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Introduction

A stationary driven system in contact with reservoirs is out of equilibrium:

R1

J

R2

The asymmetric exclusion model (ASEP)
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Thousands of articles devoted to this model in the last 20 years: A
paradigm for non-equilibrium statistical physics.

K. Mallick Matrix and Bethe Ansatz for the Exclusion Process



Introduction

A stationary driven system in contact with reservoirs is out of equilibrium:

R1

J

R2

The asymmetric exclusion model (ASEP)

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

Thousands of articles devoted to this model in the last 20 years: A
paradigm for non-equilibrium statistical physics.

K. Mallick Matrix and Bethe Ansatz for the Exclusion Process



ASEP

q p p pq

Asymmetric Exclusion Process. A paradigm for non-equilibrium
Statistical Mechanics.

• EXCLUSION: Hard core-interaction; at most 1 particle per site.

• ASYMMETRIC: External driving; breaks detailed-balance

• PROCESS: Stochastic Markovian dynamics; no Hamiltonian
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An Elementary Model for Protein Synthesis

Figure: courtesy of Andreas Schadscheider

C. T. MacDonald, J. H. Gibbs and A.C. Pipkin, Kinetics of
biopolymerization on nucleic acid templates, Biopolymers (1968).
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An ubiquitous minimal model

ORIGINS

• Interacting Brownian Processes (Spitzer, Harris, Liggett).

• Driven diffusive systems (Katz, Lebowitz and Spohn).

• Transport of Macromolecules through thin vessels.
Motion of RNA templates.

• Hopping conductivity in solid electrolytes.

• Directed Polymers in random media. Reptation models.

• Interface dynamics. KPZ equation

APPLICATIONS

• Traffic flow.

• Sequence matching.

• Brownian motors.
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Matrix Ansatz for ASEP (DEHP, 1993)

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

The key to the solution of the ASEP is the Matrix Product
Representation of the stationary probabilities. The weight of a
configuration C is given by:

P(C) =
1

ZL
〈W |

L∏
i=1

(τiD + (1− τi )E ) |V 〉

where τi = 1 (or 0) if the site i is occupied (or empty) and the

normalization constant is ZL = 〈W | (D + E )L |V 〉

The weights of the system satisfy exact recursion relations between size L
and size L− 1. This combinatorial structure will be encoded in the
algebra generated by D, E , 〈W | and |V 〉.

Note that these recursions can also be encoded using generating
functions (DDM, 1992: q = 0, α = β = 1; Schütz and Domany, 1993
q = 0 arbitrary α, β;).

K. Mallick Matrix and Bethe Ansatz for the Exclusion Process



Quadratic Algebra

The Matrix Ansatz will represent the steady state weights if the operators
D and E , the vectors 〈W | and |V 〉 satisfy

D E − qE D = (1− q)(D + E )

(β D − δ E ) |V 〉 = |V 〉
〈W |(αE − γ D) = 〈W |

(B. Derrida, M. R. Evans, V. Hakim and V. Pasquier, 1993)

The Matrix Ansatz allows one to derive the Phase Diagram in the infinite
size limit and to calculate many Stationary State Properties such as
currents, correlations, fluctuations, finite size corrections, large deviations
of the density profile... (see the review of R. Blythe and M. R. Evans).

Note that the recursions can also be encoded through generating
functions (Derrida, Domany and Mukamel, 1992: q = 0, α = β = 1;
Schütz and Domany, 1993: q = 0 arbitrary α, β).
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The Phase Diagram

LOW  DENSITY

HIGH   DENSITY

MAXIMAL 

CURRENT

ρ

1 − ρ

a

b

1/2

1/2

ρa = 1
a++1 : effective left reservoir density.

ρb = b+

b++1 : effective right reservoir density.

a± =
(1− q − α + γ)±

√
(1− q − α + γ)2 + 4αγ

2α

b± =
(1− q − β + δ)±

√
(1− q − β + δ)2 + 4βδ

2β
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Representations of the quadratic algebra

D = 1 + d where d is a q-destruction operator.

E = 1 + e where e is a q-creation operator.

d =


0
√

1− q 0 0 . . .

0 0
√

1− q2 0 . . .

0 0 0
√

1− q3 . . .
. . .

. . .

 and e = d†
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Generalized exclusion processes

1. Multispecies Exclusion Processes on a ring

(C. Arita, A. Ayyer, P. Ferrari, M. R. Evans and S. Prolhac)

2. 2-ASEP with open boundaries

(N. Crampé, E. Ragoucy, M. Vanicat)

3. Current fluctuations in the open ASEP

(A. Lazarescu)
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Multispecies Models

on a periodic lattice
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The dynamical rules

We consider the N-TASEP model on a periodic RING. There are N
classes of particles and holes.
During an infinitesimal time step dt, the following processes take place
on each bond with probability dt:

I 0→ 0 I for I 6= 0

I J → J I for 1 ≤ I < J ≤ N

Hierarchical priority rules: First-class particles have highest priority and
overtake all the others; Second-class particles overtake all the other ones
except first class particles etc... Note that particles can always overtake
holes (= 0-th class particles).

There are PI particles of class I . Total number of configurations:

Ω =
L!

P0!P1!P2! . . .PN !

What is the Stationary Measure ?
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The Two Species case

If there is single species the stationary measure is uniform.

Matrix Product for the Stationary Measure (Derrida, Janowski,
Lebowitz and Speer, 1993):

A Configuration is represented by a string e.g. 01220211. The
corresponding Stationary Weight is given by

p(01220211) =
1

Z
Tr(E DAAE ADD)

where E , D and A, operators belong to a quadratic algebra

DE = D + E

DA = A

AE = A

This Matrix Ansatz leads to steady state properties. This invariant
measure is not a Boltzmann-Gibbs measure (E. Speer).
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Infinite dimensional Representations

D = 1 + δ where δ = is the right-shift

E = 1 + ε where ε is the left-shift.

A = |1〉〈1| = [δ, ε] (projector on the first coordinate).

D =


1 1 0 0 . . .
0 1 1 0

0 0 1 1
. . .

. . .
. . .

 , E = D†, A =


1 0 0 . . .
0 0 0 . . .
0 0 0 . . .
. . . .



This algebra is the same as the one for the open TASEP (with a single
species of particles).

The N ≥ 3 case remained unsolved for more than a decade.
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Geometric Construction of the 2-TASEP stationary
measure (P. Ferrari, J. Martin)

A procedure to construct a configuration of the 2-TASEP with P1 First
Class Particles and P2 Second Class Particles starting from two
independent configurations of the 1 species TASEP.

P
1

P + P
1 2
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1
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Summary of the construction

P
1

P + P
1 2

P
1

P + P
1 2

1 1 1

1 1 1

2212

1

FROM   2  LINES OF  TASEP TO  2−TASEP   

This construction is NOT one-to one: different configurations on the
1st line can produce the same configuration on the second line.

The weight of a 2-TASEP configuration is proportional to the total
number of ways you can generate it by this construction.
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Relation to the Matrix Ansatz

Characterization of the stationary weights:

• A 1 (on the 1st line) can not be located above a 2 (on the 2nd line).

• Factorisation Property: All the 1’s (on the 2nd line) situated
between two 2’s MUST be linked to 1’s (on the 1st line) that are
located between the positions of the two 2’s (No Crossing
Condition).

• ‘Pushing’ Procedure: The ‘ancestors’ of a string of the type
210102 are the strings obtained by pushing the 1’s to the right i.e.,
210102, 210012, 201102, 201012, 200112.

This Geometric Construction is encoded by the Matrix Ansatz:

• Factorisation Property: A is a PROJECTOR.

• Pushing Procedure: D and E are SHIFT OPERATORS
(right-shift and left-shift, respectively).

K. Mallick Matrix and Bethe Ansatz for the Exclusion Process



Relation to the Matrix Ansatz

Characterization of the stationary weights:

• A 1 (on the 1st line) can not be located above a 2 (on the 2nd line).

• Factorisation Property: All the 1’s (on the 2nd line) situated
between two 2’s MUST be linked to 1’s (on the 1st line) that are
located between the positions of the two 2’s (No Crossing
Condition).

• ‘Pushing’ Procedure: The ‘ancestors’ of a string of the type
210102 are the strings obtained by pushing the 1’s to the right i.e.,
210102, 210012, 201102, 201012, 200112.

This Geometric Construction is encoded by the Matrix Ansatz:

• Factorisation Property: A is a PROJECTOR.

• Pushing Procedure: D and E are SHIFT OPERATORS
(right-shift and left-shift, respectively).

K. Mallick Matrix and Bethe Ansatz for the Exclusion Process



From 3 lines of TASEP to the 3-TASEP

P
1

P + P
1 2

P + P + P
1 2 31 1 1 1

1 1 1 1

1 1 1 1

2 2

22

3 3

The weight of a 3-TASEP configuration is proportional to the total
number of ways you can generate it by this construction.

• FIND an ALGORITHM for constructing all ancestors of a given
N-TASEP configuration.

• ENCODE this algorithm into an ALGEBRA (Matrix Product
Representation).

• CALCULATE the stationary weights → TRACES over this algebra.
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Nested Matrix Ansatz for the 3-TASEP

Tensor Products of Quadratic Algebras:
Hierarchical construction of representations of ‘nested algebras’ using the
D, A and E matrices and the shift operators δ = D − 1 and ε = E − 1.

For the 3-species TASEP case:

P̂0 = 1⊗ 1⊗ E + 1⊗ ε⊗ A + ε⊗ 1⊗ D .

P̂1 = 1⊗ 1⊗ D + δ ⊗ ε⊗ A + δ ⊗ 1⊗ E

P̂2 = A⊗ 1⊗ A + A⊗ δ ⊗ E

P̂3 = A⊗ A⊗ E

Matrix Ansatz for the N-Species TASEP: M.R. Evans, P. Ferrari, K.M.,
J.Stat.Phys, 2009.

The algebraic proof bypasses the combinatorial pictures: Generalization
for the N-Species ASEP, for which no geometric construction exists.
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Generalization to the N-ASEP

If backward jumps are allowed (rate q 6= 0)

DE − qED = (1− q)(D + E )

DA− qAD = (1− q)A

AE − qEA = (1− q)A

→ Replace the previous shift-operators by deformed shift-operators:

δε = 1→ δε− qεδ = 1

Recursive Matrix Ansatz:

X
(N)
J =

N−1∑
M=0

a
(N)
JM ⊗ X

(N−1)
M for 0 ≤ J ≤ N with X

(1)
0 = X

(1)
1 = 1

Matrix Ansatz for the N-Species TASEP: M.R. Evans, K.M., S. Prolhac
J.Phys.A, 2009.
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Transfer Matrix

The operators a
(N)
JM define a Transfer Matrix between the (N-1)-species

ASEP and the N-ASEP:

|ΩN〉 = TN−1→N |ΩN−1〉

TN−1→N lifts the (N-1)-ASEP into the N-ASEP, allowing to construct
whole sectors of the spectrum and it ‘inverts’ the identification operator.

ΩN−1 ΩN−1

ΩN ΩN

TN−1,N TN−1,N

MN

MN−1

-

-

? ?
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Yang-Baxter type equations

The operators a
(N)
JM generate a quadratic algebra, that can be expressed in

a Yang-Baxter form, using the local update Markov matrix:

M
(N)
Loc(a⊗a)− (a⊗a)M

(N−1)
Loc = a⊗â− â⊗a

The a
(N)
JM can be written as a rectangular tableau

a(2) =

 11 ε
δ 11
A 0

 and a(3) =


11⊗ 11 ε⊗ 11 11⊗ ε
δ ⊗ 11 11⊗ 11 δ ⊗ ε
A⊗ δ 0 A⊗ 11
A⊗ A 0 0


A. Ayyer, KM: J. Phys. A, 2010.
C. Arita, A. Ayyer, KM, S. Prolhac: J. Phys. A, 2011; 2012.
C. Arita, KM: J. Phys. A 2013.
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Hasse Diagram of the N-ASEP

(0)  

(1,1,1,1)
 

1,2,3  

 

 

(1,2,1)   1,3  

 

 

(2,1,1)  2,3  

 

(1,1,2)  1,2  

 

 (2,2)   2 

 
(3,1)  3 

 

(1,3)  1 

 

f      g

f    g
f    g

f    g

f  g
f  g

f  g

To each arrow corresponds a different quadratic algebra that leads to
different lifting operators and to generalized Ferrari-Martin constructions.
These algebras have been studied in C. Arita et al. (2011).
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Queueing Theory Interpretation

1 1 1

1 1 1

2212

1

Time

the queue

length of 

queue

arrivals

services

The matrices D and E act on |n〉 the length of the queue:
Service Time: D|n〉 = |n〉+ |n − 1〉
Non-Service Time: E |n〉 = |n〉+ |n + 1〉

This queueing process can be generalized to the N-TASEP. The matrices
act on the queue at each time step: they are constructed by inspection of
the different possible arrivals at a given time.
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The 2-ASEP

with open boundaries
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An open problem

Consider a 2 species ASEP bulk rules:

10
1−−→ 01 01

q−−→ 10

20
1−−→ 02 02

q−−→ 20

12
1−−→ 21 21

q−−→ 12

Is it possible to find a set of boundary rules ensuring that the model
remains exactly solvable?

1
2

1
2

1 1 1 1 1 1

An example of integrable 2-TASEP (full circles represent species 1, empty
circles are species 2). On the left boundary, the continuous line means
injection of 1 whereas the dashed line means injection of 2.
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Integrability

Consider the process on a periodic ring: its Markov matrix can be written
as a sum of local update 9× 9 operators

M =
∑
i

Mi,i+1

This process in integrable: this Markov matrix can be embedded in a
family of commuting transfer matrices t(x) that depend on a spectral
parameter x :

[t(x), t(x ′)] = 0

and
M = t ′(1)

This commutation is crucial as it implies the existence of a sufficient
number of independent conserved quantities and warrants integrability.
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The Yang-Baxter Equation

The transfer matrix t(x) is built by making tensor products of elementary
local operators that act on two lattices sites Rij(x). The crucial identity
satisfied by the R-matrix and that implies in turn the commutation
property is the Yang-Baxter Equation:

R12

(
x1

x2

)
R13

(
x1

x3

)
R23

(
x2

x3

)
= R23

(
x2

x3

)
R13

(
x1

x3

)
R12

(
x1

x2

)

This defines a system of cubic algebraic relations satisfied by the entries
of the R-matrix.

It is a standard procedure to start from solutions of the YBE, define a
family of commuting transfer matrices and take derivatives at special
points to obtain integrable Hamiltonians.
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The R-Matrix for 2-ASEP

R(x) =



1 0 0 0 0 0 0 0 0

0 (x−1)q
qx−1 0 (q−1)x

qx−1 0 0 0 0 0

0 0 (x−1)q
qx−1 0 0 0 (q−1)x

qx−1 0 0

0 q−1
qx−1 0 x−1

qx−1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 (x−1)q
qx−1 0 (q−1)x

qx−1 0

0 0 q−1
qx−1 0 0 0 x−1

qx−1 0 0

0 0 0 0 0 q−1
qx−1 0 x−1

qx−1 0

0 0 0 0 0 0 0 0 1


This matrix acts on a bound and it satisfies the YBE.

One can show that R(1) is the permutation operator P and that the
local update operator is given by Mi,i+1 = (q − 1)PR ′(1).
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System with boundaries: K-matrices

The update rules on the right and the left boundaries can be encoded by
boundary operators K (x) and K̃ (x).

Integrability will be preserved only of the boundary conditions satisfy
some compatibility conditions with the bulk rules. Technically, the
K-matrices are to satisfy the Sklyanin reflection equations:

R12

(
x1

x2

)
K1(x1) R21 (x1x2) K2(x2) = K2(x2) R12 (x1x2) K1(x1) R21

(
x1

x2

)

(and K̃ satisfies a similar equation.)

Finding all integrable 2-ASEP models with open boundaries is thus
equivalent to solving the Sklyanin reflection equations, with the known
R-Matrix for 2-ASEP.
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Classification of boundary K-matrices

The different steps to derive the classification are: take a generic
K-matrix with 9 unknown functions as entries; use the reflection equation
to get 81 relations; solve these functional equations and among the
solutions retain only the Markovian ones.

We have found four different classes of solutions, K1,K2,K3,K4, (each
depending on α and γ, two free parameters)

K1(x) =


x((α2−γ2)(x−1)+(γx+α)(q−1))

(αx+γ)((α+γ)(x−1)+q−1)
(x2−1)(α+γ)α

(αx+γ)((α+γ)(x−1)+q−1)
(x2−1)(α+γ)α

(αx+γ)((α+γ)(x−1)+q−1)

(x2−1)(α+γ+1−q)γ
(αx+γ)((α+γ)(x−1)+q−1)

− (α2−γ2)(x−1)+(αx+γ)(1−q)
(αx+γ)((α+γ)(x−1)+q−1)

(x2−1)(α+γ)γ
x(αx+γ)((α+γ)(x−1)+q−1)

0 0 − (α+γ)(x−1)+x(1−q)
x((α+γ)(x−1)+q−1)


And similarly for the right boundary K̃ .
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Classification of boundary conditions

Four sets of integrable Left-Rules depending on two parameters α, γ:

L1 L2 L3 L4

0
f (α,γ)
−−−−−−→ 2 0

γ
−−−−−→ 2 0

α−−→ 1 0
α−−→ 1

2
α−−−−−→ 0 0

α−−−−−→ 1 2
γ
−−→ 0 1

γ
−−→ 0

1
α−−−−−→ 0 2

α−−−−−→ 1 2
α−−→ 1

1
γ

−−−−−→ 2 1
g(α,γ)
−−−−−−→ 2 1

γ
−−→ 0

Four sets of integrable Right-Rules depending on two parameters β, δ:

R1 R2 R3 R4

0
δ−−−−→ 2 0

g(β,δ)
−−−−−−→ 2 0

δ−−→ 1 0
δ−−→ 1

0
β

−−−−−→ 1 2
β

−−−−−→ 0 2
β
−−→ 0 1

β
−−→ 0

2
β

−−−−−→ 1 1
β

−−−−−→ 0 2
δ−−→ 1

1
f (β,δ)
−−−−−−→ 2 1

δ−−−−→ 2 1
β
−−→ 0

f (x , y) =
y(x + y + 1− q)

x + y
and g(x , y) =

y(x + y + q − 1)

x + y
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Some remarks

These boundary conditions are very restrictive: this was not the case for
the standard 1-species exclusion process. Our classification contains
previously studied models (Ayyer, Lebowitz and Speer; Duchi and
Schaeffer) but allows the exchange of all types of particles.

For the 2-TASEP case, the integrable boundaries can be obtained by
taking the limit q = 0. The simplest specific example is given by:

Left Bulk Right

0
1/2−−−→ 1 10

1−−→ 01 1
1−−→ 0

0
1/2−−−→ 2 12

1−−→ 21 2
1−−→ 0

2
1/2−−−→ 1 20

1−−→ 02

Note that the boundaries are permeable to all the species.

With these rules, Integrability becomes ’visible’.
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Matrix Ansatz for the steady state

We look for a Matrix Ansatz for the stationary weights:

P(τ1, . . . , τL) =
〈W2|Xτ1 Xτ2 · · ·XτL |V2〉
〈W2|(X1 + X2 + X3)L|V2〉

Here X0,X1,X2 are constructed from the Zamolodchikov, Faddeev and
Ghoshal relations, related to YBE and Sklyanin equations. Writing

X1 = 1 + G1 + G2 + G3, X2 = G4 + G5 + G6 and X0 = 1 + G7 + G8 + G9

a quadratic algebra is obtained:
[
G1, G2

]
= 0,[

G1, G3
]

= 0,
[
G2, G3

]
= 0,

G1G4 = G5, G2G4 = G6, G3G4 = 0,[
G1, G5

]
= G6 − G4G2, G2G5 = G1G6, G3G5 = 0,

[
G4, G5

]
= 0,[

G1, G6
]

= −G4 G3,
[
G2, G6

]
= −G5G3, G3G6 = 0,

[
G4, G6

]
= 0,

G1G7 = G8, G2G7 = G9, G3G7 = 1, G4G7 = 0,[
G1, G8

]
= G9 − G7G2, G2G8 = G1G9, G3G8 = G1,

[
G4, G8

]
= −G7G5,[

G1, G9
]

= 1 − G7G3,
[
G2, G9

]
= G1 − G8G3, G3G9 = G2,

[
G4, G9

]
= −G7G6,[

G5, G6
]

= 0,

G5G7 = 0, G6G7 = 0,

G5G8 = G4G9, G6G8 = G4,
[
G7, G8

]
= 0,[

G5, G9
]

= G4 − G8G6, G6G9 = G5,
[
G7, G9

]
= 0,

[
G8, G9

]
= 0.
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Some results

• One can show, using the previous algebra, that all the weights of all
configurations can be calculated (PBW Thm).

• Some explicit weights of some special types of configurations can be
obtained.

• Exact formulas for the currents can be derived:

j1 =
L + 1

2(2L + 1)
, j2 =

1

2(2L + 1)
, j0 = − L + 2

2(2L + 1)

• To obtain an explicit Matrix Ansatz, the key observation is that one
should look for a representation of the quadratic ZF algebra
(G1, . . . ,G9) that contains 9 elements (and not try to find directly
the matrices X0,X1,X2).
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Current Fluctuations

in the open ASEP
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Total Current in the ASEP with Open Boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

The observable Yt counts the total number of particles exchanged
between the system and the left reservoir between times 0 and t. Hence,
Yt+dt = Yt + y with

y = +1 if a particle enters at site 1 (at rate α),

y = −1 if a particle exits from 1 (at rate γ)

y = 0 if no particle exchange with the left reservoir has occurred
during dt.

These three mutually exclusive types of transitions lead to a three parts
decomposition of the Markov Matrix: M = M+ + M− + M0 .
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Current Statistics as an eigenvalue

The statistics of YT can be probed by the cumulant-generating function
E (µ) when t →∞: 〈

eµYt
〉
' eE(µ)t

E (µ) is shown to be the dominant eigenvalue of the deformed matrix

M(µ) = M0 + eµM+ + e−µM−

Expanding, one has: E (µ) = 0 + Jµ+ ∆µ2

2 + C3
µ3

3! ...

• Average current J: obtained by the DEHP Matrix Ansatz (1993).

• Variance ∆: calculated by a tensor product of three DEHP algebras
(B. Derrida, M. R. Evans, KM, 1995).

For the k-th term in the expansion of E (γ), we built a Matrix Ansatz at
order k, by making (2k − 1) Tensor Products of Quadratic Algebras.

Mimics the construction used for the multispecies exclusion process.
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Generalized Matrix Ansatz

We have proved that the dominant eigenvector of the deformed matrix
M(µ) is given by the following matrix product representation:

Fµ(C) =
1

Z
(k)
L

〈Wk |
L∏

i=1

(τiDk + (1− τi )Ek) |Vk〉+O
(
µk+1

)
The matrices Dk and Ek are the same as above

Dk+1 = (1⊗ 1 + d ⊗ e)⊗ Dk + (1⊗ d + d ⊗ 1)⊗ Ek

Ek+1 = (1⊗ 1 + e ⊗ d)⊗ Ek + (e ⊗ 1 + 1⊗ e)⊗ Dk

The boundary vectors 〈Wk | and |Vk〉 are constructed recursively:

|Vk〉 = |β〉|Ṽ 〉|Vk−1〉 and 〈Wk | = 〈W µ|〈W̃ µ|〈Wk−1|

[β(1− d)− δ(1− e)] |Ṽ 〉 = 0

〈W µ|[α(1 + eµ e)− γ(1 + e−µ d)] = (1− q)〈W µ|

〈W̃ µ|[α(1− eµ e)− γ(1− e−µ d)] = 0
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Asymptotic behaviour in the Phase Diagram

Maximal Current Phase:

µ = −L−1/2

2
√
π

∞∑
k=1

(2k)!

k!k(k+3/2)
Bk

E − 1− q

4
µ = − (1− q)L−3/2

16
√
π

∞∑
k=1

(2k)!

k!k(k+5/2)
Bk

Low Density (and High Density) Phases:
Dominant singularity at a+: φk(z) ∼ F k(z). By Lagrange Inversion:

E (µ) = (1− q)(1− ρa)
eµ − 1

eµ + (1− ρa)/ρa

(cf de Gier and Essler, 2011).
Current Large Deviation Function:

Φ(j) = (1− q)
{
ρa − r + r(1− r) ln

(
1−ρa
ρa

r
1−r

)}
where the current j is parametrized as j = (1− q)r(1− r).

Matches the predictions of Macroscopic Fluctuation Theory in the
Weak Asymmetry Limit, as observed by T. Bodineau and B. Derrida.
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Numerical results (DMRG)

20 30 40 50 60 70 80
L
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- 0.002

0.002

0.004

0.006

E3 , E4

20 40 60 80 100
L

- 0.03

- 0.02

- 0.01

0.01

0.02

0.03

0.04

E2 , E3

Left: Max. Current (q = 0.5, a+ = b+ = 0.65, a− = b− = 0.6), Third
and Fourth cumulant.

Right: High Density (q = 0.5, a+ = 0.28, b+ = 1.15, a− = −0.48 and
b− = −0.27), Second and Third cumulant.

A. Lazarescu and K. Mallick, J. Phys. A 44, 315001 2011).

M. Gorissen, A. Lazarescu, K.M., C. Vanderzande, PRL 109 170601 (2012).
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A special TASEP case

In the case α = β = 1, a parametric representation of the cumulant
generating function E (µ):

µ = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)]!

[k(L + 1)]! [k(L + 2)]!

Bk

2k
,

E = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)− 2]!

[k(L + 1)− 1]! [k(L + 2)− 1]!

Bk

2k
.

First cumulants of the current

Mean Value : J = L+2
2(2L+1)

Variance : ∆ = 3
2

(4L+1)![L!(L+2)!]2

[(2L+1)!]3(2L+3)!

Skewness :
E3 = 12 [(L+1)!]2[(L+2)!]4

(2L+1)[(2L+2)!]3

{
9 (L+1)!(L+2)!(4L+2)!(4L+4)!

(2L+1)![(2L+2)!]2[(2L+4)!]2 − 20 (6L+4)!
(3L+2)!(3L+6)!

}
For large systems: E3 → 2187−1280

√
3

10368 π ∼ −0.0090978...

K. Mallick Matrix and Bethe Ansatz for the Exclusion Process



Conclusion

Systems out of equilibrium are ubiquitous in nature. They break time
reversal invariance. Often, they are characterized by non-vanishing
stationary currents. In general, the steady-state measures are not given
by the Boltzmann-Gibbs Law.

Exact solutions have been obtained for one-dimensional processes, thanks
to various techniques: Bethe Ansatz, Determinantal Processes and
Matrix Product Representations.

Tensor Products of Matrix Product States have allowed us to study
multispecies generalizations of the exclusion process as well as current
fluctuations in the open ASEP.

Many partially solved/open questions: multispecies processes with open
boundaries? Systematic construction of the Matrix Ansatz and relation
to integrability. Applications to other single-file models and queueing
processes.
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