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Fourier’s Law

Let us consider heat transport phenomena in one-dimensional systems:

H =
N∑
l=1

p2
l

2m
+

N+1∑
l=1

V (ql − ql−1) (1)

In steady state, one naively expects:

j = −κ
∂T

∂x
(2)

Combined with continuity equation (and ignoring nonlinear powers of
temperature gradients)

∂T

∂t
= D

∂2T

∂x2
(3)

where D = κ/cv . “Normal Diffusion”.
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Fourier’s Law is empirical.

If Fourier’s Law holds,

Temperature profile is linear: T(x)=T + ∆T (1− x
L ).

The size-dependent heat conductivity is calculated as

κ(N) = −J(N)
N

∆T
(4)

If Fourier’s Law holds,

lim
N→∞

κ(N) = κ (5)

κ depends on the inter-particle potential V (x) and the
thermodynamic state variables.
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Temperature Profiles of the Fermi-Pasta-Ulam Chain
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Plot of temperature profiles for different system sizes for free
boundary conditions at temperatures T = 0.1 and T = 1.0.
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Conductivity from Nonequilibrium Simulations

Free Boundary Conditions
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Plot of the conductivity κ versus system size in the FPU α− β
model for free BCs.
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Hydrodynamic Theory for Equilibrium

Defining the “stretch” variables r(x) = q(x+ 1)− q(x), the
Hamiltonian reads:

H =
N∑
x=1

ε(x), ε(x) =
p2(x)

2
+ V [r(x)] ,

The locally conserved quantities - stretch, momentum and energy -
satisfy

∂r(x, t)

∂t
=
∂p(x, t)

∂x
,

∂p(x, t)

∂t
= −

∂P (x, t)

∂x
,

∂e(x, t)

∂t
= −

∂[p(x, t)P (x, t))]

∂x
, (6)

where P (x) = −V ′(x) is the local pressure.
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We switch to normal modes ~φ of the linearized equations, and up
to the first nonlinear term, the hydrodynamic equations read:

∂tφα = −∂x
[
cαφα +Gα

βγφβφγ − ∂xDαβuβ +Bαβξβ
]
.

The quantities of interest are the equilibrium correlations

Cαβ(x, t) = 〈φα(x, t)φβ(0, 0)〉.
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Equilibrium Correlations of the FPU Chain
Das et al, Phys. Rev. E, 2014

Parameters: k2 = 1, k3 = 2, k4 = 1, T = 0.5, P = 1, system size
N = 8192. Correlation functions for the heat mode and the two
sound modes.
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Scaled plots of heat mode and left moving sound mode
correlations.
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Normal Transport in 1D?

The hydrodynamic theory does not depend on the details of the
inter-atomic potential, and should be valid for any system which
has three conserved fields – stretch (i.e the bond vector),
momentum and energy.

Does this leave any room for normal heat transport in
one-dimensional translationally invariant systems? Assuming that
the fluctuating hydrodynamic theory is correct, a third universality
class could exist only for systems which have less than three
conserved quantities.
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The Coupled Rotator Model

The Hamiltonian of the coupled rotator model is H =
∑N
l=1 e(l),

where e(l) = pl
2

2
+ V0cos(rl). where rl = ql+1 − ql.

Previous simulations have shown finite conductivity convincingly,
at least at high temperatures. It was even claimed that there is a
transition from anomalous to normal conductivity between T = 0.2

and 0.3, for V0 = 1.

This is surprising since the model is translationally invariant.
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The stretch r(x) is restricted within the cell [0, 2π] with periodic
boundary conditions, so r(x) is not a conserved field.

For stretch-conserving models, the Gibbs weight
Prob({r(x)}) ∼ Πx e−β[V (r(x))+P̄ r(x)]. This measure is invariant since∑
x r(x) is conserved.

When the stretch is not conserved, the measure is invariant only
for P̄ = 0.
For P̄ 6= 0, the system is inherently in a non-equilibrium state.
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�� ��Pressure in the rotator model in equilibrium is identically zero.

Therefore coupling tensors of nonlinear hydrodyanmics vanish. The

conserved field in this model is ~u = (p, e).

∂tuα = −∂x [−∂xDαβuβ +Bαβξβ] . (7)

Solution:

Cαα(x, t) =
1√

4πDααt
exp

[
− x2

4Dααt

]
. (8)
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Autocorrelation of momentum (left) and energy (right), normalized
with C(0, 0). The dashed black lines correspond to Gaussians with
the respective diffusion constants mentioned in the figures.
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Using Fourier’s law it can be shown that κ = Ds. where D is the
energy diffusivity and s is the specific heat density.

s ≡
1

T 2

∂2

∂β2
lnZ =

1

2

[
1 + β2(1 +

I2(β)I0(β)− 2I1(β)2

I0(β)2
)

]
.

For our parameters, s = 0.9168, and using D as determined from the
numerical fitting, we get κ = 0.5749.
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We compare this value with the conductivity obtained directly
through two other independent ways.

1. When the conductivity is finite, then from the Green-Kubo
formula it is given by

κ = lim
τ→∞

〈Q2
τ 〉

2NT 2τ
,

where Qτ =
∫ τ
0 J(t)dt, and the total heat current J =

N∑
x=1

p(x)∂V /∂r(x).

2. A second way of determining κ is through direct non-equilibrium
simulation of the heat current.
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Plot of conductivity through three different methods.
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Characterizing the non-conservation of stretch

For any conserved field u with zero mean, the following exact sum
rule holds:

∑
x

〈u(0, 0)u(x, t)〉 =
∑
x

〈u(0, 0)u(x, 0)〉

Since r(x) is not conserved in the CR model, we expect
S(t) ≡

∑
x〈r(0, 0)r(x, t)〉 to decay with time and go to zero at long

times.

The decay time-scale, in the limit of low temperature, approaches
the Kramers escape time τ ∼ exp(∆E/T ).

So we expect S(t) ∼ exp(−t/τ), with τ proportional to exp(2V0/T ).
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Plot of S(t) at various temperatures for the CR model with V0 = 1.
The straight line fit is y = 1.82x− 2.6, so that ∆E = 1.82
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The coupled rotator model at low T: Anomalous scaling at
intermediate times

At low temperatures, each angle variable spends most of its time
fluctuating near the potential minimum, and the hydrodynamics
must be well-approximated by an anharmonic expansion of the CR
potential around the minimum: V (r) = r2/2− r4/24 + r6/720.

This system has three conserved modes – like the FPU chain. It
should satisfy the usual scaling for even potential at zero pressure,
i.e Levy-2/3 for heat mode, diffusive for sound modes.
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Scaled plots of Cee(x) for the CR model, for T = 0.2. The dashed line
is for the corresponding anharmonic model, at t = 800. Including
higher order terms in the anharmonic potential should produce an
even better approximation. The inset shows the correspodning
plots for the anharmonic model with the same scaling.
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Conclusions

For momentum non-conserving models, one expects the roles of
the stretch and momentum fields to become interchanged. The
momentum correlations would be short-ranged, and consequently
the hydrodynamic currents for stretch and energy fields would
vanish, leading to normal diffusion of these fields.

It has so far been believed that breaking translational symmetry is
crucial to normal heat conduction, but the CR model had remained
a puzzle. We show that it is not translational invariance but the
absence of conserved fields that decides whether heat transport is
normal.
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