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well known that such a perfectmeasurement is irreversible, leading to a diverging entropy production [19, 20].
Therefore, one usually considers imperfectmeasurements

s m s s
s m s s

( , ) ( , ) with prob. ¯ 1
( , ) ( , 1 ) with prob.

ϵ ϵ
ϵ

↦ = −
↦ −

with a small error probability 0 1 2ϵ< < . Using the basis (4) this corresponds to the transitionmatrix

¯ ¯ 0 0
0 0

0 0
0 0 ¯ ¯

. (8)M
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Remarkably, this imperfectmeasurement process can be implemented by a stochasticMarkov process aswell,
since M M

2 = . The corresponding time evolution operator reads

k

¯ 0 0
¯ 0 0

0 0 ¯
0 0 ¯

(9)M
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−
with a rate k′, and it is easy to show that the transitionmatrix M in equation (8) is retrieved in the limit of
infinitemeasurement time:

( ) ( )t tlim lim exp . (10)M
t

M M
t

M M
M M

  = = −
→∞ →∞

Thus, we succeeded in implementing the second step as a stochasticMarkov process aswell.
If thememory is considered as being in contact with some heat bath of inverse temperature β during the

stochasticmeasurement process, the time evolution defined above implies that the incorrectlymeasured state
s s( , 1 )− has a higher energy than the correctlymeasured state (s, s) and that the corresponding energy
difference between the two composite states is given by

E ln
¯

. (11)1Δ β ϵ
ϵ′ = −

2.3. Feedback
The purpose of the feedback is to use the information stored in thememory in order to extract energy from the
system. If the precedingmeasurement was faithful, this wouldmean performing the transitions

W E

00 00 without extraction of energy

11 01 extracting the work .ex Δ
↦
↦ =

These transitions alonewould be again irreversible, causing an infinite entropy production.However, if we add
symmetric transitions in the (unlikely) case of erroneousmeasurements, namely,

W E

10 10 without performing work

01 11 performing work, i.e., ,ex Δ
↦
↦ = −

we obtain the feedback transitionmatrix

1
1

1
1

0 0 0
0 0 0
0 0 0
0 0 0

. (12)F

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ =

Thus the feedback process is carried out in such away that the system state isflipped (s s1↦ − ) form=1,
while it remains unchanged (s s↦ ) form=0. It is assumed that the feedback transition occurs instantaneously
so that the total time τ of a complete cycle R M F  → → is given by t tR Mτ = + .

Since IF
2 = , the feedback is fully reversible; hence, it does not produce entropy in the environment.

Moreover, it is easy to see that it simply exchanges the second and the fourth component of a vector, and
therefore it does not change the joint entropy of system andmemory. However, as will be shownbelow, it
generally changes the entropy of the subsystems.

Due to its reversible nature, the feedback as defined above cannot be implemented as a stochasticMarkov
process. However, wewould like to point out that it is even possible to implement the feedback physically so that
the entire chain of steps is represented cleanly as a sequence of stochastic processes. This can be done by
replacing two subsequent cycles R M F R M F R      → → → → → → equivalently by

R M F R F F M F R        → → → → . Since R F R F˜   ≡ and M F M F˜   ≡ satisfy the stochasticity
condition ( R R˜

2
˜ = , M M˜

2
˜ = ), thewhole sequence of steps can be implemented by stochastic processes,
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It is almost trivial to construct the IFTs through the standard approach of stochastic thermodynamics [23]
by considering the heat along all possible trajectories in the composite configurational state space.With an
appropriate definition of the Shannon entropy for a given trajectory [23], one can easily get the fluctuation
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rather tricky tofind the IFTs in terms of work andmutual information, because it requires an equilibrium state
as an initial condition. This is the case only when tR becomes infinite so that the system is in equilibrium at the
start of themeasurement as well as at the beginning of the feedback.However, note that the bounds forworks in
equation (48) are valid, even if tR isfinite.

7. Finite-time relaxation andmeasurement

In practice, an engine is only useful if the cycle time τ isfinite. Thus, it is obviously of interest to derive all physical
quantities as a function of the cycle time. This allows one tofind the optimum formaximal power generation, as
will be discussed in the next section.
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means that themeasurement forfinite tM is less accurate than in the limit of infinite time.

Figure 6. Infinite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information
I IM 2Δ = are displayed as functions of q for a constant error probability 0.1ϵ = . Here we choose 1, 2,Mβ = and 5with 1Rβ = . Note

that W HM sup M
envβ Δ〈 〉 = is independent of Mβ . Wex〈 〉 is positive at q 1 2ϵ < < , as expected from equation (42).When the

temperature of themeasurement reservoir is sufficiently lower than that of the relaxation reservoir, for example, 5Mβ = , the
extractedwork Wex〈 〉 can be larger than the suppliedwork Wsup〈 〉, as indicated by the arrow.
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8. Efficiency

Let us now assume that the information engine operates in a regimewhere the net work is positive. In this case
thewhole setup can be interpreted as a conventional heat engine, as sketched infigure 8. As R Mβ β< , the upper
reservoir for the relaxation process plays the role of a high-temperature heat source, while the lower reservoir in
contact with thememory device acts as a heat sink. The efficiency of this heat engine in a single cycle is defined in
the usual way as
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Using equations (53) and (55) the efficiency can be rewritten as
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Note that the relaxation andmeasurement processes are not quasi-static, so that even in the limit τ → ∞ the
engine never reaches theCarnot efficiency 1c

R

M
η = − β

β . Instead, wefind that the efficiency is limited by a

different upper bound maxη , which can be computed as follows. According to themonotonicity arguments
discussed in the preceding section, ( )η τ is expected to becomemaximal in the limit τ → ∞. This suggests that
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β
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Figure 9 shows 1 λ∞ as a function of q for several values of ϵ. It is obvious that 1 λ∞ is positive for q 1 2ϵ ⩽ ⩽ ,
with a unimodal shape due to the similar behavior of Wex〈 〉demonstrated infigure 6. As 0ϵ → ,1 λ∞ approaches
zero, except for q 0≈ . In the limit of both q 0→ and 0ϵ → , λ∞ approaches a constant bounded frombelow by

2λ ⩾∞ . Consequently, in order to obtain a positive work gain, the difference of temperatures should be at least
2M Rβ β ⩾ for the infinite-time process. In short, wefind that the efficiency of the information engine is

bounded by

Figure 8. Interpretation of the information engine as a conventional heat engine.Heat QR∣〈 〉∣flows from the heat reservoir at Rβ
(high temperature) into the engine, which produces thework gain W W Wsupnet ex〈 〉 = 〈 〉 − 〈 〉. The remaining heat QM〈 〉 is transferred
to another reservoir at Mβ (low temperature).
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that
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In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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reservoir for the relaxation process plays the role of a high-temperature heat source, while the lower reservoir in
contact with thememory device acts as a heat sink. The efficiency of this heat engine in a single cycle is defined in
the usual way as
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Using equations (53) and (55) the efficiency can be rewritten as
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Note that the relaxation andmeasurement processes are not quasi-static, so that even in the limit τ → ∞ the
engine never reaches theCarnot efficiency 1c

R

M
η = − β

β . Instead, wefind that the efficiency is limited by a

different upper bound maxη , which can be computed as follows. According to themonotonicity arguments
discussed in the preceding section, ( )η τ is expected to becomemaximal in the limit τ → ∞. This suggests that

( ) lim ( ) 1 , (60)R
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β
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Figure 9 shows 1 λ∞ as a function of q for several values of ϵ. It is obvious that 1 λ∞ is positive for q 1 2ϵ ⩽ ⩽ ,
with a unimodal shape due to the similar behavior of Wex〈 〉demonstrated infigure 6. As 0ϵ → ,1 λ∞ approaches
zero, except for q 0≈ . In the limit of both q 0→ and 0ϵ → , λ∞ approaches a constant bounded frombelow by

2λ ⩾∞ . Consequently, in order to obtain a positive work gain, the difference of temperatures should be at least
2M Rβ β ⩾ for the infinite-time process. In short, wefind that the efficiency of the information engine is

bounded by

Figure 8. Interpretation of the information engine as a conventional heat engine.Heat QR∣〈 〉∣flows from the heat reservoir at Rβ
(high temperature) into the engine, which produces thework gain W W Wsupnet ex〈 〉 = 〈 〉 − 〈 〉. The remaining heat QM〈 〉 is transferred
to another reservoir at Mβ (low temperature).
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that
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In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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8. Efficiency

Let us now assume that the information engine operates in a regimewhere the net work is positive. In this case
thewhole setup can be interpreted as a conventional heat engine, as sketched infigure 8. As R Mβ β< , the upper
reservoir for the relaxation process plays the role of a high-temperature heat source, while the lower reservoir in
contact with thememory device acts as a heat sink. The efficiency of this heat engine in a single cycle is defined in
the usual way as
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different upper bound maxη , which can be computed as follows. According to themonotonicity arguments
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Figure 9 shows 1 λ∞ as a function of q for several values of ϵ. It is obvious that 1 λ∞ is positive for q 1 2ϵ ⩽ ⩽ ,
with a unimodal shape due to the similar behavior of Wex〈 〉demonstrated infigure 6. As 0ϵ → ,1 λ∞ approaches
zero, except for q 0≈ . In the limit of both q 0→ and 0ϵ → , λ∞ approaches a constant bounded frombelow by

2λ ⩾∞ . Consequently, in order to obtain a positive work gain, the difference of temperatures should be at least
2M Rβ β ⩾ for the infinite-time process. In short, wefind that the efficiency of the information engine is

bounded by

Figure 8. Interpretation of the information engine as a conventional heat engine.Heat QR∣〈 〉∣flows from the heat reservoir at Rβ
(high temperature) into the engine, which produces thework gain W W Wsupnet ex〈 〉 = 〈 〉 − 〈 〉. The remaining heat QM〈 〉 is transferred
to another reservoir at Mβ (low temperature).

12

New J. Phys. 17 (2015) 085001 JUm et al

Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that
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In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that

W ¯ ln
¯

. (53)sup
M

 ϵ
β

ϵ
ϵ〈 〉 = −

Here P P1
01

1
10 ≡ + is explicitly given by

( ) ( ) ( )
t t

q q q
,

¯ ¯ ¯ ¯ ¯

1
, (54)R M   


ϵ ϵ α ϵ

α=
+ + +

−

with q q¯ ( ¯ )(¯ ) α ϵ ϵ= + − − . In a similarmanner, we obtain Wex〈 〉 as the function of  :
W

q
R

q

q

( ) ¯ ln
¯

. (55)
R

ex
 ϵ ϵ
β〈 〉 = − − −

In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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8. Efficiency

Let us now assume that the information engine operates in a regimewhere the net work is positive. In this case
thewhole setup can be interpreted as a conventional heat engine, as sketched infigure 8. As R Mβ β< , the upper
reservoir for the relaxation process plays the role of a high-temperature heat source, while the lower reservoir in
contact with thememory device acts as a heat sink. The efficiency of this heat engine in a single cycle is defined in
the usual way as
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Note that the relaxation andmeasurement processes are not quasi-static, so that even in the limit τ → ∞ the
engine never reaches theCarnot efficiency 1c

R
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η = − β

β . Instead, wefind that the efficiency is limited by a

different upper bound maxη , which can be computed as follows. According to themonotonicity arguments
discussed in the preceding section, ( )η τ is expected to becomemaximal in the limit τ → ∞. This suggests that
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Figure 9 shows 1 λ∞ as a function of q for several values of ϵ. It is obvious that 1 λ∞ is positive for q 1 2ϵ ⩽ ⩽ ,
with a unimodal shape due to the similar behavior of Wex〈 〉demonstrated infigure 6. As 0ϵ → ,1 λ∞ approaches
zero, except for q 0≈ . In the limit of both q 0→ and 0ϵ → , λ∞ approaches a constant bounded frombelow by

2λ ⩾∞ . Consequently, in order to obtain a positive work gain, the difference of temperatures should be at least
2M Rβ β ⩾ for the infinite-time process. In short, wefind that the efficiency of the information engine is

bounded by

Figure 8. Interpretation of the information engine as a conventional heat engine.Heat QR∣〈 〉∣flows from the heat reservoir at Rβ
(high temperature) into the engine, which produces thework gain W W Wsupnet ex〈 〉 = 〈 〉 − 〈 〉. The remaining heat QM〈 〉 is transferred
to another reservoir at Mβ (low temperature).
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that
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with q q¯ ( ¯ )(¯ ) α ϵ ϵ= + − − . In a similarmanner, we obtain Wex〈 〉 as the function of  :
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In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .

11

New J. Phys. 17 (2015) 085001 JUm et al

�(tR, tM ) � 2



Efficiency
• information assisted heat engine Feedback Relaxation

Measurement

TR

TM

hQRi < 0

hQM i > 0

hWneti = �hQRi � hQM i (= hW
ex

i � hW
sup

i)

• efficiency

⌘ =
hWneti
�hQRi

• maximum efficiency 

 1� TM

TR

�RhQRi+ �M hQM i � 0

Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).
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process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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8. Efficiency

Let us now assume that the information engine operates in a regimewhere the net work is positive. In this case
thewhole setup can be interpreted as a conventional heat engine, as sketched infigure 8. As R Mβ β< , the upper
reservoir for the relaxation process plays the role of a high-temperature heat source, while the lower reservoir in
contact with thememory device acts as a heat sink. The efficiency of this heat engine in a single cycle is defined in
the usual way as
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Using equations (53) and (55) the efficiency can be rewritten as

( ) 1 ( ), (58)R

M

η τ
β
β λ τ= −

where

( )
( )

M

q R q q
( )

( ) ¯ ln ¯

[ ( )] ¯ ln ¯
. (59)


 λ τ

ϵ ϵ ϵ
ϵ ϵ

=
−

− − −

Note that the relaxation andmeasurement processes are not quasi-static, so that even in the limit τ → ∞ the
engine never reaches theCarnot efficiency 1c

R

M
η = − β

β . Instead, wefind that the efficiency is limited by a

different upper bound maxη , which can be computed as follows. According to themonotonicity arguments
discussed in the preceding section, ( )η τ is expected to becomemaximal in the limit τ → ∞. This suggests that

( ) lim ( ) 1 , (60)R
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β
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where
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Figure 9 shows 1 λ∞ as a function of q for several values of ϵ. It is obvious that 1 λ∞ is positive for q 1 2ϵ ⩽ ⩽ ,
with a unimodal shape due to the similar behavior of Wex〈 〉demonstrated infigure 6. As 0ϵ → ,1 λ∞ approaches
zero, except for q 0≈ . In the limit of both q 0→ and 0ϵ → , λ∞ approaches a constant bounded frombelow by

2λ ⩾∞ . Consequently, in order to obtain a positive work gain, the difference of temperatures should be at least
2M Rβ β ⩾ for the infinite-time process. In short, wefind that the efficiency of the information engine is

bounded by

Figure 8. Interpretation of the information engine as a conventional heat engine.Heat QR∣〈 〉∣flows from the heat reservoir at Rβ
(high temperature) into the engine, which produces thework gain W W Wsupnet ex〈 〉 = 〈 〉 − 〈 〉. The remaining heat QM〈 〉 is transferred
to another reservoir at Mβ (low temperature).
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that
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In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).
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In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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8. Efficiency

Let us now assume that the information engine operates in a regimewhere the net work is positive. In this case
thewhole setup can be interpreted as a conventional heat engine, as sketched infigure 8. As R Mβ β< , the upper
reservoir for the relaxation process plays the role of a high-temperature heat source, while the lower reservoir in
contact with thememory device acts as a heat sink. The efficiency of this heat engine in a single cycle is defined in
the usual way as
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Using equations (53) and (55) the efficiency can be rewritten as
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Note that the relaxation andmeasurement processes are not quasi-static, so that even in the limit τ → ∞ the
engine never reaches theCarnot efficiency 1c

R

M
η = − β

β . Instead, wefind that the efficiency is limited by a

different upper bound maxη , which can be computed as follows. According to themonotonicity arguments
discussed in the preceding section, ( )η τ is expected to becomemaximal in the limit τ → ∞. This suggests that

( ) lim ( ) 1 , (60)R
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Figure 9 shows 1 λ∞ as a function of q for several values of ϵ. It is obvious that 1 λ∞ is positive for q 1 2ϵ ⩽ ⩽ ,
with a unimodal shape due to the similar behavior of Wex〈 〉demonstrated infigure 6. As 0ϵ → ,1 λ∞ approaches
zero, except for q 0≈ . In the limit of both q 0→ and 0ϵ → , λ∞ approaches a constant bounded frombelow by

2λ ⩾∞ . Consequently, in order to obtain a positive work gain, the difference of temperatures should be at least
2M Rβ β ⩾ for the infinite-time process. In short, wefind that the efficiency of the information engine is

bounded by

Figure 8. Interpretation of the information engine as a conventional heat engine.Heat QR∣〈 〉∣flows from the heat reservoir at Rβ
(high temperature) into the engine, which produces thework gain W W Wsupnet ex〈 〉 = 〈 〉 − 〈 〉. The remaining heat QM〈 〉 is transferred
to another reservoir at Mβ (low temperature).

12

New J. Phys. 17 (2015) 085001 JUm et al

Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that
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with q q¯ ( ¯ )(¯ ) α ϵ ϵ= + − − . In a similarmanner, we obtain Wex〈 〉 as the function of  :
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q
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¯
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In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).
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In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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8. Efficiency

Let us now assume that the information engine operates in a regimewhere the net work is positive. In this case
thewhole setup can be interpreted as a conventional heat engine, as sketched infigure 8. As R Mβ β< , the upper
reservoir for the relaxation process plays the role of a high-temperature heat source, while the lower reservoir in
contact with thememory device acts as a heat sink. The efficiency of this heat engine in a single cycle is defined in
the usual way as
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Note that the relaxation andmeasurement processes are not quasi-static, so that even in the limit τ → ∞ the
engine never reaches theCarnot efficiency 1c
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β . Instead, wefind that the efficiency is limited by a

different upper bound maxη , which can be computed as follows. According to themonotonicity arguments
discussed in the preceding section, ( )η τ is expected to becomemaximal in the limit τ → ∞. This suggests that
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Figure 9 shows 1 λ∞ as a function of q for several values of ϵ. It is obvious that 1 λ∞ is positive for q 1 2ϵ ⩽ ⩽ ,
with a unimodal shape due to the similar behavior of Wex〈 〉demonstrated infigure 6. As 0ϵ → ,1 λ∞ approaches
zero, except for q 0≈ . In the limit of both q 0→ and 0ϵ → , λ∞ approaches a constant bounded frombelow by

2λ ⩾∞ . Consequently, in order to obtain a positive work gain, the difference of temperatures should be at least
2M Rβ β ⩾ for the infinite-time process. In short, wefind that the efficiency of the information engine is

bounded by

Figure 8. Interpretation of the information engine as a conventional heat engine.Heat QR∣〈 〉∣flows from the heat reservoir at Rβ
(high temperature) into the engine, which produces thework gain W W Wsupnet ex〈 〉 = 〈 〉 − 〈 〉. The remaining heat QM〈 〉 is transferred
to another reservoir at Mβ (low temperature).
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that
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In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that
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with q q¯ ( ¯ )(¯ ) α ϵ ϵ= + − − . In a similarmanner, we obtain Wex〈 〉 as the function of  :
W

q
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q

q

( ) ¯ ln
¯

. (55)
R

ex
 ϵ ϵ
β〈 〉 = − − −

In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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8. Efficiency

Let us now assume that the information engine operates in a regimewhere the net work is positive. In this case
thewhole setup can be interpreted as a conventional heat engine, as sketched infigure 8. As R Mβ β< , the upper
reservoir for the relaxation process plays the role of a high-temperature heat source, while the lower reservoir in
contact with thememory device acts as a heat sink. The efficiency of this heat engine in a single cycle is defined in
the usual way as
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W
( ) 1 . (57)
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〈 〉
〈 〉

Using equations (53) and (55) the efficiency can be rewritten as
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Note that the relaxation andmeasurement processes are not quasi-static, so that even in the limit τ → ∞ the
engine never reaches theCarnot efficiency 1c

R

M
η = − β

β . Instead, wefind that the efficiency is limited by a

different upper bound maxη , which can be computed as follows. According to themonotonicity arguments
discussed in the preceding section, ( )η τ is expected to becomemaximal in the limit τ → ∞. This suggests that

( ) lim ( ) 1 , (60)R
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β
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Figure 9 shows 1 λ∞ as a function of q for several values of ϵ. It is obvious that 1 λ∞ is positive for q 1 2ϵ ⩽ ⩽ ,
with a unimodal shape due to the similar behavior of Wex〈 〉demonstrated infigure 6. As 0ϵ → ,1 λ∞ approaches
zero, except for q 0≈ . In the limit of both q 0→ and 0ϵ → , λ∞ approaches a constant bounded frombelow by

2λ ⩾∞ . Consequently, in order to obtain a positive work gain, the difference of temperatures should be at least
2M Rβ β ⩾ for the infinite-time process. In short, wefind that the efficiency of the information engine is

bounded by

Figure 8. Interpretation of the information engine as a conventional heat engine.Heat QR∣〈 〉∣flows from the heat reservoir at Rβ
(high temperature) into the engine, which produces thework gain W W Wsupnet ex〈 〉 = 〈 〉 − 〈 〉. The remaining heat QM〈 〉 is transferred
to another reservoir at Mβ (low temperature).
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Solving equation (15), one can find explicit but complicated expressions for all stationary distributions such
as P0∣ 〉, P1∣ 〉, and P2∣ 〉 forfinite tR and tM, which are not shownhere explicitly. The heat dissipation during the
finite-time relaxation andmeasurement can be obtained from equation (33), while the extractedwork and the
suppliedwork are given by equations (36) and (37).

Using the relation P PM2 1∣ 〉 = ∣ 〉wefind that
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with q q¯ ( ¯ )(¯ ) α ϵ ϵ= + − − . In a similarmanner, we obtain Wex〈 〉 as the function of  :
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In the limit of t t,R M → ∞ ( , 0  → ), we consistently recover equation (42).
Note that the finite-timeworks in (53) and (55) decreasemonotonously with  and  (see figure 7).

Moreover, since the correlation between system andmemory builds up continuously during themeasurement
process, it is obvious that IMΔ decreases with , remaining positive by definition. The positivity of IMΔ
guarantees that Wsup〈 〉 is also positive. On the other hand, Wex〈 〉 can be negative for short-timemeasurement
and relaxation, as its upper bound IMΔ approaches zero for t 0M → .

Themonotonous dependence shown in figure 7 suggests that Wex〈 〉becomesmaximal formaximal
measurement accuracy (tM → ∞) and full relaxation (tR → ∞) in order to redistribute and pump the
overpopulated ground state s=0back to the energetically excited state s=1. Therefore, both limits t t,M R → ∞
have to be carried out simultaneously. To establish this combined limit conveniently, let us fromnowon set

t t 2, (56)R M τ= =

meaning that e 2 = = τ− .With this conventionwe expect Wex〈 〉 to bemaximal in the limit of infinite cycle
time (τ → ∞).Moreover, as τ decreases, we expect Wex〈 〉 to decrease and eventually to become negative.

If W Wsupex〈 〉 > 〈 〉, the systemoperates like a conventional heat engine. For infinite τ the net work Wnet〈 〉 is
maximal, but the power (net work per unit time) vanishes. Forfinite but sufficiently large τ and properly chosen
parameters, the system still produces a positive net work; hence, the power is positive. However, as can be seen in
figure 7, the curves for Wex〈 〉 and Wsup〈 〉 cross each other at some finite cycle time sτ τ= . At this point we no
longer obtain any net work from the engine; hence, the power vanishes again. Consequently, therewill be a
particular cycle time in between, at which the power of the engine ismaximal. In the next section, wewill discuss
this aspect inmore detail.

Figure 7. Finite-time relaxation andmeasurement. The extractedwork Wex〈 〉, suppliedwork Wsup〈 〉, and themutual information I2
and IMΔ are shown as functions of e tR− . Here, we choose tR= tM, q=0.2, 0.1ϵ = , 1Rβ = , and 5Mβ = .
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�(tR, tM ) � 2



Efficiency at max power

where the coefficientAs is given by

A
q

. (66)s
1

0

0
2⎛

⎝⎜
⎞
⎠⎟





ϵ

ϵ
ϵ= − + −

−

−

Figure 10. (a) The efficiency η and power gain P〈 〉 as functions of e τ− . (b) e sτ− and e opτ− as functions of maxη . In (b), the dotted line
x2∼ is obtained from equation (65), and the dashed line corresponds to equation (71).We choose tR= tM, q=0.2, 0.1ϵ = , and

1Rβ = for both (a) and (b).We set 5Mβ = for (a) and vary Mβ for (b).

Figure 11.The efficiency opη at the optimal power for various ϵ and q. Here we choose k k= ′ and tR= tM for simplicity.
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Summary

• We have investigated an information assisted heat engine 
in terms of composite system. 

• It is found that the mutual information developed by 
measurement gives the upper and lower bound for work 
extraction and supply, respectively.  

• Efficiency is found to be distinguished from the 
efficiency of usual heat engine. 


