Fidelity decay and entropy production in many-particle systems after random interaction quench

Sudip Kumar Haldar
Physical Research Laboratory

October 26, 2015

Acknowledgement:

- Prof. V.K.B Kota Physical Research Laboratory, Ahmedabad.
- Dr. N. D. Chavda M. S. University of Baroda, Vadodara, India.

Overview

(1) Quench dynamics
(2) Random Matrix Theory - Embedded Random Matrix Ensembles

- EGOE(1+2)-s \& BEGOE (1+2)
(3) Results
- Fidelity decay or return probability
- Entropy production

4) Summary

Quench dynamics

What is it?

- Suppose, initially the system is in the state $|i\rangle$.

At $t=0 ; H_{i}^{\text {instantaneous change }}{ }_{\text {system }}^{\text {parameter }}$.
Unitary time evolution under $H_{f} \rightarrow$ Quench dynamics.
Why important?

- How equilibration is achieved in finite quantum many-body systems.
- To understand when and how such systems thermalize.
- Relations between quantum chaos and thermalization.

Quantities of interest

- Return probability or Fidelity decay $W_{0}(t)$.
- Entropy production with time $S(t)$.

Embedded Random Matrix Ensembles

- Isolated finite many-body systems \rightarrow two-body interaction.
- The particles move in a mean-field.
- Suitable random matrix ensemble \rightarrow Embedded Gaussian Orthogonal Ensemble EGOE(1+2).
$\{\hat{H}\}=\hat{h}(1)+\lambda\{\hat{V}(2)\}$
$\{\hat{v}(2)\} \longrightarrow G O E$ in two-particle space.
$\hat{h}(1) \longrightarrow$ Fixed one body operator.
- Three chaos markers: λ_{c}, λ_{F} and λ_{t}.

Embedded Gaussian Orthogonal Ensembles

EGOE(1+2)-s

- m particles in Ω sp orbits each with spin $s=1 / 2 \Rightarrow N=2 \Omega$.
- EGOE(1+2)-s: Embedded ensemble for one plus two body interaction with spin degrees of freeddom for a system of fermions.
- $\{\hat{H}\}=\hat{h}(1)+\lambda \hat{V}(2) ; V(2)=\left\{V^{s=0}(2)+V^{s=1}(2)\right\}$

BEGOE (1+2)

- m bosons in N sp states; $m>N$.
- BEGOE(1+2): Embedded ensemble for one plus two body interaction for a system of bosons.
- $\{\hat{H}\}=\hat{h}(1)+\lambda\{\hat{V}(2)\}$

Fidelity decay or return probability

$\underset{\text { Eigenstate of } \hat{h}(1)}{\Psi(t=0)=|k\rangle} \underset{\text { Quench }}{\stackrel{\hat{V}(2)}{\longrightarrow}} \Psi(t)=|k(t)\rangle=\exp (-i H t)|k\rangle$.

$$
H=h(1)+\lambda V(2)
$$

- $\left.W_{k \rightarrow f}(t)=|\langle f| \exp [-i H t]| k\right\rangle\left.\right|^{2}=\left|A_{k \rightarrow f}(t)\right|^{2}$;

$$
\mathbf{A}_{k \rightarrow f}(t)=\sum_{E} C_{k}^{E} C_{f}^{E} \exp (-i E t)
$$

- Return probability \Rightarrow

$$
W_{k \rightarrow k}(t)=\left|\sum_{E}\left[C_{k}^{E}\right]^{2} \exp (-i E t)\right|^{2}=\left|\int F_{k}(E) \exp (-i E t) d E\right|^{2}
$$

$F_{k}(E)=\left|C_{k}^{E}\right|^{2} \rho(E) \rightarrow$ strength function.
$\rho(E) \rightarrow$ Density of states.

EGOE formula

Gaussian and BW region

- $W_{k \rightarrow k}(t) \xrightarrow{\text { BW }} \xrightarrow{\text { region }} \exp [-\Gamma t] ; \Gamma \rightarrow$ width of spreading
- $W_{k \rightarrow k}(t) \xrightarrow{\text { Gaussian }}{ }^{\text {region }} \exp \left[-\sigma_{k}^{2} t^{2}\right] ; \sigma_{k}^{2} \rightarrow$ spectral variance.

BW to Gaussian intermediate region

$F_{k}(x: \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\pi} \sqrt{\nu} \Gamma\left(\frac{\nu}{2}\right)} \frac{d x}{\left(\frac{x^{2}}{\nu}+1\right)^{\frac{\nu+1}{2}}} \Longleftarrow$ t-distribution.
$\alpha=(\nu+1) / 2 ; \quad\left(E-E_{k}\right)=\sqrt{\frac{\beta(\nu+1)}{2 \nu}} x ; \quad \sigma_{k}^{2}=\frac{\alpha}{2 \alpha-3} \beta ; \alpha>3 / 2$
D. Angom, S. Ghosh, and V.K.B. Kota, Phys. Rev. E 70, 016209 (2004).
$W_{k \rightarrow k}(t) \rightarrow\left|\frac{2^{\nu}(\sqrt{\nu})^{\nu}}{\Gamma(\nu)} \int_{0}^{\infty} d x\left[x\left(x+\left|t^{\prime}\right|\right)\right]^{(\nu-1) / 2} \exp \left[-\sqrt{\nu}\left(2 x+\left|t^{\prime}\right|\right)\right]\right|^{2} ; t^{\prime}=\sqrt{\frac{\beta(\nu+1)}{2 \nu}} t$.

- For $\nu=1, F_{k}(E) \longrightarrow \exp [-\Gamma t] \quad ; \beta=\Gamma^{2} / 4$

For $\nu \rightarrow \infty, F_{k}(E) \longrightarrow \exp \left[-\sigma_{k}^{2} t^{2}\right] \quad ; \sigma_{k}^{2}=\beta / 2$.

EGOE(1+2)-s

BEGOE(1+2)

Spin dependence

$$
\text { - } \overline{\sigma_{k}^{2}(m, S)}=\frac{\lambda^{2} \overline{\sigma_{V(2)}^{2}(m, S)}}{\overline{\sigma_{H}^{2}(m, S)}} ; \overline{\sigma_{H}^{2}(m, S)}=\sigma_{h(1)}^{2}(m, S)+\lambda^{2} \overline{\sigma_{V(2)}^{2}(m, S)}
$$

M. Vyas, V.K.B. Kota and N.D. Chavda, Phys. Rev. E 81, 036212 (2010).
M. Vyas, V.K.B. Kota, N.D. Chavda and V. Potbhare, J. Phys. A: Math. Theor. 45, 265203 (2012).

EGOE(1+2)-s

BEGOE(1+2)-F

Entropy production with time and statistical relaxation

Definition

- $S(t)=-\sum_{f=0}^{d} W_{f}(t) \ln W_{f}(t)$.
- $W_{f}(t)=\sum_{E}\left|C_{0}^{E}\right|^{2}\left|C_{f}^{E}\right|^{2}+2 \sum_{E>E^{\prime}} C_{0}^{E} C_{f}^{E} C_{0}^{E^{\prime}} C_{f}^{E^{\prime}} \cos \left(E-E^{\prime}\right) t$

$$
=W_{f}^{\text {avg }}(t)+W_{f}^{\text {flu }}(t)
$$

Theoretical model

- Assumptions: i) $N_{s} \rightarrow$ number of f 's with $f \neq 0$ that contribute ii) The fluctuations in W_{f} are small $\longrightarrow W_{f}$ can be replaced by \bar{W}.
- $S(t)=-W_{0}(t) \ln W_{0}(t)-\sum_{r=1}^{N_{s}} \bar{W} \ln \bar{W} ; \quad \bar{W}=\frac{1-W_{0}}{N_{s}}$

$$
=-\mathbf{W}_{0}(t) \ln W_{0}(t)-\left[1-W_{0}(t)\right] \ln \left(\frac{1-W_{0}(t)}{N_{s}}\right) .
$$

EGOE formula

Gaussian region

- $S(t)=\sigma_{k}^{2} t^{2} \exp \left(-\sigma_{k}^{2} t^{2}\right)-\left[1-\exp \left(-\sigma_{k}^{2} t^{2}\right)\right] \ln \left(\frac{1-\exp \left(-\sigma_{k}^{2} t^{2}\right)}{N_{s}}\right)$; $N_{s}=\langle\exp S(\infty)\rangle$.
- $N_{s}^{t h} \sim \kappa \times \mathrm{NPC}_{\max }=\kappa \frac{\mathrm{d}}{3} \sqrt{1-\zeta^{4}} ; \quad \zeta^{2}=1-\sigma_{\mathrm{k}}^{2} . \quad \kappa=2$
- $t_{\text {sat }}=\sqrt{\frac{\ln \left(1+N_{s}\right)}{1-\zeta^{2}}}$;
$\lambda \rightarrow \infty ; \zeta^{2}(m, S) \rightarrow 0 \Longrightarrow t_{\text {sat }}^{\min } \simeq \sqrt{\ln \left(\kappa \frac{d(m, S)}{3}\right)}$
$\left.\lambda=\lambda_{t} ; \zeta^{2}(m, S)=0.5 \Longrightarrow t_{t h} \simeq \sqrt{2 \ln \left(\kappa \frac{d}{6} \sqrt{3}\right.}\right)$.

BW region

- $t_{s a t}=\frac{\ln \left(1+N_{s}\right)}{\Gamma}$.

EGOE(1+2)-s examples

BEGOE (1+2)-F examples

$t_{\text {sat }}$ in $\sigma_{\text {avg }}^{-1}$ units for $\operatorname{EGOE}(1+2)$-s examples.

λ	$\mathbf{S}=\mathbf{0}$		$\mathbf{S}=\mathbf{1}$		$\mathbf{S}=\mathbf{2}$	
	$\frac{\sigma_{k}^{2}}{\sigma_{\text {avg }}^{2}}$	$t_{\text {sat }}$	$\frac{\sigma_{k}^{2}}{\sigma_{\text {avg }}^{2}}$	$t_{\text {sat }}$	$\frac{\sigma_{k}^{2}}{\sigma_{\text {avg }}^{2}}$	$t_{\text {sat }}$
$\mathbf{0 . 1}$	$\mathbf{0 . 2 1}$	$\mathbf{8 . 3}$	$\mathbf{0 . 1 8}$	$\mathbf{8 . 8}$	$\mathbf{0 . 1 1}$	$\mathbf{8 . 9}$
$\mathbf{0 . 2 1}$	$\mathbf{0 . 6}$	$\mathbf{3 . 3 2}$	$\mathbf{0 . 4 9 9}$	$\mathbf{3 . 7 3}$	$\mathbf{0 . 3 2}$	4.21
$\mathbf{0 . 3}$	$\mathbf{0 . 8 1}$	$\mathbf{2 . 7}$	$\mathbf{0 . 6 8}$	$\mathbf{3 . 2}$	$\mathbf{0 . 4 4}$	$\mathbf{3 . 6 5}$

$t_{\text {sat }}$ in $\sigma_{\text {avg }}^{-1}$ unit for $\operatorname{BEGOE}(1+2)-F$ examples.

λ	$\mathbf{F}=\mathbf{2}$		$\mathbf{F}=4$		$\mathbf{F}=5$	
	$\frac{\sigma_{k}^{2}}{\sigma_{\text {avg }}}$	$t_{\text {sat }}$	$\frac{\sigma_{k}^{2}}{\sigma_{\text {avg }}^{2}}$	$t_{\text {sat }}$	$\frac{\sigma_{k}^{2}}{\sigma_{\text {avg }}^{2}}$	$t_{\text {sat }}$
0.1	0.44	3.66	0.74	2.68	0.99	2.2
0.2	0.66	3.07	1.17	2.1	1.65	1.7

BW to Gaussian transition region

- $N_{s}^{t h} \sim \kappa \times \mathrm{NPC}_{\max }=$
$\kappa \frac{\mathrm{d}}{3}\left[\sqrt{\frac{2}{2 \alpha-3}} \frac{\Gamma^{2}(\alpha)}{\Gamma^{2}\left(\alpha-\frac{1}{2}\right)} \frac{1}{\zeta^{2}\left(1-\zeta^{2}\right)} \mathrm{U}\left(\frac{1}{2}, \frac{3}{2}-2 \alpha, \frac{(2 \alpha-3)\left(1-\zeta^{2}\right)}{2 \zeta^{2}}\right)\right]^{-1} ; \kappa=2.5$
- $t_{s a t}=\frac{\left[\ln \left(1+N_{s}\right)\right]^{\frac{1}{2}\left(1+\frac{1}{\nu}\right)}}{\sqrt{\beta}\left(1+\frac{1}{\nu}\right)^{3 / 2}}$;
$\sqrt{\frac{\beta}{2}}\left(1+\frac{1}{\nu}\right)^{3 / 2}$

Numerical examples

Many-body results

Many-body entropies, correlations, and emergence of statistical relaxation in interaction quench dynamics of ultracold bosons

Axel U. J. Lode*
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland
Barnali Chakrabarti
Department of Physics, Presidency University, 86/1 College Street, Kolkata 700083, India
Venkata K. B. Kota
Physical Research Laboratory, Navrangpura, Ahmedabad 380009, India
(Received 12 January 2015; revised manuscript received 1 July 2015; published 23 September 2015)

We study the quantum many-body dynamics and the entropy production triggered by an interaction quench in a system of $N=10$ interacting identical bosonsin an external one-dimensional harmonic trap. The multiconfigurational time-dependent Hartree method for bosons (MCTDHB) is used for solving the time-dependent Schrödinger equation at a high level of accuracy. We consider many-body entropy measures such as the Shannon information entropy, number of principal components, and occupation entropy that are computed from the time-dependent many-body basis set used in MCTDHB. These measures quantify relevant physical features such as irregular or chaotic dynamics, statistical relaxation, and thermalization. We monitor the entropy measures as a function of time and assess how they depend on the interaction strength. For larger interaction strength, the many-body information and occupation entropies approach the value predicted for the Gaussian orthog onal ensemble of random matrices. This implies statistical relaxation. The basis states of MCTDHB are explicitly time-dependent and optimized by the variational principle in a way that minimizes the number of significantly contributing ones. It is therefore a nontrivial fact that statistical relaxation prevails in MCTDHB computations. Moreover, we demonstrate a fundamental connection between the production of entropy, the buildup of correlations and loss of coherence in the system. Our findings imply that mean-field approaches such as the time-dependent Gross-Pitaevskii equation cannot capture statistical relaxation and thermalizationbecause they neglect correlations. Since the coherence and correlations are experimentally accessible, their present connection to many-body entropies can be scrutinized to detect statistical

Many-body results

Summary

What achieved?

- Using some approximations, $\operatorname{EGOE}(1+2)$ theory for the time evolution of entropy.
- Analytic formulae for $t_{s a t}$ and the saturation entropy derived.
- We observed significant spin dependence.
- An overall picture of relaxation of complex quantum systems in the absence of complete knowledge about it.

What next?

- Attempt to better understand the significance and magnitude of κ.
- Prethermalization using EGOE $(1+2)$ formalism.
- Compare the formulas derived here with the results of realistic systems accessible to experiments \rightarrow Quench dynamics of trapped Bose gas using MCTDHB.

Thank you

