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       Most interest goes to the dynamics of tagged particles moving   

        within a single file. 
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 Tagged particle dynamics is closely related to collective transport. 

 First noted by Alexander and Pincus [PRB 18, 2011 (1978)] 

 

 

 Warning! For clearly seeing interesting behavior one has to use 

this identity by preference in a coordinate frame where  the tagged 

particle on average has no drift. In general one has 

 

 

 but the integrated current in the rest frame exhibits additional 

fluctuations, which may be larger than the second term. 
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   Known as Percus’ rule 
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The simplest cases are those were particles move independently  

but exchange identities on passing each other (equivalent to asking: 

“what is the displacement of the 138th particle in the queue?”). 

 

Examples: 

 

1) Jepsen gas. Point particles of equal mass move ballistically and 

exchange velocities on colliding. 
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Non-crossing Brownian particles (T.E. Harris) 

In this case: 
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Non-crossing Brownian particles (T.E. Harris) 

In this case: 

 

 

 

For Brownian particles with drift, add (Vt)
2
.
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Lévy flights:  random flights with power law jump length distribution, 

 

 

 

For these one finds: 
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For long times the distribution of the displacement of the tagged 

particle in AP approximation becomes Gaussian, thanks to the central  

limt theorem. The roughly N/2 particles that are initially to the right of  

the origin are identically distributed and have the same probability of  

having passed the origin at time t. So the distribution for the number  

having passed the origin becomes approximately gaussian for large  

enough times. This then also holds for the difference of numbers 

passing in either direction. 

 

This in principle will work for any type of independent particle  

dynamics with uniform stationary density. 
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possibilities becomes richer. 

 

Simple Exclusion Process (SEP). 1d lattice, non-passing particles, 

symmetric hopping rates. 

Collective dynamics is diffusive, so same results as for independent 

Brownian particles. 

 



ASEP. Same but with asymmetric hopping rates. In this model the  
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system. Hence, fluctuations in the integrated mass flow through the  

origin typically grow as the square root of its average, that is ~ t1/2. 
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velocity at which perturbations of the density move through the  

system. Hence, fluctuations in the integrated mass flow through the  

origin typically grow as the square root of its average, that is ~ t1/2. 

 

Could it be possible getting a tagged particle speed equal to the pattern 

velocity? 

Should be doable by adding additional species, e.g. second class 

particles with suitable jump rates. For this case one expects a MSD ~ t2/3 

corresponding to KPZ behavior of the collective structure function, 

S(k,t)=f(k t2/3). 

    



                         Hamiltonian dynamics. 

For 1d  single component Hamiltonian systems with short ranged  

interactions the structure function exhibits two sound peaks (Brillouin  

peaks) and one, central heat peak (Rayleigh peak). 

 

Their behavior is expected to be governed by the 1-dimensional KPZ  

equation, leading to 
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Gives rise to three contributions to MSD: 
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Consider first Hamiltonian systems with fixed center of mass and 

periodic boundary conditions. 

 

Due to the fixation of the CM the k=0 term in the AP summation form 

vanishes. So one misses <V2
CM>t2. 

 

The fixed center of mass also constrains the displacement of a tagged  

particle to L(N-1)/N. So the MSD saturates for long times. In the limit 

t → ∞ one obtains 
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      Red: simulation value;  

      blue: Alexander-Pincus approximation  

      based on simulation values for S(k,t)   







     Finite size effects in diffusive systems with PBC  

 

For long times CM performs diffusive motion with DCM=D/N. 

 

For a tagged particle: 

 

 

 

 

 

So for large t this differs from the Hamiltonian result only by an  

additional amount 2Dt/N. 
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