mu=1}^{4} \gamma^{x_{\mu}+b_{\mu}}_{\mu}$$

Let $\partial_{\mu} \to \Delta_{\mu}^{S}$ and do traces (note: assign 16 components of continuum fermion to unit hypercube of lattice)

Find staggered four fermion model

Auxiliary field and symmetry breaking

$$S = S_0 + \int d^4x \, \left[G \sigma_+^{ab} \text{Tr} \left(\Psi^a \Psi^b \right) + \frac{1}{2} \left(\sigma_+^{ab} \right)^2 \right]$$

where $\sigma_{+}^{ab} = \frac{1}{2} \left(\sigma^{ab} + \frac{1}{2} \epsilon^{abcd} \sigma^{cd} \right)$ transforms in adj rep of $SU_{+}(2)$ with $SO(4) = SU_{+}(2) \times SU_{-}(2)$.

Integrate over fermions $\rightarrow Pf(\gamma . \partial + G\sigma_+)$. Invariance under $SU_-(2)$ makes all eigenvalues doubly degenerate - no sign problem. Effective action:

$$S_{\rm eff}(\sigma_+) = \frac{1}{2}\sigma_+^2 - \frac{1}{4}\mathrm{tr}\ln\left(-\partial^2 + G^2\sigma_+^2 + G\gamma.\partial\sigma_+\right)$$

Set σ_+ constant – for $G > G_c$ symmetry breaks $SU_+(2) \rightarrow U(1)$

 $\sigma_{+}^{a} = \mu n^{a} \tau^{a}$ with $n^{a} n^{a} = 1$ vacuum manifold S^{2}

Simon Catterall (Syracuse)

Effective Action $S_{\text{eff}}(\sigma_+)$

Assume broken phase and expand in powers of $\frac{1}{m}$ with $m = \mu G$

$$S_{\rm eff} = \frac{1}{m^2} \int d^4x \, \left(\partial_\mu n^a\right)^2 + \frac{1}{m^4} \int d^4x \, \left(\epsilon^{abc} \partial_\mu n^a \times \partial_\nu n^b\right)^2 + \dots$$

Fadeev-Skyrme term

Analysis easier if change variables:

$$n^{a}(x)\sigma^{a} = U^{\dagger}(x)\sigma_{3}U(x)$$

Mapping invariant under

Local U(1)

$$U(x) \rightarrow e^{i\sigma_3\beta(x)}U(x)$$

Also global SU(2) symmetry: $U(x) \rightarrow U(x)G$

Simon Catterall (Syracuse)

Hopf defects

$$S_{\text{eff}} = rac{1}{m^2} \int d^4 x \operatorname{tr} \left[(D_\mu U)^\dagger (D_\mu U) \right] + rac{1}{m^4} \int d^4 x F_{\mu\nu}^2$$

where $D_{\mu} = \partial_{\mu} + iA_{\mu}\sigma_3$.

Topological defects

Set $D_{\mu}U = 0$ for large *r* to avoid action $S \sim L^2$

Hopf map: $\Pi_3(S^2) = Z$

Simon Catterall (Syracuse)

Role of defects ?

Topological charge gotten from $\int \epsilon_{\mu\nu\rho\lambda} F_{\mu\nu} F_{\rho\lambda}$.

Action $\int F_{\mu\nu}^2$ of single defect $S_{
m Hopf} \sim rac{b}{m^4} \log V$

Recall 2D XY model

Single vortex has log divergent action. Pair of vortices has finite action and logarithmic interaction

Conjecture something similar here - pairs of Hopf-antiHopf defects bind in pairs. Play no role for small *G* but unbind to populate vacuum as $G \rightarrow \infty$.

Transition when entropy log V of single defect outweighs action cost $1 > \frac{b}{m^4}$ i.e $\mu(G_c)G_c \sim b^{\frac{1}{4}}$

Fermion acquires mass in background of defect

$$\begin{array}{lll} G_F(x,y) &=& \langle \Psi^a(x)\Psi^a(y)\rangle \\ &=& \mathrm{tr}\left[\frac{-\gamma_\mu\partial_\mu+m\,n^a\sigma^a}{(-\partial_\mu^2+m^2+mP)}\right] \end{array}$$

where

$${m P} = \gamma_\mu \left(\partial_\mu U^\dagger(x) \sigma_3 U(x) + U^\dagger(x) \sigma_3 \partial_\mu U(x)
ight)$$

Far from core P = 0 and

$$G_F(x,y) = rac{-\gamma_\mu \partial_\mu}{-\Box + m^2}$$

Unusual fermion propagator.. Fermions acquire mass without breaking symmetries !

(1)

Phase structure

As G increased generically expect 3 phases

- G < G¹_c 16 free massless Majorana fermions. Trivial IR fixed point. Lorentz and flavor symmetries restored.
- G¹_c < G < G²_c Phase with broken SO(4) symmetry. Fermion mass determined by bilinear condensate. Conventional NJL scenario.
- G > G_c² Four fermion condensate. Auxiliary field picture proliferation of topological defects. Fermions acquire masses propagating in this background. IR behavior depends on whether phase transition at G_c² continuous ..?

BKT transition

Suppose I add a bare gradient term $\int DUDU^{\dagger}$ term. Tune its coefficient so only Maxwell term in S_{eff}

Setting $U = e^{i\theta^a \sigma^a}$ $S_{\text{eff}} = \frac{1}{m^4} \int d^4 x \, \left(\theta^3 \Box^2 \theta^3\right)$ $< n^3(x) > \sim \exp < \theta^3(x) \theta^3(x) >$ $= \exp\left(m^4 \int_{1/L} \frac{d^4 k}{k^4}\right) = \exp - m^4 \ln L = L^{-m^4}$

Broken phase removed. Single BKT-like phase transition between symmetric massless and massive phases ...

Simon Catterall (Syracuse)

Summary

- Introduced a model based on K\u00e4hler-Dirac fermions that discretizes to staggered four fermion model studied recently.
- In broken phase topological Hopf defects are possible. Must occur in pairs for finite action. Fermions acquire mass at strong coupling in background of these defects. No symmetry breaking needed.
- Condensation of defects equivalent to four fermion condensate.
- Argued that by tuning out leading term in *S*_{eff} can remove any symmetry broken intermediate phase.
- In this case expect a single BKT-like transition between two symmetric phases. New 4D CFT!
- Question: is this theory Lorentz invariant naturally only invariant under twisted Lorentz symmetry...

What (else) might this be good for ?

- Lattice models that use carefully chosen quartic interactions to gap out fermions without breaking symmetries receiving a lot of attention in CM literature (Kitaev ...). SPT phases, topological insulators ...
- In lattice gauge theory there was an old proposal to build chiral gauge theories by using quartic interactions to gap out (doubler) mirror states (Eichten-Preskill 1986). In the old days this failed because always generated symmetry broken phase associated with a bilinear condensate. Can this model evade that problem ?
- Caution: one cannot simply trade staggered fermions for naive Weyl fermions

$$\epsilon_{abcd}\psi^{a}_{\alpha}\psi^{b}_{\beta}\psi^{c}_{\gamma}\psi^{d}_{\delta}=\mathbf{0}$$

Basic idea (recast a la Golterman)

Naive Weyl lattice fermions transforming in complex rep of gauge group

eg **16** of SO(10) and $S_0 = \sum_{x,\mu} \psi \sigma_\mu \Delta_\mu \psi$ Additional states - $\Delta_\mu \rightarrow \sin a k_\mu = 0$ for $k_\mu \sim 0$ or $k_\mu \sim \frac{\pi}{a}$

doublers with $ka \sim O(1)$ render theory vector-like How to remove them ? Cannot use a Wilson term since theory is chiral

Four fermi terms

Generalized Wilson

For Weyl ψ gauge invariant four fermi terms possible. Use to construct generalized Wilson term that couples strongly to doublers

$$S = S_0 - \lambda \sum_x \Delta \left(\psi^T \sigma_2 T^a \psi \right)^2$$
 where

$$\Delta \psi_i \psi_j \psi_k \psi_l = \sum_{\pm \mu} \left(S_{\mu} \psi_i \psi_j \psi_k \psi_l + \psi_i S_{\pm \mu} \psi_j \psi_k \psi_l + \dots - 4 \psi_i \psi_j \psi_k \psi_l \right)$$

with $S_{\mu}\psi(x) = \psi(x + \mu) + \psi(x - \mu)$ and T^a a 16 × 16 matrix that projects **16** × **16** → **10** (real rep)

Phases ..

λ small

Massless primary Weyl field plus doublers - vectorlike free theory

 $\lambda \to \infty$

Expect a massive phase in which would be doublers pair with composite $\Psi = \psi \psi \psi$ fermions in complex conjugate rep to form massive Dirac fermions.

Old hope ..

Single undoubled Weyl field survives after appropriate tuning in the continuum limit. Crucial that SO(10) not broken spontaneously ...

In the old days this never worked – massive four fermion phase separated by phase of broken SO(10) symmetry. Latter phase ensures all fermions acquire mass.

Perhaps the new model can be tuned to gap the doublers without breaking symmetries ?

Simplest idea won't work:

$$\epsilon_{abcd}\psi^{a}_{\alpha}\psi^{b}_{\beta}\psi^{c}_{\gamma}\psi^{d}_{\delta}=0$$

We need to think harder ... Domain wall setup ?

Backup: mass scans in staggered fermion model

Simon Catterall (Syracuse)