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 Fluctuation-dominated Phase Ordering 

Evolution to a state with  

Long range order  + Macroscopic fluctuations 

                                                  Hallmarks 
• Scaled  2-point correlation function      Cusp singularity  (non-Porod) 
• RMS fluctuations as large as mean order parameter  
         

                                                   Examples 
• Passive particles  driven by a fluctuating force field 
         (Driving  field:  Fluctuating surface,  Burgers fluid,  Cell membrane) 

• Active nematics 
• Granular gas with v-dependent restitution 
          
 

                                      Order parameter scaling 
• All long-wavelength Fourier modes (m=1,2,3 …) required  
• Scaling laws for static and dynamic correlations    
            
 

 
 
 
 
 
 
 
 



Hallmarks of FDPO 

 
𝐺 𝑟, 𝑡 ≡ < 𝑛 0, 𝑡 𝑛 𝑟, 𝑡 > − < 𝑛 >< 𝑛 > 

               =   𝑔(
𝑟

𝑙 𝑡
)  

      Domain size  𝑙 𝑡 ~𝑡1/𝑧 

 

 

 

Cusp Singularity in Scaled 2-point Correlation Function 
Coarsening 

 Cusp:   𝑔 𝑦 ≈  𝑚0
2  − 𝑐𝑦𝛼 as 𝑦 → 0 

(Porod Law:  Linear  fall  Fails to hold ) 

Giant Fluctuations in Steady State                     
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Prob(Q*) remains broad as L→∞ 



                                Active Nematics 
     Model     Movement of apolar rods depends on orientation                          
                                                      [H. Chate,  F Ginelli, R. Montaigne (PRL, 2006)] 

     Analyze   Correlation functions and fluctuations  

                                                   [S. Dey, D. Das, R. Rajesh (PRL, 2012)]  

Cusp exponent ≅ 0.5 ;   Enters (sub-leading) into expression for 𝜎2 



                   Experiment on Vibrated Rods 
Observe    
     Giant number fluctuations      [V. Narayan, N. Menon, S. Ramaswamy (Science, 2007)] 

  

−∆𝑁2

< 𝑁 >2 +  𝑚0
2 ~ 

𝑐

𝑙(𝑡)𝛼  < 𝑁 >𝛼/𝑑 

Extract 
    Correlation function contribution to fluctuations   [S. Dey, D. Das, R. Rajesh (PRL, 2012)] 

𝛼

𝑑
  ≅   

0.5

2
 = 0.25 



                 Molecular Clustering at Cell Surface 
                                                             [A. Das, A. Polley, Madan Rao, cond-mat arXiv (2015)] 

Phase segregation driven by activity:   
Membrane stirred by actin activity  Clustering of advected membrane molecules 

Find: Transition from micro-clustering to  
 phase segregation with strong fluctuations Intermittent domain sizes 
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                 Freely Cooling Granular Gases 

Inelastically colliding particles in 1-d 

[M. Shinde, D. Das, R. Rajesh, Phys. Rev. Lett. (2007)] 

   Include velocity-dependent restitution 
                                                             [C. V. Raman, Phys. Rev. (1918)] 

    
    Find:   Density correlations show singular scaling properties 

Structure 
   factor 

Wave-vector 



Passive Scalar Problem 

One driven system drives another … but no back effect 

-a h 

∆ 

a v 

↕ 

Compressible fluid with noise  
 
     
      (Noisy Burgers Equation)    
Advection of particles 

↕ 
Fluctuating surface 
 

 

(Kardar, Parisi, Zhang Equation)  
  Sliding particles 

𝜕𝑣

𝜕𝑡 
+ 𝑣. 𝛻𝑣 =  𝜇𝛻2𝑣 +  𝛻𝜗 

𝜕

𝜕𝑡 
=  𝜇𝛻2 +  1

2 (𝛻)2 +  𝜗 

𝑑𝑥𝑚

𝑑𝑡
= 𝑎𝑣 +  𝜗𝑚 

𝑑𝑥𝑚

𝑑𝑡
= −𝑎𝛻 +  𝜗𝑚 



 Time evolution of fluctuations 

 Fluctuations may grow 

      Fluctuations may move as a wave 

 Coupled Driven Systems 
        The Question of Stability 



                 Two-species Lattice Model 
  

Introduce two sets of discrete variables (particles and tilts) 

Dynamical moves:  

 

Rates: p2 (forward);  q2 (backward) 

 

Rates: p1 (forward);   q1  (backward) 

 

The nature of the steady state depends on p1/q1 and p2/q2 

                                           [R. Lahiri et al (1997, 2000)] 



The Phase Diagram 



The Phase Diagram 
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Wave phase FDPO Strong Phase Separation 



              Passive Sliders on Fluctuating Surfaces 

Sliding + Surface fluctuations →  
Large-scale clustering 

Particle motion: Biased random walks along local gradients  

Surface evolution: Stochastic; unaffected by particles 

Caricature: 
Depth Model of Surface 



Sliding Particles: Coarsening 

Density-density correlation function  

                                                                shows scaling 
                      
 

 
𝐺 𝑟, 𝑡 ≡ < 𝑛 0, 𝑡 𝑛 𝑟, 𝑡 > − < 𝑛 >< 𝑛 > 

               =   𝑔0(
𝑟

𝑙 𝑡
)  

     with  𝑙 𝑡 ~𝑡1/𝑧 

[α ≅ 0.5 for EW driving;  
     ≅0.25 for KPZ driving 
      = 0.5  for Depth model] 

Cusp singularity near origin 

[D. Das et al (2000, 2001)] 

Intercept   Long range order 
 
Cusp  Breakdown of Porod Law  
          Ill-defined interfaces 

 𝑔0 𝑦 ≈  𝑚0
2  − 𝑐𝑦𝛼 as 𝑦 → 0 



Giant Order Parameter Fluctuations 

Q(k)=1/L  | ∑j e
ikj nj | 

with k = 2πm / L , m=1,2,3... 

Observe:  

For fixed k ≠ 0 , 
‹Q(k)›→0 as L→∞ 

But: ‹Q*› ≡ ‹Q(2π/L)›→0.18 

Implies: Macroscopic phase separation 

‹Q*›→0  for a  disordered state 
      →0.32   for complete phase separation 
 When Q* dips down, m=2,3… modes pick up 

Giant fluctuations:  Prob(Q*) remains broad as L→∞ 

 



Fluctuation-Dominated Ordering 

A disordered state implies 𝑄∗ = 0 
 
But  𝑄∗ = 0 does not imply a disordered state 
 
When 𝑄∗ is small,  𝑄(2𝜋𝑚/𝐿) is substantial for m=2,3 … 
    Several macroscopic patches 
 
Fourier modes  Order parameter set 
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  Space 



           Nature of Ordering 

  

  

System drawn to an attractor of ‘ordered’ configurations  
with macroscopic segments of variable size 

Schematic depiction of system evolution Ordered 

Disordered 



Scaling with Mode Number (Mean Values) 

< 𝑸𝒎 𝑳 >  ~𝑳−𝝋 𝒀
𝒎

𝑳
           [𝝋 ≅  𝟐

𝟑 𝑬𝑾 ;  𝟑
𝟓
 𝑲𝑷𝒁 ;  𝟑

𝟒  𝑪𝑫 ] 

[ R. Kapri et al (2015) ] 



Scaling with Mode Number (Distributions) 

𝑷 𝑸𝒎 ~ 𝒎𝝋 𝑾(𝑸𝒎𝒎𝝋) 



                    Autocorrelation Function 

Monitor       A(t, L) ≡ < n (r,0) n(r, t) >L -  <n > 2 

Find            A(t,L) ≈ m0
2 – b (t/Lz) β        as   t/Lz → 0 

Sliding particle model 

β ≈ 0.2 for EW; ≈ 0.2 for KPZ  

                                 [S. Chatterjee et al (2006)] 

Depth model with EW dynamics 
  

𝐴 𝑡, 𝐿 =  sin−1[ 𝑒−𝜏 − 𝜋𝜏 (1 − 𝑒𝑟𝑓 𝜏 )] 
 

               ≈ 1 − 
4

𝜋1/4 𝜏1/4        where   𝜏 = 𝑡/𝐿2,         

                    
              β = 0.25, z=2 
                                                                            



              Order Parameter Dynamics 

  Note 
• Scaling 
• Cross-correlations are anticorrelated 
 

Auto-correlation and Cross-correlation  Functions  for Order Parameter Modes 

𝐶𝑚𝑛 =  
< 𝑄𝑚 0 𝑄𝑛 𝑡 >  −  < 𝑄𝑚 >< 𝑄𝑛 >

< 𝑄𝑚 >< 𝑄𝑛 >
 



 Structure Functions 

𝑺𝒏 𝒕, 𝑳 = < [ 𝑸𝟏 𝒕 − 𝑸𝟏 𝟎 ]𝒏 >𝑳 

• Scaling 
• Initial power law growth 
• Asymptotic saturation  

 



 Structure Functions 

𝑺𝒏 𝒕, 𝑳 = < [ 𝑸𝟏 𝒕 − 𝑸𝟏 𝟎 ]𝒏 >𝑳 

• Scaling 
• Initial power law growth 
• Asymptotic saturation  

 



 Intermittency Measure:   Flatness 



 Non-Interacting Particles  
 

             Two-point correlation functions  
               (KPZ Advection, Edwards-Wilkinson, KPZ Anti-advection) 

[A. Nagar et al (2006)] 

 Divergent Scaling Functions 

𝐿𝑎 𝐺 ~ (𝑟/𝐿)−𝜑   as 𝑟/𝐿 → 0 

Analytical approach 
      Adiabatic limit  A problem with quenched disorder (Sinai problem) 

𝐺 𝑟, 𝐿 =  (2𝜋𝛽2𝐿)−1/2 [
𝑟

𝐿
 1 −

𝑟

𝐿
] 

−3/2

 

       Fits KPZ advection data remarkably well 

[A. Comtet & Texier (1997)] 



                     Conclusions 

                                  FDPO  

   Several examples, including passive scalars 

 

 

 

• Giant fluctuations coexisting with LRO 

• Cusps in 2-point Correlation Functions (static, dynamic)  

• Order Parameter Set  Scaling 

• Intermittency in Depth Model  

• Divergent Scaling Functions for Noninteracting Particles 

 

 

 

 

 




