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 Fluctuation-dominated Phase Ordering 

Evolution to a state with  

Long range order  + Macroscopic fluctuations 

                                                  Hallmarks 
• Scaled  2-point correlation function      Cusp singularity  (non-Porod) 
• RMS fluctuations as large as mean order parameter  
         

                                                   Examples 
• Passive particles  driven by a fluctuating force field 
         (Driving  field:  Fluctuating surface,  Burgers fluid,  Cell membrane) 

• Active nematics 
• Granular gas with v-dependent restitution 
          
 

                                      Order parameter scaling 
• All long-wavelength Fourier modes (m=1,2,3 …) required  
• Scaling laws for static and dynamic correlations    
            
 

 
 
 
 
 
 
 
 



Hallmarks of FDPO 

 
𝐺 𝑟, 𝑡 ≡ < 𝑛 0, 𝑡 𝑛 𝑟, 𝑡 > − < 𝑛 >< 𝑛 > 

               =   𝑔(
𝑟

𝑙 𝑡
)  

      Domain size  𝑙 𝑡 ~𝑡1/𝑧 

 

 

 

Cusp Singularity in Scaled 2-point Correlation Function 
Coarsening 

 Cusp:   𝑔 𝑦 ≈  𝑚0
2  − 𝑐𝑦𝛼 as 𝑦 → 0 

(Porod Law:  Linear  fall  Fails to hold ) 

Giant Fluctuations in Steady State                     
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Prob(Q*) remains broad as L→∞ 



                                Active Nematics 
     Model     Movement of apolar rods depends on orientation                          
                                                      [H. Chate,  F Ginelli, R. Montaigne (PRL, 2006)] 

     Analyze   Correlation functions and fluctuations  

                                                   [S. Dey, D. Das, R. Rajesh (PRL, 2012)]  

Cusp exponent ≅ 0.5 ;   Enters (sub-leading) into expression for 𝜎2 



                   Experiment on Vibrated Rods 
Observe    
     Giant number fluctuations      [V. Narayan, N. Menon, S. Ramaswamy (Science, 2007)] 

  

−∆𝑁2

< 𝑁 >2 +  𝑚0
2 ~ 

𝑐

𝑙(𝑡)𝛼  < 𝑁 >𝛼/𝑑 

Extract 
    Correlation function contribution to fluctuations   [S. Dey, D. Das, R. Rajesh (PRL, 2012)] 

𝛼

𝑑
  ≅   

0.5

2
 = 0.25 



                 Molecular Clustering at Cell Surface 
                                                             [A. Das, A. Polley, Madan Rao, cond-mat arXiv (2015)] 

Phase segregation driven by activity:   
Membrane stirred by actin activity  Clustering of advected membrane molecules 

Find: Transition from micro-clustering to  
 phase segregation with strong fluctuations Intermittent domain sizes 
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                 Freely Cooling Granular Gases 

Inelastically colliding particles in 1-d 

[M. Shinde, D. Das, R. Rajesh, Phys. Rev. Lett. (2007)] 

   Include velocity-dependent restitution 
                                                             [C. V. Raman, Phys. Rev. (1918)] 

    
    Find:   Density correlations show singular scaling properties 

Structure 
   factor 

Wave-vector 



Passive Scalar Problem 

One driven system drives another … but no back effect 

-a h 

∆ 

a v 

↕ 

Compressible fluid with noise  
 
     
      (Noisy Burgers Equation)    
Advection of particles 

↕ 
Fluctuating surface 
 

 

(Kardar, Parisi, Zhang Equation)  
  Sliding particles 

𝜕𝑣

𝜕𝑡 
+ 𝑣. 𝛻𝑣 =  𝜇𝛻2𝑣 +  𝛻𝜗 

𝜕𝑕

𝜕𝑡 
=  𝜇𝛻2𝑕 +  1

2 (𝛻𝑕)2 +  𝜗 

𝑑𝑥𝑚

𝑑𝑡
= 𝑎𝑣 +  𝜗𝑚 

𝑑𝑥𝑚

𝑑𝑡
= −𝑎𝛻𝑕 +  𝜗𝑚 



 Time evolution of fluctuations 

 Fluctuations may grow 

      Fluctuations may move as a wave 

 Coupled Driven Systems 
        The Question of Stability 



                 Two-species Lattice Model 
  

Introduce two sets of discrete variables (particles and tilts) 

Dynamical moves:  

 

Rates: p2 (forward);  q2 (backward) 

 

Rates: p1 (forward);   q1  (backward) 

 

The nature of the steady state depends on p1/q1 and p2/q2 

                                           [R. Lahiri et al (1997, 2000)] 



The Phase Diagram 



The Phase Diagram 
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Wave phase FDPO Strong Phase Separation 



              Passive Sliders on Fluctuating Surfaces 

Sliding + Surface fluctuations →  
Large-scale clustering 

Particle motion: Biased random walks along local gradients  

Surface evolution: Stochastic; unaffected by particles 

Caricature: 
Depth Model of Surface 



Sliding Particles: Coarsening 

Density-density correlation function  

                                                                shows scaling 
                      
 

 
𝐺 𝑟, 𝑡 ≡ < 𝑛 0, 𝑡 𝑛 𝑟, 𝑡 > − < 𝑛 >< 𝑛 > 

               =   𝑔0(
𝑟

𝑙 𝑡
)  

     with  𝑙 𝑡 ~𝑡1/𝑧 

[α ≅ 0.5 for EW driving;  
     ≅0.25 for KPZ driving 
      = 0.5  for Depth model] 

Cusp singularity near origin 

[D. Das et al (2000, 2001)] 

Intercept   Long range order 
 
Cusp  Breakdown of Porod Law  
          Ill-defined interfaces 

 𝑔0 𝑦 ≈  𝑚0
2  − 𝑐𝑦𝛼 as 𝑦 → 0 



Giant Order Parameter Fluctuations 

Q(k)=1/L  | ∑j e
ikj nj | 

with k = 2πm / L , m=1,2,3... 

Observe:  

For fixed k ≠ 0 , 
‹Q(k)›→0 as L→∞ 

But: ‹Q*› ≡ ‹Q(2π/L)›→0.18 

Implies: Macroscopic phase separation 

‹Q*›→0  for a  disordered state 
      →0.32   for complete phase separation 
 When Q* dips down, m=2,3… modes pick up 

Giant fluctuations:  Prob(Q*) remains broad as L→∞ 

 



Fluctuation-Dominated Ordering 

A disordered state implies 𝑄∗ = 0 
 
But  𝑄∗ = 0 does not imply a disordered state 
 
When 𝑄∗ is small,  𝑄(2𝜋𝑚/𝐿) is substantial for m=2,3 … 
    Several macroscopic patches 
 
Fourier modes  Order parameter set 
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           Nature of Ordering 

  

  

System drawn to an attractor of ‘ordered’ configurations  
with macroscopic segments of variable size 

Schematic depiction of system evolution Ordered 

Disordered 



Scaling with Mode Number (Mean Values) 

< 𝑸𝒎 𝑳 >  ~𝑳−𝝋 𝒀
𝒎

𝑳
           [𝝋 ≅  𝟐

𝟑 𝑬𝑾 ;  𝟑
𝟓
 𝑲𝑷𝒁 ;  𝟑

𝟒  𝑪𝑫 ] 

[ R. Kapri et al (2015) ] 



Scaling with Mode Number (Distributions) 

𝑷 𝑸𝒎 ~ 𝒎𝝋 𝑾(𝑸𝒎𝒎𝝋) 



                    Autocorrelation Function 

Monitor       A(t, L) ≡ < n (r,0) n(r, t) >L -  <n > 2 

Find            A(t,L) ≈ m0
2 – b (t/Lz) β        as   t/Lz → 0 

Sliding particle model 

β ≈ 0.2 for EW; ≈ 0.2 for KPZ  

                                 [S. Chatterjee et al (2006)] 

Depth model with EW dynamics 
  

𝐴 𝑡, 𝐿 =  sin−1[ 𝑒−𝜏 − 𝜋𝜏 (1 − 𝑒𝑟𝑓 𝜏 )] 
 

               ≈ 1 − 
4

𝜋1/4 𝜏1/4        where   𝜏 = 𝑡/𝐿2,         

                    
              β = 0.25, z=2 
                                                                            



              Order Parameter Dynamics 

  Note 
• Scaling 
• Cross-correlations are anticorrelated 
 

Auto-correlation and Cross-correlation  Functions  for Order Parameter Modes 

𝐶𝑚𝑛 =  
< 𝑄𝑚 0 𝑄𝑛 𝑡 >  −  < 𝑄𝑚 >< 𝑄𝑛 >

< 𝑄𝑚 >< 𝑄𝑛 >
 



 Structure Functions 

𝑺𝒏 𝒕, 𝑳 = < [ 𝑸𝟏 𝒕 − 𝑸𝟏 𝟎 ]𝒏 >𝑳 

• Scaling 
• Initial power law growth 
• Asymptotic saturation  

 



 Structure Functions 

𝑺𝒏 𝒕, 𝑳 = < [ 𝑸𝟏 𝒕 − 𝑸𝟏 𝟎 ]𝒏 >𝑳 

• Scaling 
• Initial power law growth 
• Asymptotic saturation  

 



 Intermittency Measure:   Flatness 



 Non-Interacting Particles  
 

             Two-point correlation functions  
               (KPZ Advection, Edwards-Wilkinson, KPZ Anti-advection) 

[A. Nagar et al (2006)] 

 Divergent Scaling Functions 

𝐿𝑎 𝐺 ~ (𝑟/𝐿)−𝜑   as 𝑟/𝐿 → 0 

Analytical approach 
      Adiabatic limit  A problem with quenched disorder (Sinai problem) 

𝐺 𝑟, 𝐿 =  (2𝜋𝛽2𝐿)−1/2 [
𝑟

𝐿
 1 −

𝑟

𝐿
] 

−3/2

 

       Fits KPZ advection data remarkably well 

[A. Comtet & Texier (1997)] 



                     Conclusions 

                                  FDPO  

   Several examples, including passive scalars 

 

 

 

• Giant fluctuations coexisting with LRO 

• Cusps in 2-point Correlation Functions (static, dynamic)  

• Order Parameter Set  Scaling 

• Intermittency in Depth Model  

• Divergent Scaling Functions for Noninteracting Particles 

 

 

 

 

 




