ICTS program "Non-equilibrium Statistical Physics", Bangalore (2015)

Phonons in 1D anharmonic chains

Yong Zhang The Department of Physics, Xiamen Univ., China yzhang75@xmu.edu.cn 2015.11.6

With Hong Zhao, Jiao Wang, and Weicheng Fu

Outline

Theoretical predictions about phonons in 1D lattices

• Simulation results

• Conclusions

What is a phonon?

• Phonons as quasiparticles

$$H = \sum_{i} \frac{p_i^2}{2} + V(x_i - x_{i-1})$$
$$V(x) = \frac{1}{2}x^2$$

 $\frac{A}{2}e^{i\omega_h t}$

$$E_n = (n + \frac{1}{2})\hbar\omega$$

$$\frac{1}{\exp\!\!\left(\frac{\hbar\omega}{k_{\scriptscriptstyle B}T}\right) - 1}$$

$$Q_{k} = (\frac{2}{N})^{1/2} \sum_{i=1}^{N} x_{i} S_{i}^{k} \qquad \qquad \omega_{k} = 2\sqrt{\frac{K}{m}} \sin(\frac{k\pi}{2N})$$
$$P_{k} = \dot{Q}_{k} \qquad \qquad E_{k} = \frac{1}{2} \omega_{k}^{2} Q_{k}^{2} + \frac{1}{2} P_{k}^{2}$$

No interaction among phonons in harmonic chains.

Anharmonic potential

Phonons under anharmonicity (weak)

Kinetic theory for phonon gas: phonon Boltzmann equation.

Frequency shift: $\eta = \omega_m / \omega_h$ Linewidth: Γ Lifetime: $\tau = 1/2\Gamma$

Phonons under anharmonicity (strong)

- Minimum heat conduction problem
 - mean free path ~ lattice constant

C. Kittel, Phys.Rev. 75, 972 (1948)

• a random walk for a phonon

D. G. Cahill, etc., Phys. Rev. B 46, 6131-6140 (1992)

• Solitons and breathers

symmetric: V(x) = V(-x) $\alpha = 0, FPU - \beta$ asymmetric: $V(x) \neq V(-x)$ $\alpha \neq 0, FPU - \alpha\beta$

High temperature limit (PFPU):

low temperature limit(harmonic chain):

$$V(x) = \frac{\beta}{4}x^4$$
$$V(x) = \frac{1}{2}x^2$$

Symmetry of a interaction potential is relevant

• Thermal expansion (contraction) in asymmetric cases, not in symmetric cases.

C. Kittel, Introduction to Solid State Physics (7ed., Wiley, 1996)

Symmetry of a interaction potential is relevant

• shorter time to energy equipartition among normal modes in asymmetric cases than symmetric ones

G. Benettin, A. Ponno, J. Stat. Phys. 144, 793(2011).

Symmetry of a interaction potential is relevant

• Is the heat conduction normal in 1D momentumconserved lattices with asymmetric potentials ?

Anomalous heat conduction:

$$\langle J(t)J(0)\rangle \sim t^{-\lambda}(\lambda < 1)$$

Is the heat conduction normal in 1D momentumconserved lattices with asymmetric potentials ?

Fast decay of the flux correlation functions is more easily observed at the small alpha and low temperature !

L. Wang, B. Hu, B. Li, Phys. Rev. E **88**, 052,112 (2013) S. Das, A. Dhar, O. Narayan, J. Stat. Phys. **154**, 204 (2014)

Simulations

- periodic boundary conditions
- Equilibrium MD simulations at constant energy
- system size=2048
- Principles: the motion of any particle of a chain at equilibrium is superposition of phonons (normal modes)
- Methods: calculate the velocity power spectra of a particle

The phonon peaks with lowest frequencies

 Γ ($\tau=1/2\Gamma$)

X

Phonon lifetime and heat conductivity

Phonon energy: $E_k = \frac{1}{2}\omega_k^2 Q_k^2 + \frac{1}{2}P_k^2$

Phonon heat current: $J_k = E_k v_k$

$$< J(t)J(0) > \sim < (\sum_{k} E_{k}(t))(\sum_{k} E_{k}(0)) > = < \sum_{k} E_{k}(t)E_{k}(0) > + < \sum_{k \neq k'} E_{k}(t)E_{k'}(0) >$$

$$\kappa \sim \int \langle J(t)J(0) \rangle dt \sim \sum_{k} \int \langle E_{k}(t)E_{k}(0) \rangle dt + \sum_{k \neq k'} \int \langle E_{k}(t)E_{k'}(0) \rangle dt$$

Single mode relaxation approximation

Phonon lifetime and heat conductivity

 $< E_{k}(t)E_{k}(0) > \rightarrow < \delta E_{k}(t)\delta E_{k}(0) >$ $< \delta E_{k}(t)\delta E_{k}(0) > \sim e^{-\frac{t}{\tau_{k}}}, \ \tau \sim k^{-\gamma} \text{ or } \Gamma \sim k^{\gamma}$

$$< J(t)J(0) > \sim < \sum_{k} \delta E_{k}(t) \delta E_{k}(0) > \sim t^{-\frac{1}{\gamma}}$$

$$\kappa \sim \sum_{k} \int_{0}^{N/\nu} \langle \delta E_{k}(t) \delta E_{k}(0) \rangle dt \sim N^{1-\frac{1}{\gamma}}$$

A.J.C.Ladd, etc., Phys. Rev. B 34, 5058 (1986)

Theoretical predictions for phonon lifetimes

 $au_k \sim k^{-\gamma}$

Phonon theories: FPU-alpha-beta $\gamma = 3/2 \rightarrow t^{-2/3} \rightarrow N^{1/3}$ FPU-beta $\gamma = 5/3 \rightarrow t^{-3/5} \rightarrow N^{2/5}$

Pereverzev, Phys. Rev. E 68, 056124 (2003) J. Lukkarimen and H. Spohn, Comm. Pure Appl. Math. 61, 1753(2008) Santhosh G. and Deepak Kumar, Phys. Rev. E 76, 021105 (2007) Santhosh G. and Deepak Kumar, Phys. Rev. E 77, 011113 (2008)

FPU-alpha-beta Mode-Coupling & Hydrodynamics

 $\gamma = 3/2 \longrightarrow t^{-2/3} \longrightarrow N^{1/3}$

FPU-beta

 $\gamma = 2 \longrightarrow t^{-1/2} \longrightarrow N^{1/2}$

L. Delfini, S.Lepri, R. Livi, & A. Politi, J. Stat. Mech. 2007, P02007(2007).

O. Narayan and S. Ramaswamy, Phys. Rev. Lett. 89, 200601(2002)

H. Van Beijeren, Phys. Rev. Lett. 108, 180601 (2012)

C. B. Mendl, H. Spohn, Phys. Rev. Lett. 111, 230601 (2013).

The underlying hypothesizes of these theories

• Long-wavelength approximation,

 $k \to 0$

 Propagating phonons dominate the heat conduction processes, that mean:

lifetime >> period

Harmonic limit & PFPU limit

The linewidth of the first mode vs energy density

What happened in low temperature regime?

• The effect of Nonlinear potential energy tend to zero.

 But the lifetimes of phonons dramatically smaller than harmonic ones. It means there really exists anharmonic effect.

Expansion coefficient vs energy density

Anharmonicity from two sources in FPU-alpha-beta model

- Asymmetry dominate the phonon decay in the low temperature region.
- (symmetric) Nonlinearity dominate the phonon decay in high temperature region.
 - Nonlinearity means that the force between neighboring particles as the function of relative displacement is not linear.
- In the middle region of temperature, there is mixing effect of bath asymmetry and nonlinearity on phonons.

Energy fluctuation relaxation of phonons

A.J.C.Ladd, etc., Phys. Rev. B 34, 5058 (1986)

Lifetime overview of phonons covering full Brillouin zone

 $10^{-1} \\ 10^{-2} \\ 0.0 \\ 1.7 \\ t/10^{3} \\ 10^{2} \\ 10^{1} \\ 10^{2} \\ 10^{2} \\ 10^{3} \\ 10^$

(b)

Conclusions

- Asymmetry dramatically reduce phonon lifetimes and lead to violate the hypotheses "*lifetime >> period*".
- Small Asymmetry alone lead to the behavior $\gamma \sim 1$
- large asymmetry facilitates the hydrodynamic behaviors
- Strong symmetric nonlinearity lead to hydrodynamic behavior γ ~ (1.5,2) and lifetime >> period