

Detection of a Large and Fastest Swing in the Optical Polarization Angle in the Blazar S5 0716+714 during the Unprecedented Multi-frequency Flare in February 2015 Bhatta G., Ostrowski M., L. Stawarz, F. Krauss, A. Markowitz, A. A. Arkharov, R. Bachev, G. A. Borman, A Cason, V. Doroshenko, D. Jableka , S. A. Klimanov, V. M. Larionov, A. C. Sadun, I. S. Troitsky, O. Vince, J. Webb and S. Zola

Astronomical Observatory of Jagiellonian University, Krakow, Poland

Background

- Blazars are believed to be the most violent radio-galaxies with one of their jets pointed towards us.
- They are widely considered as luminous sources with highly polarized emission variable in all frequencies and timescales ranging from years down to minutes.
- Blazars frequently go through sudden outbursts releasing a tremendous amount of energy in the form of multi-frequency

Fractional Variability

emission.

• The nature of the events leading to such violent episodes along with the other dynamic and kinematic processes involved e.g. emission and particle mechanisms are still under debate.

• A multi-frequency study of the flare in blazar 0716+714, unprecedented in magnitude and scale, is carried out with the aid of observations in optical, UV, X-ray and gamma ray observations lasting about 90 days.

• Such a muli-frequency look into the event provides with an insights placing important constraints on the various parameters such geometry, magnetic field, particle acceleration and emission mechanism etc.

DCF between gamma ray and U flux

Observation Summary

Table 1:	Observation	Summary
----------	-------------	---------

	v			
Instrument	Bandpass or Filter Center	$N_{\rm pts}$	Mean Flux or Flux Density	$F_{\rm var}$ (%)
Fermi LAT	0.1 300 GeV	46	$2.92 \times 10^{-7} \text{ ph cm}^{-2} \text{ s}^{-1}$	$53.1 \pm 4.$
Swift XRT	$0.5{-}10~{ m keV}$	70	$1.91 \times 10^{-11} \text{ erg cm}^{-2} \text{ s}^{-1}$	$35.6 \pm 1.$
Swift UVOT W2	$1928 \ \AA$	64	$3.44 \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1} ^{\text{A}-1}$	$55.0 \pm 0.$

DCF between X-ray and U flux

UV -gamma ray flux Correlation

- 3 Gamma Flux —•
- The source went through a large surge in gamma-ray emission correlated with optical emission lasting about 30 days.
- The accompanying X-ray flares during the violent episode found to behave

quasi-independently.

- A huge positive swing in optical polarization angle (PA) was observe to coincidence with the gamma ray emission flaring up nearly 7 times
- The rate of change in PA is found to be *the fastest* one 550 deg in merely 5 days.
- The observed rise in PA began at rather low polarization degree.
- A softer-when-brighter trend was observed in X-ray emission.
- The UVOT spectra were found to be almost power-law type.
- Surprisingly, the optical intranight variability was found to be devoid of subhour-like oscillations usually observed with high duty cycle.

Acknowledgement

Results

This work was supported by the Polish National Science Centre through the grant DEC-2012/04/A/ST9/00083.

Thank You !!