Finite temperature free fermions and the Kardar-Parisi-Zhang equation at finite time

Satya N. Majumdar Labo. de Physique Théorique et Modèles Statistiques (LPTMS) CNRS-Université Paris-Sud, Orsay Finite temperature free fermions and the Kardar-Parisi-Zhang equation at finite time

Satya N. Majumdar Labo. de Physique Théorique et Modèles Statistiques (LPTMS) CNRS-Université Paris-Sud, Orsay

In collaboration with

- David S. Dean (LOMA, Univ. de Bordeaux)
- Pierre Le Doussal (LPT ENS, Paris)
- Grégory Schehr (LPTMS, Univ. d'Orsay)

Phys. Rev. Lett. 114, 110402 (2015), arXiv:1412.1590 & arXiv:1505.01543 Finite temperature free fermions and the Kardar-Parisi-Zhang equation at finite time

Satya N. Majumdar Labo. de Physique Théorique et Modèles Statistiques (LPTMS) CNRS-Université Paris-Sud, Orsay

In collaboration with

- David S. Dean (LOMA, Univ. de Bordeaux)
- Pierre Le Doussal (LPT ENS, Paris)
- Grégory Schehr (LPTMS, Univ. d'Orsay)

Phys. Rev. Lett. 114, 110402 (2015), arXiv:1412.1590 & arXiv:1505.01543

Acknowledgements to Christophe Salomon (LKB, ENS Paris)

Ultra-cold atoms in confining potentials

Recent progress in the experimental manipulation of cold atoms

to investigate the interplay between quantum and thermal behaviors in many-body systems at low temperature

Ultra-cold atoms in confining potentials

Recent progress in the experimental manipulation of cold atoms

to investigate the interplay between quantum and thermal behaviors in many-body systems at low temperature

A common feature of these experiments: presence of a confining potential that traps the atoms within a limited spatial region

Spinless free fermions in a 1d harmonic potential

Spinless free fermions in a 1d harmonic potential V(x) $V(x) = \frac{1}{2}m\omega^{2}x^{2}$

At zero temperature: connection between spinless free fermions in a harmonic trap and Random Matrix Theory (GUE)

Outline

Free fermions in d=1 & T=0 and Random Matrix Theory (RMT)

Free fermions in d=1 & T>O and KPZ equation: main results

Sketch of the derivation of our results

Extension to higher dimensions, d>1

Conclusion

A single quantum particle in a harmonic potential

A single quantum particle in a harmonic potential

Single particle eigenfunctions $\hat{H} \varphi_E(x) = E \varphi_E(x)$

with
$$\varphi_E(x \to \pm \infty) = 0$$

$$\varphi_k(x) = \left[\frac{\alpha}{\sqrt{\pi}2^k k!}\right]^{1/2} e^{-\frac{\alpha^2 x^2}{2}} H_k(\alpha x)$$

$$\epsilon_k = \hbar\omega(k+1/2) \quad , \quad \alpha = \sqrt{m\omega/\hbar}$$

$$k \in \mathbb{N}$$

A single quantum particle in a harmonic potential

• The N-particle wave function is given by a $N \times N$ Slater determinant

$$\Psi_0(x_1, x_2, \cdots, x_N) = \frac{1}{\sqrt{N!}} \det[\varphi_i(x_j)] \qquad 0 \le i \le N-1$$
$$\varphi_k(x) = \left[\frac{\alpha}{\sqrt{\pi}2^k k!}\right]^{1/2} e^{-\frac{\alpha^2 x^2}{2}} H_k(\alpha x)$$

The N-particle wave function is given by a $N \times N$ Slater determinant

$$\Psi_0(x_1, x_2, \cdots, x_N) = \frac{1}{\sqrt{N!}} \det[\varphi_i(x_j)] \qquad 0 \le i \le N-1$$
$$\varphi_k(x) = \left[\frac{\alpha}{\sqrt{\pi} 2^k k!}\right]^{1/2} e^{-\frac{\alpha^2 x^2}{2}} H_k(\alpha x)$$

Ground state energy $E_0 = \sum_{k=0}^{N-1} \epsilon_k = \frac{N^2}{2}$

Ground-state wave function

$$\Psi_0(x_1, x_2, \cdots, x_N) = \frac{1}{\sqrt{N!}} \det[\varphi_i(x_j)] \qquad 0 \le i \le N-1$$
$$\varphi_k(x) = \left[\frac{\alpha}{\sqrt{\pi} 2^k k!}\right]^{1/2} e^{-\frac{\alpha^2 x^2}{2}} H_k(\alpha x)$$

i

Ground-state wave function

Concerned in

Ground-state wave function

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) = \frac{1}{\sqrt{N!}} \det[\varphi_{i}(x_{j})] \qquad 0 \le i \le N-1$$

$$\varphi_{k}(x) = \left[\frac{\alpha}{\sqrt{\pi}2^{k}k!}\right]^{1/2} e^{-\frac{\alpha^{2}x^{2}}{2}} H_{k}(\alpha x)$$

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) \propto e^{-\frac{\alpha^{2}}{2}(x_{1}^{2} + \cdots + x_{N}^{2})} \det[H_{i}(\alpha x_{j})]$$

$$Hermite polynomial of degree i$$

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) \propto e^{-\frac{\alpha^{2}}{2}(x_{1}^{2} + \cdots + x_{N}^{2})} \prod_{1 \le j < k \le N} (x_{j} - x_{k})$$

Ground-state wave function

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) = \frac{1}{\sqrt{N!}} \det[\varphi_{i}(x_{j})] \qquad 0 \le i \le N-1$$

$$\varphi_{k}(x) = \left[\frac{\alpha}{\sqrt{\pi}2^{k}k!}\right]^{1/2} e^{-\frac{\alpha^{2}x^{2}}{2}} H_{k}(\alpha x)$$

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) \propto e^{-\frac{\alpha^{2}}{2}(x_{1}^{2} + \cdots + x_{N}^{2})} \det[H_{i}(\alpha x_{j})]$$

$$Hermite \text{ polynomial of } degree \ i$$

$$\Psi_{0}(x_{1}, x_{2}, \cdots, x_{N}) \propto e^{-\frac{\alpha^{2}}{2}(x_{1}^{2} + \cdots + x_{N}^{2})} \prod_{1 \le j < k \le N} (x_{j} - x_{k})$$

Squared many-body wave function (T= 0 quantum probability)

$$|\Psi_0(x_1, \cdots, x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i < j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

Squared many-body wave function (T=0 quantum probability) for fermions

$$|\Psi_0(x_1, \cdots, x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i < j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

Squared many-body wave function (T=0 quantum probability) for fermions

$$|\Psi_0(x_1, \cdots, x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i < j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

• Let M be a $N \times N$ random Hermitian matrix with Gaussian (complex) entries. The PDF of the (real) eigenvalues $\lambda'_i s$ is given by

$$P_{\text{joint}}(\lambda_1, \cdots, \lambda_N) = \frac{1}{Z_N} \prod_{i < j} (\lambda_i - \lambda_j)^2 e^{-\sum_{i=1}^N \lambda_i^2}$$

Squared many-body wave function (T=0 quantum probability) for fermions

$$|\Psi_0(x_1, \cdots, x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i < j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

• Let M be a $N \times N$ random Hermitian matrix with Gaussian (complex) entries. The PDF of the (real) eigenvalues $\lambda'_i s$ is given by

$$P_{\text{joint}}(\lambda_1, \cdots, \lambda_N) = \frac{1}{Z_N} \prod_{i < j} (\lambda_i - \lambda_j)^2 e^{-\sum_{i=1}^N \lambda_i^2}$$

The positions of the free fermions behave statistically like the eigenvalues of GUE random matrices

$$(\alpha x_1, \alpha x_2, \cdots \alpha x_N) \stackrel{d}{=} (\lambda_1, \lambda_2, \cdots, \lambda_N)$$

Squared many-body wave function (T=0 quantum probability) for fermions

$$|\Psi_0(x_1, \cdots, x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i < j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

Squared many-body wave function (T=0 quantum probability) for fermions

$$|\Psi_0(x_1,\cdots,x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i< j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

 \rightarrow

The spatial properties of free fermions in a harmonic trap at T=0 can directly be obtained from the known results in RMT

Eisler '13/Marino, S. N. M., Schehr, Vivo '14/Calabrese, Le Doussal, S. N. M. '15

Squared many-body wave function (T=0 quantum probability) for fermions

$$|\Psi_0(x_1,\cdots,x_N)|^2 = \frac{1}{z_N(\alpha)} \prod_{i< j} (x_i - x_j)^2 e^{-\alpha^2 \sum_{i=1}^N x_i^2}$$

The spatial properties of free fermions in a harmonic trap at T=0 can directly be obtained from the known results in RMT

Eisler '13/Marino, S. N. M., Schehr, Vivo '14/Calabrese, Le Doussal, S. N. M. '15

Average density of free fermions: Wigner semi-circle law

$$\rho_N(x,T=0) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

for $N \gg 1$ $\rho_N(x,T=0) \approx \frac{\alpha}{\sqrt{N}} f_W\left(\frac{\alpha x}{\sqrt{N}}\right)$, $f_W(z) = \frac{1}{\pi}\sqrt{2-z^2}$

Average density of free fermions: Wigner semi-circle law

$$\rho_N(x, T = 0) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x - x_i) \rangle$$

For $N \gg 1$ $\rho_N(x, T = 0) \approx \frac{\alpha}{\sqrt{N}} f_W\left(\frac{\alpha x}{\sqrt{N}}\right)$, $f_W(z) = \frac{1}{\pi}\sqrt{2 - z^2}$

See also Local Density (or Thomas-Fermi) Approx. in the literature on fermions

Average density of free fermions: Wigner semi-circle law

$$\rho_N(x, T = 0) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x - x_i) \rangle$$

For $N \gg 1$ $\rho_N(x, T = 0) \approx \frac{\alpha}{\sqrt{N}} f_W\left(\frac{\alpha x}{\sqrt{N}}\right)$, $f_W(z) = \frac{1}{\pi}\sqrt{2 - z^2}$

See also Local Density (or Thomas-Fermi) Approx. in the literature on fermions

Average density of free fermions: Wigner semi-circle law

$$\rho_N(x, T = 0) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x - x_i) \rangle$$

For $N \gg 1$ $\rho_N(x, T = 0) \approx \frac{\alpha}{\sqrt{N}} f_W\left(\frac{\alpha x}{\sqrt{N}}\right)$, $f_W(z) = \frac{1}{\pi} \sqrt{2 - z^2}$

See also Local Density (or Thomas-Fermi) Approx. in the literature on fermions

Edge density of free fermions

Bowick, Brézin '91/Forrester '93

$$\rho_N(x) \approx \frac{1}{Nw_N} F_1\left(\frac{x - \sqrt{2N}/\alpha}{w_N}\right)$$

Edge density of free fermions

Bowick, Brézin '91/Forrester '93

$$\rho_N(x) \approx \frac{1}{Nw_N} F_1\left(\frac{x - \sqrt{2N}/\alpha}{w_N}\right)$$

with $w_N = \frac{N^{-1/6}}{\sqrt{2}\alpha}$ and $F_1(z) = [Ai'(z)]^2 - z[Ai(z)]^2$

Fermions in a 1d harmonic trap at T=O: kernel

Higher order correlations

e.g., 2-point correlation function: $R_2(y,z) = \sum_{i \neq j} \langle \delta(y-x_i) \delta(z-x_j) \rangle$

$$R_n(x_1, \cdots, x_n) = \frac{N!}{(N-n)!} \int_{-\infty}^{\infty} dx_{n+1} \cdots \int_{-\infty}^{\infty} dx_N |\Psi_0(x_1, \cdots, x_n, x_{n+1}, \cdots, x_N)|^2$$
Fermions in a 1d harmonic trap at T=0: kernel

- Higher order correlations
 - e.g., 2-point correlation function: $R_2(y,z) = \sum_{i \neq j} \langle \delta(y-x_i) \delta(z-x_j) \rangle$

n-point correlation function

$$R_n(x_1, \cdots, x_n) = \frac{N!}{(N-n)!} \int_{-\infty}^{\infty} dx_{n+1} \cdots \int_{-\infty}^{\infty} dx_N |\Psi_0(x_1, \cdots, x_n, x_{n+1}, \cdots, x_N)|^2$$

Fermions in a 1d harmonic trap at T=O: kernel

- Higher order correlations
 - e.g., 2-point correlation function: $R_2(y,z) = \sum_{i \neq j} \langle \delta(y-x_i) \delta(z-x_j) \rangle$

n-point correlation function

$$R_n(x_1, \cdots, x_n) = \frac{N!}{(N-n)!} \int_{-\infty}^{\infty} dx_{n+1} \cdots \int_{-\infty}^{\infty} dx_N |\Psi_0(x_1, \cdots, x_n, x_{n+1}, \cdots, x_N)|^2$$

$$R_n(x_1, \cdots, x_n) = \det_{1 \le i,j \le n} K_N(x_i, x_j)$$
$$K_N(x, y) = \sum_{k=0}^{N-1} \varphi_k(x) \varphi_k(y)$$

Fermions in a 1d harmonic trap at T=O: kernel

- Higher order correlations
 - e.g., 2-point correlation function: $R_2(y,z) = \sum_{i \neq j} \langle \delta(y-x_i) \delta(z-x_j) \rangle$

n-point correlation function

$$R_n(x_1, \cdots, x_n) = \frac{N!}{(N-n)!} \int_{-\infty}^{\infty} dx_{n+1} \cdots \int_{-\infty}^{\infty} dx_N |\Psi_0(x_1, \cdots, x_n, x_{n+1}, \cdots, x_N)|^2$$

$$R_n(x_1, \cdots, x_n) = \det_{1 \le i,j \le n} K_N(x_i, x_j)$$

$$K_N(x, y) = \sum_{k=0}^{N-1} \varphi_k(x) \varphi_k(y)$$
kernel

Fermions in a 1d harmonic trap at T=0: kernel

- Higher order correlations
- e.g., 2-point correlation function: $R_2(y,z) = \sum_{i \neq j} \langle \delta(y-x_i) \delta(z-x_j) \rangle$

n-point correlation function

$$R_n(x_1, \cdots, x_n) = \frac{N!}{(N-n)!} \int_{-\infty}^{\infty} dx_{n+1} \cdots \int_{-\infty}^{\infty} dx_N |\Psi_0(x_1, \cdots, x_n, x_{n+1}, \cdots, x_N)|^2$$

$$R_n(x_1, \cdots, x_n) = \det_{1 \le i, j \le n} K_N(x_i, x_j)$$

$$K_N(x, y) = \sum_{k=0}^{N-1} \varphi_k(x) \varphi_k(y)$$
kernel

in particular, the average density is given by $\rho_N(x) = \frac{1}{N} K_N(x,x)$

Limiting form of the kernel for trapped fermions at T=0

Bulk limit: when x & y are far from the edge and

and
$$|x-y| \sim \frac{1}{N\rho_N(x)} \equiv$$
 inter-particle distance

Limiting form of the kernel for trapped fermions at T=0

Bulk limit: when x & y are far from the edge and

and
$$|x - y| \sim \frac{1}{N\rho_N(x)} \equiv \text{inter-particle distance}$$

 $K_N(x, y) \equiv \frac{1}{\ell} \mathcal{K}_{\text{bulk}} \left(\frac{|x - y|}{\ell} \right) , \ \ell = \frac{2}{\pi N\rho_N(x)}$

$$\mathcal{K}_{\text{bulk}}(z) = \frac{\sin\left(2\,z\right)}{\pi\,z}$$

Sine-kernel

Limiting form of the kernel for trapped fermions at T=0

Bulk limit: when x & y are far from the edge and

and
$$|x - y| \sim \frac{1}{N\rho_N(x)} \equiv \text{inter-particle distance}$$

 $K_N(x, y) \equiv \frac{1}{\ell} \mathcal{K}_{\text{bulk}} \left(\frac{|x - y|}{\ell} \right), \ \ell = \frac{2}{\pi N\rho_N(x)}$
 $\mathcal{K}_{\text{bulk}}(z) = \frac{\sin(2z)}{\pi z}$ Sine-kernel

• Edge scaling limit: for x & y close to the edge $r_{edge} = \sqrt{2N/\alpha}$

$$K_{N}(x,y) \approx \frac{1}{w_{N}} \mathcal{K}_{edge} \left(\frac{x - r_{edge}}{w_{N}}, \frac{y - r_{edge}}{w_{N}} \right) , \ w_{N} = \frac{N^{-1/6}}{\sqrt{2\alpha}}$$
$$\mathcal{K}_{edge}(a,b) = \frac{Ai(a)Ai'(b) - Ai'(a)Ai(b)}{a - b} \quad \text{Airy-kerne}$$

Position of the rightmost fermion at T=0

Position of the rightmost fermion at T=0

Position of the rightmost fermion at T=0

fluctuations of $x_{\max}(T=0)$ are governed by the Tracy-Widom distribution for GUE

Position of the righmost fermion at T=0

Fermions in a 1d confining trap at T=0: summary

- Form a determinantal process (c.f. GUE for a harmonic well)
- Bulk scaling limit: Sine-kernel

$$K_N(x,y) \approx \frac{1}{\ell} \mathcal{K}_{\text{bulk}} \left(\frac{|x-y|}{\ell} \right)$$
$$\mathcal{K}_{\text{bulk}}(z) = \frac{\sin(2z)}{\pi z}$$

Edge scaling limit: Airy-kernel

$$K_N(x,y) \approx \frac{1}{w_N} \mathcal{K}_{edge} \left(\frac{x - r_{edge}}{w_N}, \frac{y - r_{edge}}{w_N} \right)$$
$$\mathcal{K}_{edge}(a,b) = \frac{Ai(a)Ai'(b) - Ai'(a)Ai(b)}{a - b}$$

Fermions in a 1d confining trap at T=0: summary

- Form a determinantal process (c.f. GUE for a harmonic well)
- Bulk scaling limit: Sine-kernel

$$K_N(x,y) \approx \frac{1}{\ell} \mathcal{K}_{\text{bulk}} \left(\frac{|x-y|}{\ell} \right)$$
$$\mathcal{K}_{\text{bulk}}(z) = \frac{\sin(2z)}{\pi z}$$

Edge scaling limit: Airy-kernel

$$K_N(x,y) \approx \frac{1}{w_N} \mathcal{K}_{edge} \left(\frac{x - r_{edge}}{w_N}, \frac{y - r_{edge}}{w_N} \right)$$
$$\mathcal{K}_{edge}(a,b) = \frac{Ai(a)Ai'(b) - Ai'(a)Ai(b)}{a - b}$$

Universal behavior, i.e., independent of the confining potential
 $V(x) \sim |x|^p$ with a single minimum
 Eisler '13

What happens at finite temperature

T > 0 ?

Probability density function (PDF) of the positions $x'_i s$

$$P_{\text{joint}}(x_1, \cdots, x_N) = \frac{1}{N! Z_N(\beta)} \sum_{k_1 < \cdots < k_N} \left[\det_{1 \le i,j \le N} (\varphi_{k_i}(x_j)) \right]^2 e^{-\beta(\epsilon_{k_1} + \cdots + \epsilon_{k_N})}$$
$$Z_N(\beta) = \sum_{k_1 < k_2 < \cdots < k_N} e^{-\beta(\epsilon_{k_1} + \epsilon_{k_2} + \cdots + \epsilon_{k_N})} \quad \& \quad \varphi_k(x) = \left[\frac{\alpha}{\sqrt{\pi} 2^k k!} \right]^{1/2} e^{-\frac{\alpha^2 x^2}{2}} H_k(\alpha x)$$

Probability density function (PDF) of the positions $x'_i s$

$$P_{\text{joint}}(x_1, \dots x_N) = \frac{1}{N! Z_N(\beta)} \sum_{k_1 < \dots < k_N} \left[\det_{1 \le i, j \le N} (\varphi_{k_i}(x_j)) \right]^2 e^{-\beta(\epsilon_{k_1} + \dots + \epsilon_{k_N})}$$
$$Z_N(\beta) = \sum_{k_1 < k_2 < \dots < k_N} e^{-\beta(\epsilon_{k_1} + \epsilon_{k_2} + \dots + \epsilon_{k_N})} \quad \& \quad \varphi_k(x) = \left[\frac{\alpha}{\sqrt{\pi} 2^k k!} \right]^{1/2} e^{-\frac{\alpha^2 x^2}{2}} H_k(\alpha x)$$

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two well understood limits

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two well understood limits

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two well understood limits

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two natural dimensionless variables

$$y = \frac{E_F}{T} = \frac{N\hbar\omega}{T}$$
 and $z = x\sqrt{\frac{m\omega^2}{2T}}$

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two natural dimensionless variables

$$y = \frac{E_F}{T} = \frac{N\hbar\omega}{T}$$
 and $z = x\sqrt{\frac{m\omega^2}{2T}}$

• High temperature scaling limit: $N \to \infty \;,\; T \sim N \;,\; x \sim \sqrt{T}$

Dean, Le Doussal, S. N. M., Schehr '14

$$\rho_N(x,T) \sim \frac{\alpha}{\sqrt{N}} R\left(\frac{N\hbar\omega}{T} = y, x\sqrt{\frac{m\omega^2}{2T}} = z\right),$$

$$R(y,z) = -\frac{1}{\sqrt{2\pi y}} \operatorname{Li}_{1/2} \left(-(e^y - 1) e^{-z^2} \right) \qquad \operatorname{Li}_n(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^n}$$

$$\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$$

Two natural dimensionless variables

$$y = \frac{E_F}{T} = \frac{N\hbar\omega}{T}$$
 and $z = x\sqrt{\frac{m\omega^2}{2T}}$

• High temperature scaling limit: $N \to \infty$, $T \sim N$, $x \sim \sqrt{T}$

Dean, Le Doussal, S. N. M., Schehr '14

$$\rho_N(x,T) \sim \frac{\alpha}{\sqrt{N}} R\left(\frac{N\hbar\omega}{T} = y, x\sqrt{\frac{m\omega^2}{2T}} = z\right),$$

$$R(y,z) = -\frac{1}{\sqrt{2\pi y}} \operatorname{Li}_{1/2} \left(-(e^y - 1) e^{-z^2} \right) \quad \operatorname{Li}_n(x) = \sum_{k=1}^{\infty} \frac{x^k}{k^n}$$

See also Local Density (or Thomas-Fermi) Approx. in the literature on fermions

- High temperature scaling limit: $N o \infty \;,\; T \sim N \;,\; x \sim \sqrt{T}$

$$\rho_N(x,T) \sim \frac{\alpha}{\sqrt{N}} R\left(\frac{N \hbar \omega}{T} = y, x \sqrt{\frac{m \omega^2}{2 T}} = z\right),$$

$$R(y,z) = -\frac{1}{\sqrt{2\pi y}} \operatorname{Li}_{1/2} \left(-(e^y - 1) e^{-z^2} \right)$$

• Low temperature scaling limit: $N
ightarrow \infty \;,\; T \sim N^{1/3} \ll N$

• Low temperature scaling limit: $N
ightarrow \infty \;,\; T \sim N^{1/3} \ll N$

• Low temperature scaling limit: $N o \infty \;,\; T \sim N^{1/3} \ll N$

• Low temperature scaling limit: $N \to \infty$, $T \sim N^{1/3} \ll N$

• Low temperature scaling limit: $N \to \infty$, $T \sim N^{1/3} \ll N$

• Low temperature scaling limit: $N
ightarrow \infty \;,\; T \sim N^{1/3} \ll N$

$$\rho_N(x,T) \approx \frac{1}{Nw_N} F_1\left(\frac{x-\sqrt{2N}/\alpha}{w_N}\right)$$

$$F_1(z) = \int_{-\infty}^{\infty} \frac{[Ai(z+u)]^2}{e^{-b\,u} + 1} \, du$$

$$T \sim b^{-1} N^{1/3} \hbar \, \omega$$

• Low temperature scaling limit: $N o \infty \;,\; T \sim N^{1/3} \ll N$

$$\rho_N(x,T) \approx \frac{1}{Nw_N} F_1\left(\frac{x-\sqrt{2N}/\alpha}{w_N}\right)$$

$$F_1(z) = \int_{-\infty}^{\infty} \frac{[Ai(z+u)]^2}{e^{-bu} + 1} \, du \quad T \sim b^{-1} N^{1/3} \hbar \, \omega$$

Asymptotic behaviors

$$z) \sim \begin{cases} \frac{\sqrt{|z|}}{\pi}, \ z \to -\infty \\ \exp(-bz), \ z \to +\infty \end{cases}$$

Dean, Le Doussal, S. N. M., Schehr '14

Correlation kernel for $N \;$ free fermions at T > O

• For $N \gg 1$ the canonical and grand-canonical ensembles coincide

Correlation kernel for N free fermions at T > O

 \blacksquare For $N\gg 1$ the canonical and grand-canonical ensembles coincide

• For $N\gg 1$ free fermions at $T>0\,$ in the grand canonical ensemble is a determinantal process

n-point correlation function $R_n(x_1, \cdots, x_n) \approx \det_{1 \le i,j \le n} K_N(x_i, x_j)$

Correlation kernel for N free fermions at T > O

 \blacksquare For $N\gg 1$ the canonical and grand-canonical ensembles coincide

• For $N\gg 1$ free fermions at $T>0\,$ in the grand canonical ensemble is a determinantal process

n-point correlation function $R_n(x_1, \cdots, x_n) \approx \det_{1 \le i,j \le n} K_N(x_i, x_j)$

Correlation kernel for N free fermions at T > 0 $K_N(x, x') = \sum_{k=0}^{\infty} \frac{\varphi_k(x)\varphi_k(x')}{e^{\beta(\epsilon_k - \mu)} + 1}$

• High temperature scaling limit: $N o \infty \;,\; T \sim N \;,\; x \;\&\; x' \sim \sqrt{T}$

for
$$|x - x'| \sim \frac{1}{N\rho_N(x)} \equiv$$
 inter-particle distance

Correlation kernel for N free fermions at T > 0 $K_N(x, x') = \sum_{k=0}^{\infty} \frac{\varphi_k(x)\varphi_k(x')}{e^{\beta(\epsilon_k - \mu)} + 1}$

• High temperature scaling limit: $N o \infty \;,\; T \sim N \;,\; x \;\&\; x' \sim \sqrt{T}$

for
$$|x - x'| \sim \frac{1}{N \rho_N(x)} \equiv$$
 inter-particle distance

$$K_N(x, x') \equiv \frac{1}{\ell} \mathcal{K}_{\text{bulk}} \left(\frac{|x - x'|}{\ell} \right) \ , \ \ell = \frac{2}{\pi N \rho_N(x)}$$

$$\mathcal{K}_{\text{bulk}}(v) = \frac{1}{\pi\sqrt{2y}} \int_0^\infty \frac{\cos\left(\sqrt{\frac{2p}{y}}v\right)}{(1+e^p/(e^y-1))\sqrt{p}} \, dp$$

generalization of the Sine-kernel

see also Garcia-Garcia, Verbaarshot '03/Johansson '07

Correlation kernel for N free fermions at T > 0 $K_N(x, x') = \sum_{k=0}^{\infty} \frac{\varphi_k(x)\varphi_k(x')}{e^{\beta(\epsilon_k - \mu)} + 1}$

 \blacksquare High temperature scaling limit: $~N \rightarrow \infty ~,~ T \sim N ~,~ x ~\&~ x' \sim \sqrt{T}$

for
$$|x - x'| \sim \frac{1}{N\rho_N(x)} \equiv$$
 inter-particle distance

$$K_N(x, x') \equiv \frac{1}{\ell} \mathcal{K}_{\text{bulk}} \left(\frac{|x - x'|}{\ell} \right) , \ \ell = \frac{2}{\pi N \rho_N(x)}$$

$$\mathcal{K}_{\text{bulk}}(v) = \frac{1}{\pi\sqrt{2y}} \int_0^\infty \frac{\cos\left(\sqrt{\frac{2p}{y}}v\right)}{(1+e^p/(e^y-1))\sqrt{p}} \, dp$$

generalization of the Sine-kernel

see also Garcia-Garcia, Verbaarshot '03/Johansson '07

Universal behavior, i.e., independent of the confining potential
 $V(x) \sim |x|^p$ Dean, Le Doussal, S. N. M., Schehr '14

Correlation kernel for N free fermions for T > 0

$$K_N(x, x') = \sum_{k=0}^{\infty} \frac{\varphi_k(x)\varphi_k(x')}{e^{\beta(\epsilon_k - \mu)} + 1}$$

• Low temperature scaling limit: $N o \infty \;,\; T \sim N^{1/3} \ll N$

when x & x' are close to the edge $r_{\rm edge} = \sqrt{2N}/lpha$

Correlation kernel for N free fermions for T > 0

$$K_N(x, x') = \sum_{k=0}^{\infty} \frac{\varphi_k(x)\varphi_k(x')}{e^{\beta(\epsilon_k - \mu)} + 1}$$

• Low temperature scaling limit: $N
ightarrow \infty \;,\; T \sim N^{1/3} \ll N$

when x & x' are close to the edge $r_{
m edge} = \sqrt{2N/lpha}$

$$K_N(x, x') \approx \frac{1}{w_N} \mathcal{K}_{\text{edge}} \left(\frac{x - r_{\text{edge}}}{w_N}, \frac{x' - r_{\text{edge}}}{w_N} \right) , \ w_N = \frac{N^{-1/6}}{\sqrt{2\alpha}}$$

Correlation kernel for N free fermions for T > O

$$K_N(x, x') = \sum_{k=0}^{\infty} \frac{\varphi_k(x)\varphi_k(x')}{e^{\beta(\epsilon_k - \mu)} + 1}$$

• Low temperature scaling limit: $N o \infty \;,\; T \sim N^{1/3} \ll N$

when $x \ \& x'$ are close to the edge $r_{
m edge} = \sqrt{2N/lpha}$

$$K_N(x,x') \approx \frac{1}{w_N} \mathcal{K}_{edge} \left(\frac{x - r_{edge}}{w_N}, \frac{x' - r_{edge}}{w_N} \right) , \ w_N = \frac{N^{-1/6}}{\sqrt{2}\alpha}$$
$$\mathcal{K}_{edge}(a,b) = \int_{-\infty}^{\infty} \frac{Ai(a+u)Ai(b+u)}{e^{-b\,u} + 1} du$$

Dean, Le Doussal, S. N. M., Schehr '14

see also Johansson '07

generalization of the Airy-kernel

- Universal behavior, i.e., independent of the confining potential $V(x) \sim |x|^p$

Position of the rightmost fermion at finite but low T

Position of the rightmost fermion at finite but low T

KPZ equation in 1+1 dimensions and curved geometry

$$\partial_t h = \nu \partial_x^2 h + \frac{\lambda_0}{2} (\partial_x h)^2 + \sqrt{D} \eta(x, t)$$
$$\langle \eta(x, t) \eta(x', t') \rangle = \delta(x - x') \delta(t - t')$$
$$h(x, t = 0) = -\frac{|x|}{\delta}$$

 $\partial_t h = \nu \partial_x^2 h + \frac{\lambda_0}{2} (\partial_x h)^2 + \sqrt{D} \eta(x, t)$ $\langle \eta(x,t)\eta(x',t')\rangle = \delta(x-x')\delta(t-t')$ $h(x,t=0) = -\frac{|x|}{\delta}$

$$h = \nu \partial_x^2 h + \frac{\lambda_0}{2} (\partial_x h)^2 + \sqrt{D} \eta(x, t)$$
$$\langle \eta(x, t) \eta(x', t') \rangle = \delta(x - x') \delta(t - t')$$
$$h(x, t = 0) = -\frac{|x|}{\delta}$$

Scaled variable:

Sasamoto, Spohn '10/Calabrese, Le Doussal, Rosso '10/Dotsenko '10/ Amir, Corwin, Quastel '11 Imamura, Sasamoto, Spohn '13

Connection between fermions at finite temperature and KPZ at finite time

Connection between fermions at finite temperature and KPZ at finite time

Free fermions problem: fluctuations of $x_{\max}(T > 0)$

$$\Pr\left(x_{\max}(T>0) \le M\right) \approx \mathcal{F}\left(\frac{M-r_{\text{edge}}}{w_N}\right)$$
$$\mathcal{F}(\xi) = \det\left(I - P_{\xi}K_{\text{edge}}P_{\xi}\right), \ K_{\text{edge}}(a,b) = \int_{-\infty}^{\infty} \frac{Ai(a+u)Ai(b+u)}{e^{-b\,u}+1} \, du$$

Connection between fermions at finite temperature and KPZ at finite time

Free fermions problem: fluctuations of $x_{\max}(T > 0)$

$$\Pr(x_{\max}(T > 0) \le M) \approx \mathcal{F}\left(\frac{M - r_{\text{edge}}}{w_N}\right)$$
$$\mathcal{F}(\xi) = \det(I - P_{\xi}K_{\text{edge}}P_{\xi}), \ K_{\text{edge}}(a, b) = \int_{-\infty}^{\infty} \frac{Ai(a+u)Ai(b+u)}{e^{-b\,u} + 1} \, du$$

• KPZ equation: generating function of the height field h(0,t)

$$g_t(\zeta) = \left\langle \exp(-e^{\gamma_t(\tilde{h}(0,t)-\zeta)}) \right\rangle$$
$$g_t(\zeta) = \det(I - P_{\zeta}K_{\text{edge}}P_{\zeta}), \ K_{\text{edge}}(x,y) = \int_{-\infty}^{\infty} \frac{Ai(x+z)Ai(y+z)}{e^{-\gamma_t z}+1} \, dz$$

Connection between fermions at finite temperature and KPZ at finite time

Free fermions problem: fluctuations of $x_{\max}(T > 0)$

$$\Pr(x_{\max}(T>0) \le M) \approx \mathcal{F}\left(\frac{M - r_{\text{edge}}}{w_N}\right)$$
$$\mathcal{F}(\xi) = \det(I - P_{\xi}K_{\text{edge}}P_{\xi}), \ K_{\text{edge}}(a,b) = \int_{-\infty}^{\infty} \frac{Ai(a+u)Ai(b+u)}{e^{-bu} + 1} \, du$$

• KPZ equation: generating function of the height field $\tilde{h}(0,t)$

$$g_t(\zeta) = \left\langle \exp(-e^{\gamma_t(\tilde{h}(0,t)-\zeta)}) \right\rangle$$
$$g_t(\zeta) = \det(I - P_{\zeta}K_{\text{edge}}P_{\zeta}), \ K_{\text{edge}}(x,y) = \int_{-\infty}^{\infty} \frac{Ai(x+z)Ai(y+z)}{e^{-\gamma_t z}+1} \, dz$$

formal connection between the two problems with $1/T \iff t^{1/3}$ Dean, Le Doussal, S. N. M

Dean, Le Doussal, S. N. M., Schehr '14

Outline

Free fermions in d=1 and T=0 and Random Matrix Theory (RMT)

Free fermions in d=1 and T>O and KPZ equation: main results

Sketch of the derivation of our results

Extension to higher dimensions, d>1

Conclusion

$$P_{\text{joint}}(x_1, \cdots x_N) = \frac{1}{N! Z_N(\beta)} \sum_{k_1 < \cdots < k_N} \left[\det_{1 \le i,j \le N} (\varphi_{k_i}(x_j)) \right]^2 e^{-\beta(\epsilon_{k_1} + \cdots + \epsilon_{k_N})}$$

$$P_{\text{joint}}(x_1, \cdots x_N) = \frac{1}{N! Z_N(\beta)} \sum_{k_1 < \cdots < k_N} \left[\det_{1 \le i,j \le N} (\varphi_{k_i}(x_j)) \right]^2 e^{-\beta(\epsilon_{k_1} + \cdots + \epsilon_{k_N})}$$

• Exact expression for the av. density $\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$

$$\rho_N(x,T) = \int_{-\infty}^{\infty} dx_2 \cdots \int_{-\infty}^{\infty} dx_N P_{\text{joint}}(x,x_2,\cdots,x_N)$$

$$P_{\text{joint}}(x_1, \cdots x_N) = \frac{1}{N! Z_N(\beta)} \sum_{k_1 < \cdots < k_N} \left[\det_{1 \le i,j \le N} (\varphi_{k_i}(x_j)) \right]^2 e^{-\beta(\epsilon_{k_1} + \cdots + \epsilon_{k_N})}$$

• Exact expression for the av. density $\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^N \langle \delta(x-x_i) \rangle$

$$\rho_N(x,T) = \int_{-\infty}^{\infty} dx_2 \cdots \int_{-\infty}^{\infty} dx_N P_{\text{joint}}(x,x_2,\cdots,x_N)$$

introduce the occupation numbers

$$P_{\text{joint}}(x_1, \cdots x_N) = \frac{1}{N! Z_N(\beta)} \sum_{k_1 < \cdots < k_N} \left[\det_{1 \le i,j \le N} (\varphi_{k_i}(x_j)) \right]^2 e^{-\beta(\epsilon_{k_1} + \cdots + \epsilon_{k_N})}$$

Exact expression for the av. density $\rho_N(x,T) = \frac{1}{N} \sum_{i=1}^{N} \langle \delta(x-x_i) \rangle$

$$\rho_N(x,T) = \int_{-\infty}^{\infty} dx_2 \cdots \int_{-\infty}^{\infty} dx_N P_{\text{joint}}(x,x_2,\cdots,x_N)$$

introduce the occupation numbers

$$\rho_N(x) = \frac{\mathcal{N}_N(x)}{NZ_N(\beta)} \quad \text{with} \quad \mathcal{N}_N(x) = \sum_{\{m_k\}} \left[\left(\sum_{k \ge 0} m_k (\varphi_k(x))^2 \right) e^{-\beta \sum_{k \ge 0} m_k \epsilon_k} \delta \left(\sum_{k \ge 0} m_k, N \right) \right]$$

$$\rho_N(x) = \frac{\mathcal{N}_N(x)}{NZ_N(\beta)} \quad \text{with} \quad \mathcal{N}_N(x) = \sum_{\{m_k\}} \left[\left(\sum_{k \ge 0} m_k (\varphi_k(x))^2 \right) e^{-\beta \sum_{k \ge 0} m_k \epsilon_k} \delta \left(\sum_{k \ge 0} m_k, N \right) \right]$$

• Generating function: grand-canonical ensemble, with $z = e^{\beta\mu}$

$$\sum_{N\geq 0} z^N \mathcal{N}_N(x) = \sum_{\{m_k\}} \sum_{k\geq 0} m_k (\varphi_k(x))^2 e^{-\beta \sum_{k\geq 0} m_k \epsilon_k} z^{\sum_{k\geq 0} m_k}$$

$$\rho_N(x) = \frac{\mathcal{N}_N(x)}{NZ_N(\beta)} \quad \text{with} \quad \mathcal{N}_N(x) = \sum_{\{m_k\}} \left[\left(\sum_{k \ge 0} m_k (\varphi_k(x))^2 \right) e^{-\beta \sum_{k \ge 0} m_k \epsilon_k} \delta \left(\sum_{k \ge 0} m_k, N \right) \right]$$

• Generating function: grand-canonical ensemble, with $z=e^{eta\mu}$

$$\sum_{N\geq 0} z^N \mathcal{N}_N(x) = \sum_{\{m_k\}} \sum_{k\geq 0} m_k (\varphi_k(x))^2 e^{-\beta \sum_{k\geq 0} m_k \epsilon_k} z^{\sum_{k\geq 0} m_k}$$
$$= \sum_{k\geq 0} (\varphi_k(x))^2 z e^{-\beta \epsilon_k} \prod_{j\neq k} \left[\sum_{m_j=0}^1 e^{-\beta m_j \epsilon_j} z^{m_j} \right]$$

$$\rho_N(x) = \frac{\mathcal{N}_N(x)}{NZ_N(\beta)} \quad \text{with} \quad \mathcal{N}_N(x) = \sum_{\{m_k\}} \left[\left(\sum_{k \ge 0} m_k (\varphi_k(x))^2 \right) e^{-\beta \sum_{k \ge 0} m_k \epsilon_k} \delta \left(\sum_{k \ge 0} m_k, N \right) \right]$$

• Generating function: grand-canonical ensemble, with $z=e^{eta\mu}$

$$\sum_{N \ge 0} z^N \mathcal{N}_N(x) = \sum_{\{m_k\}} \sum_{k \ge 0} m_k (\varphi_k(x))^2 e^{-\beta \sum_{k \ge 0} m_k \epsilon_k} z^{\sum_{k \ge 0} m_k}$$
$$= \sum_{k \ge 0} (\varphi_k(x))^2 z e^{-\beta \epsilon_k} \prod_{j \ne k} \left[\sum_{m_j=0}^1 e^{-\beta m_j \epsilon_j} z^{m_j} \right]$$
$$= \prod_{j=0}^\infty \left[1 + z e^{-\beta \epsilon_j} \right] \sum_{k \ge 0} (\varphi_k(x))^2 \frac{z e^{-\beta \epsilon_k}}{1 + z e^{-\beta \epsilon_k}}$$

$$\rho_N(x) = \frac{\mathcal{N}_N(x)}{NZ_N(\beta)} \quad \text{with} \quad \mathcal{N}_N(x) = \sum_{\{m_k\}} \left[\left(\sum_{k \ge 0} m_k (\varphi_k(x))^2 \right) e^{-\beta \sum_{k \ge 0} m_k \epsilon_k} \delta \left(\sum_{k \ge 0} m_k, N \right) \right]$$

• Generating function: grand-canonical ensemble, with $z=e^{eta\mu}$

$$\sum_{N\geq 0} z^N \mathcal{N}_N(x) = \sum_{\{m_k\}} \sum_{k\geq 0} m_k (\varphi_k(x))^2 e^{-\beta \sum_{k\geq 0} m_k \epsilon_k} z^{\sum_{k\geq 0} m_k}$$
$$= \sum_{k\geq 0} (\varphi_k(x))^2 z e^{-\beta \epsilon_k} \prod_{j\neq k} \left[\sum_{m_j=0}^1 e^{-\beta m_j \epsilon_j} z^{m_j} \right]$$
$$= \prod_{j=0}^\infty \left[1 + z e^{-\beta \epsilon_j} \right] \sum_{k\geq 0} (\varphi_k(x))^2 \frac{z e^{-\beta \epsilon_k}}{1 + z e^{-\beta \epsilon_k}}$$

similarly $\sum_{N \ge 0} z^N Z_N(\beta) = \prod_{j=0}^{\infty} (1 + z e^{-\beta \epsilon_j})$ grand-canonical partition function

An exact formula (using Cauchy formula)

$$\rho_N(x) = \frac{1}{N} \frac{\oint \frac{dz}{2i\pi} z^{-(N+1)} \prod_{j=0}^{\infty} (1+z \, e^{-\beta\epsilon_j}) \sum_{k\geq 0} (\varphi_k(x))^2 \frac{z \, e^{-\beta\epsilon_k}}{1+z \, e^{-\beta\epsilon_k}}}{\oint \frac{dz}{2i\pi} z^{-(N+1)} \prod_{j=0}^{\infty} (1+z \, e^{-\beta\epsilon_j})}$$

An exact formula (using Cauchy formula)

$$\rho_{N}(x) = \frac{1}{N} \frac{\oint \frac{dz}{2i\pi} z^{-(N+1)} \prod_{j=0}^{\infty} (1+z e^{-\beta\epsilon_{j}}) \sum_{k \ge 0} (\varphi_{k}(x))^{2} \frac{z e^{-\beta\epsilon_{k}}}{1+z e^{-\beta\epsilon_{k}}}}{\oint \frac{dz}{2i\pi} z^{-(N+1)} \prod_{j=0}^{\infty} (1+z e^{-\beta\epsilon_{j}})}$$

$$\rho_{N}(x) \underset{N \to \infty}{\approx} \frac{1}{N} \sum_{k \ge 0} (\varphi_{k}(x))^{2} \frac{z^{*} e^{-\beta\epsilon_{k}}}{1+z^{*} e^{-\beta\epsilon_{k}}} \quad \text{via saddle-point calculation}}$$

An exact formula (using Cauchy formula)

$$\rho_{N}(x) = \frac{1}{N} \frac{\oint \frac{dz}{2i\pi} z^{-(N+1)} \prod_{j=0}^{\infty} (1+z e^{-\beta\epsilon_{j}}) \sum_{k \ge 0} (\varphi_{k}(x))^{2} \frac{z e^{-\beta\epsilon_{k}}}{1+z e^{-\beta\epsilon_{k}}}}{\oint \frac{dz}{2i\pi} z^{-(N+1)} \prod_{j=0}^{\infty} (1+z e^{-\beta\epsilon_{j}})}$$

$$\rho_{N}(x) \underset{N \to \infty}{\approx} \frac{1}{N} \sum_{k \ge 0} (\varphi_{k}(x))^{2} \frac{z^{*} e^{-\beta\epsilon_{k}}}{1+z^{*} e^{-\beta\epsilon_{k}}} \quad \text{via saddle-point} \\ \text{calculation}}$$

where
$$N = \sum_{k \geq 0} \frac{z^* e^{-\beta \epsilon_k}}{1 + z^* e^{-\beta \epsilon_k}}$$

An exact formula (using Cauchy formula)

$$\rho_{N}(x) = \frac{1}{N} \frac{\oint \frac{dz}{2i\pi} z^{-(N+1)} \prod_{j=0}^{\infty} (1+z e^{-\beta\epsilon_{j}}) \sum_{k \ge 0} (\varphi_{k}(x))^{2} \frac{z e^{-\beta\epsilon_{k}}}{1+z e^{-\beta\epsilon_{k}}}}{\oint \frac{dz}{2i\pi} z^{-(N+1)} \prod_{j=0}^{\infty} (1+z e^{-\beta\epsilon_{j}})}$$

$$\rho_{N}(x) \underset{N \to \infty}{\approx} \frac{1}{N} \sum_{k \ge 0} (\varphi_{k}(x))^{2} \frac{z^{*} e^{-\beta\epsilon_{k}}}{1+z^{*} e^{-\beta\epsilon_{k}}} \quad \text{via saddle-point calculation}}$$

where
$$N = \sum_{k \geq 0} \frac{z^* e^{-\beta \epsilon_k}}{1 + z^* e^{-\beta \epsilon_k}}$$

Setting $z^* = e^{\beta\mu}$ one has $\frac{z^*e^{-\beta\epsilon_k}}{1+z^*e^{-\beta\epsilon_k}} = \frac{1}{e^{\beta(\epsilon_k-\mu)}+1} = \langle m_k \rangle$

An exact formula (using Cauchy formula)

$$\rho_{N}(x) = \frac{1}{N} \frac{\oint \frac{dz}{2i\pi} z^{-(N+1)} \prod_{j=0}^{\infty} (1+z e^{-\beta\epsilon_{j}}) \sum_{k \ge 0} (\varphi_{k}(x))^{2} \frac{z e^{-\beta\epsilon_{k}}}{1+z e^{-\beta\epsilon_{k}}}}{\oint \frac{dz}{2i\pi} z^{-(N+1)} \prod_{j=0}^{\infty} (1+z e^{-\beta\epsilon_{j}})}$$

$$\rho_{N}(x) \underset{N \to \infty}{\approx} \frac{1}{N} \sum_{k \ge 0} (\varphi_{k}(x))^{2} \frac{z^{*} e^{-\beta\epsilon_{k}}}{1+z^{*} e^{-\beta\epsilon_{k}}} \quad \text{via saddle-point calculation}$$

where
$$N = \sum_{k \geq 0} \frac{z^* e^{-\beta \epsilon_k}}{1 + z^* e^{-\beta \epsilon_k}}$$

Setting $z^* = e^{\beta\mu}$ one has $\frac{z^*e^{-\beta\epsilon_k}}{1+z^*e^{-\beta\epsilon_k}} = \frac{1}{e^{\beta(\epsilon_k-\mu)}+1} = \langle m_k \rangle$ Fermi factor

Correlation kernel for free fermions at T > O

 \blacksquare Final result for the density for large N

$$\rho_N(x) \approx \frac{1}{N} \sum_{k \ge 0} (\varphi_k(x))^2 \frac{1}{e^{\beta(\epsilon_k - \mu)} + 1}$$

Correlation kernel for free fermions at T > O

 \blacksquare Final result for the density for large N

$$\rho_N(x) \approx \frac{1}{N} \sum_{k \ge 0} (\varphi_k(x))^2 \frac{1}{e^{\beta(\epsilon_k - \mu)} + 1}$$

 \blacksquare *n*-point correlation functions for large *N* (by similar computations)

$$R_n(x_1, \cdots, x_n) \approx \det_{1 \le i,j \le n} K_N(x_i, x_j)$$

where the correlation kernel is given by

$$K_N(x,x') = \sum_{k=0}^{\infty} \frac{\varphi_k(x)\varphi_k(x')}{e^{\beta(\epsilon_k - \mu)} + 1} \quad \text{and} \quad N = \sum_{k=0}^{\infty} \frac{1}{e^{\beta(\epsilon_k - \mu)} + 1}$$

Outline

Free fermions in d=1 and T=0 and Random Matrix Theory (RMT)

Free fermions in d=1 and T>O and KPZ equation: main results

Sketch of the derivation of our results

Extension to higher dimensions, d>1

Conclusion

Free fermions in a d-dimensional harmonic trap (T=0)

Single particle Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2} \right) + \frac{1}{2} m \omega^2 \left(\underbrace{x_1^2 + \dots + x_d^2}_{r^2} \right)$$
Single particle Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2} \right) + \frac{1}{2} m \omega^2 \left(\underbrace{x_1^2 + \dots + x_d^2}_{r^2} \right)$$

Global density (at T=0)

$$\rho_N(\mathbf{x}) \approx \frac{1}{N} \left(\frac{m}{2\pi\hbar^2}\right)^{d/2} \frac{\left[\mu - \frac{1}{2}m\omega^2 r^2\right]^{d/2}}{\Gamma(d/2+1)}$$

with $\mu \approx \hbar \omega [\Gamma(d+1) N]^{1/d}$

Single particle Hamiltonian

$$\hat{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2} \right) + \frac{1}{2} m \omega^2 \left(\underbrace{x_1^2 + \dots + x_d^2}_{r^2} \right)$$

Global density (at T=0)

$$\rho_N(\mathbf{x}) \approx \frac{1}{N} \left(\frac{m}{2\pi\hbar^2}\right)^{d/2} \frac{\left[\mu - \frac{1}{2}m\omega^2 r^2\right]^{d/2}}{\Gamma(d/2+1)}$$

with $\mu \approx \hbar \omega [\Gamma(d+1)N]^{1/d}$ Dean, Le Doussal, S. N. M., Schehr, arXiv: 1505.01543

Dean, Le Doussal, S. N. M., Schehr, arXiv: 1505.01543

Edge density of free fermions

$$\rho_{\rm edge}(\mathbf{x}) \approx \frac{1}{N} \frac{1}{w_N^d} F_d\left(\frac{r - r_{\rm edge}}{w_N}\right)$$

with $w_N = b_d N^{-\frac{1}{6d}}$ and $F_d(z) = \frac{1}{\Gamma(\frac{d}{2}+1)2^{\frac{4d}{3}}\pi^{\frac{d}{2}}} \int_0^\infty du \ u^{\frac{d}{2}} Ai(u+2^{2/3}z)$

Dean, Le Doussal, S. N. M., Schehr, arXiv: 1505.01543

Edge density of free fermions

$$\rho_{\rm edge}(\mathbf{x}) \approx \frac{1}{N} \frac{1}{w_N^d} F_d\left(\frac{r - r_{\rm edge}}{w_N}\right)$$

with
$$w_N = b_d N^{-\frac{1}{6d}}$$
 and $F_d(z) = \frac{1}{\Gamma(\frac{d}{2}+1)2^{\frac{4d}{3}}\pi^{\frac{d}{2}}} \int_0^\infty du \ u^{\frac{d}{2}} Ai(u+2^{2/3}z)$

recall that $F_1(z) = [Ai'(z)]^2 - z[Ai(z)]^2$

Dean, Le Doussal, S. N. M., Schehr, arXiv: 1505.01543

Edge density of free fermions

$$\rho_{\text{edge}}(\mathbf{x}) \approx \frac{1}{N} \frac{1}{w_N^d} F_d\left(\frac{r - r_{\text{edge}}}{w_N}\right)$$

Z

with
$$w_N = b_d N^{-\frac{1}{6d}}$$
 and $F_d(z) = \frac{1}{\Gamma(\frac{d}{2}+1)2^{\frac{4d}{3}}\pi^{\frac{d}{2}}} \int_0^\infty du \ u^{\frac{d}{2}} Ai(u+2^{2/3}z)$

recall that $F_1(z) = [Ai'(z)]^2 - z[Ai(z)]^2$

Dean, Le Doussal, S. N. M., Schehr, arXiv: 1505.01543

Edge density of free fermions

$$\rho_{\rm edge}(\mathbf{x}) \approx \frac{1}{N} \frac{1}{w_N^d} F_d\left(\frac{r - r_{\rm edge}}{w_N}\right)$$

with
$$w_N = b_d N^{-\frac{1}{6d}}$$
 and $F_d(z) = \frac{1}{\Gamma(\frac{d}{2}+1)2^{\frac{4d}{3}}\pi^{\frac{d}{2}}} \int_0^\infty du \ u^{\frac{d}{2}} Ai(u+2^{2/3}z)$

Free fermions in a d-dimensional harmonic trap (T=0): limiting correlation kernels

$$K_N(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{k}} \theta(E_F - \epsilon_{\mathbf{k}}) \psi_{\mathbf{k}}(\mathbf{x}) \psi_{\mathbf{k}}(\mathbf{y})$$

Free fermions in a d-dimensional harmonic trap (T=O): limiting correlation kernels

$$K_N(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{k}} \theta(E_F - \epsilon_{\mathbf{k}}) \psi_{\mathbf{k}}(\mathbf{x}) \psi_{\mathbf{k}}(\mathbf{y})$$

In the bulk $K_N(\mathbf{x}, \mathbf{y}) \approx \frac{1}{\ell^d} \mathcal{K}_{\text{bulk}} \left(\frac{|\mathbf{x} - \mathbf{y}|}{\ell} \right) \quad \text{with} \quad \ell = [N \rho_N(\mathbf{x}) \gamma_d]^{-1/d}$ $\mathcal{K}_{\text{bulk}}(x) = \frac{J_{d/2}(2x)}{(\pi x)^{d/2}}$

Free fermions in a d-dimensional harmonic trap (T=0): limiting correlation kernels

$$K_N(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{k}} \theta(E_F - \epsilon_{\mathbf{k}}) \psi_{\mathbf{k}}(\mathbf{x}) \psi_{\mathbf{k}}(\mathbf{y})$$

In the bulk $K_N(\mathbf{x}, \mathbf{y}) \approx \frac{1}{\ell d} \mathcal{K}_{\text{bulk}}\left(\frac{|\mathbf{x} - \mathbf{y}|}{\ell}\right) \quad \text{with} \quad \ell = [N \rho_N(\mathbf{x}) \gamma_d]^{-1/d}$ $\mathcal{K}_{\text{bulk}}(x) = \frac{J_{d/2}(2x)}{(\pi x)^{d/2}}$ At the edge Dean, Le Doussal, S. N. M., Schehr, arXiv: 1505.01543 $K_N(\mathbf{x}, \mathbf{y}) \approx \frac{1}{w_{M}^d} \mathcal{K}_{\text{edge}} \left(\frac{\mathbf{x} - \mathbf{r}_{\text{edge}}}{w_{M}}, \frac{\mathbf{y} - \mathbf{r}_{\text{edge}}}{w_{M}} \right)$ $\mathcal{K}_{\text{edge}}(\mathbf{a}, \mathbf{b}) = \int \frac{d^d q}{(2\pi)^d} e^{-i\mathbf{q}\cdot(\mathbf{a}-\mathbf{b})} A i_1 \left(2^{\frac{2}{3}}q^2 + \frac{a_n + b_n}{2^{1/3}}\right)$ with $Ai_1(z) = \int^{\infty} Ai(u)du$ $a_n = \mathbf{a} \cdot \mathbf{r}_{edge} / r_{edge}$ and $b_n = \mathbf{b} \cdot \mathbf{r}_{edge} / r_{edge}$

Outline

Free fermions in d=1 and T=0 and Random Matrix Theory (RMT)

Free fermions in d=1 and T>O and KPZ equation: main results

Sketch of the derivation of our results

Extension to higher dimensions, d>1

Conclusion

Conclusion

- Exact results for Free fermions in d=1 at finite temperature T>0
- Connection between Free fermions in d=1 at T>O and KPZ equation
- Extension to higher dimensions (d>1 and T = 0): generalizations of the Sine and Airy Kernel
- Universality of these new kernels: they do not depend on the trapping potential (for spherically symmetric trap with a single minimum)

Conclusion

- Exact results for Free fermions in d=1 at finite temperature T>0
- Connection between Free fermions in d=1 at T>O and KPZ equation
- Extension to higher dimensions (d>1 and T = 0): generalizations of the Sine and Airy Kernel
- Universality of these new kernels: they do not depend on the trapping potential (for spherically symmetric trap with a single minimum)
- Extensions to both d>1 AND T>0 (tbp soon)

Conclusion

- Exact results for Free fermions in d=1 at finite temperature T>0
- Connection between Free fermions in d=1 at T>O and KPZ equation
- Extension to higher dimensions (d>1 and T = 0): generalizations of the Sine and Airy Kernel
- Universality of these new kernels: they do not depend on the trapping potential (for spherically symmetric trap with a single minimum)
- Extensions to both d>1 AND T>0 (tbp soon)

Can one observe these kernels in cold atoms experiments ?