Thermal Transport in Various 1D Sturctures

P. N. Gajjar

Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380 009, Gujarat, INDIA.

pngajjar@rediffmail.com

Google Maps

Ahmedabad, Gujarat to Bangalore, Karnataka

Acknowledgements

- My Research Group
- Gujarat University, Ahmedabad, India
- DST-FIST-I, Department of Science & Technology, Govt. of India, India
- DRS-SAP-I, University Grants Commission, New Delhi, India
- Prof. Abhishek Dhar & ICTS, Bangalore

Thermal Transport in various 1D Structures: Results of Our Simulations

- * Linear Mass Graded Chain (Yang et al, 2007, P. N. Gajjar et al, 2010)
- * Exponential Mass Graded Chain. (Tejal N. Shah & P.N. Gajjar, 2012)
- * Diatomic Chain (Tejal N. Shah & P. N. Gajjar, 2012)
- * Mass Defective Chain (Tejal N. Shah & P. N. Gajjar, 2012)
- * Abrupt Junction Thermal Diode (P. P. Patel & P. N. Gajjar, 2013)
- * Composite Materials (P. P. Patel & P. N. Gajjar, 2013)
- **Sandwitch Structure (Tarika K. Patel & P. N. Gajjar, 2015)**
- * Tri-Mass Segment Thermal Transistor (P. P. Patel & P. N. Gajjar, 2013)
- **Characteristics of Thermal Transistor (M.G.Vachhani & P.N.Gajjar, 2015)**

Heat conduction in 1-D Chain: Harmonic

Heat conduction in 1-D Chain:

Anharmonic (Tejal N. Shah & P. N. Gajjar, 2012, 2013)

Thermal Conductivity

Controversy over the critical exponent α

For anomalous heat conduction, some of the predicted values of α are:

- (i) $\alpha = 1$ for harmonic lattices
- (ii) $\alpha = 0.5$ for disordered harmonic lattices
- (iii) $0 < \alpha < 1$ for FK lattices
- (iv) $0.34 < \alpha < 0.44$ for FPU lattices
- (v) $0.22 < \alpha < 0.35$ for hard sphere model
- (vi) $\alpha = 0.22$ for triangular model

Etc.....

Functional Materials: Thermal Rectification and NDTR

- ***** Linear Mass graded Chain.
- ***** Exponential Mass graded Chain.

Temperature Profiles

Linear Vs Exponential Mass Graded Chains

Important feature in 1-D graded chain →
 Negative Differential Thermal Resistance.

Linear Vs Exponential Mass Graded Chains

- Exponential Mass graded chain
 K = 0.045 N
- Linear Mass graded chain of Yang et al. is $\mathcal{K} = 0.027 \text{ N}$.
- Thus compared to linear mass graded harmonic lattice, the exponential mass graded harmonic lattice works as a better thermal conductor.
- (Tejal N Shah & P. N. Gajjar: Physics Letters A 376, 438 (2012))

- We have also studied the thermal rectification in the exponential mass graded anharmonic lattice.
- The present model of exponential mass graded anharmonic chain generates the thermal rectification of 70-75%.

First Solid State Thermal Rectifier

Chang et al. built the first microscopic solid state thermal diode. They attached a heater and a sensor to the two ends of a carbon nanotube and calculated its thermal conductivity. Then they deposited amorphous C₉H₁₆Pt non-uniformly along the half length of the nanotube to vary the temperature dependence of the resonance frequency along the nanotube and achieved conductance of 3-7% greater in one direction than it was in the other.

(C. Chang, D. Okawa, A. Majumdar and A. Zettl, Science 314 (2006)121.)

First Solid State Thermal Rectifier

Diatomic Chain Tejal N. Shah & P. N. Gajjar, 2012

Tejal N. Shah & P. N. Gajjar, 2012

divergent The power exponent of thermal conductivity 0.428 ± 0.001 and diffusion exponent 1.2723 lead to the conclusions that increase in the system size, increases the thermal conductivity and existence **O**t anomalous energy diffusion.

Mass Defective Chain Tejal N. Shah & P. N. Gajjar, 2012

Tejal N. Shah & P. N. Gajjar, 2012

Mass of the	Defect Position	Thermal conductivity
defected		
oscillator	iD	κ
M _D		
0.5	50	186.83
	100	176.75
	150	197.41
2.0	50	58.85
	100	58.75
	150	60.65
3.0	50	21.83
	100	22.93
	150	23.46

Abrupt Junction Thermal Diode

P. P. Patel & P. N. Gajjar, 2013

 T_R

Mass Effect

•

•

Δ

•

Rectification rate of Thermal Conductivity

1D Sandwitch Structure Tarika K. Patel & P. N. Gajjar, 2015

M _s	M_a	Temperature gradient		Interface Thermal Resistance		Thermal
		First	Second	First	Second	conductivity
		interface	interface	interface	interface	
1.0	1.0					23.319
0.1	0.1					64.764
0.1	1.0	1.601E-2	1.210E-2	1.31605	0.99439	18.701

Thermal Transistor

Thermal Transistor

P. P. Patel & P. N. Gajjar, 2013

Characteristics of a Thermal Transistor

M. G. Vachhani & P. N. Gajjar (2015)

Transfer Characteristics of a Thermal Transistor M. G. Vachhani & P. N. Gajjar (2015)

Characteristics of a Thermal Transistor

M. G. Vachhani & P. N. Gajjar (2015)

Thermal Transistor Parameters

T _{GS} =Const.	Thermal Resistance (R _H) _S	Thermal Resistance (R _H) _D	Thermal Transconductance g _m	Thermal Amplification factor μ
0.00	2.22E03	200.00	0.0164±0.0007	36.04
-0.01	3.92E03	202.02		64.29
-0.02	4.65E03	210.53		76.26
-0.03	7.41E03	250.00		121.52
-0.04	1.33E04	384.62		218.12

Why To Study Heat Transport?

 It is to our surprise that about 90% of energy consumption of the world is either through heating or cooling.

 Looking to the amount of energy consumption in the form of heat, it is utmost essential to control / manipulate heat flow in the way we desire for the applications of heating, cooling and energy conversion.

The first-most requirement to utilize the heat is to have a material which allows us to control the flow of heat in a desire direction and/or which stores the heat for longer period of time.

For this I have to think very differently!

- Now, I have to focus not on the <u>photons</u> nor on the <u>electrons</u>.
- But I have to follow the <u>PHONONS</u> very carefully and seriously.

THANKS

P. N. Gajjar pngajjar@rediffmail.com pngajjar@gujaratuniversity.ac.in