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1. Introduction

Hydrodynamic limits and macroscopic theory for systems out of equilibrium.
Typical example: Fourier/Fick’s law

ρ- ρ+

Let QT be the number of particles which flows through the system during time T .
Fourier’s / Fick’s law:

〈QT〉
T
∼ 1

L
(ρ+ − ρ−)
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2. Continuum mechanics
In a region Ω each point (representing a large microscopic system) has reached a
local thermal equilibrium.

• Macroscopic states: functions ρ ∈ L1(Ω) .

• Postulate: thermodynamics of the system is determined by a free energy

functional: F(ρ) =

∫
Ω

f (ρ(r))dr .

• Dynamics: continuity equation (conservation of mass)

∂ρ

∂t
= −∂J

∂r

• Constitutive relation for the current (chosen such that free energy decreases)

J = −κ(ρ)
∂

∂r

(δF(ρ)

δρ(r)

)

• κ(ρ) > 0 is a model dependent coefficient called mobility.

• Boundary conditions? Periodic, Dirichlet or other?

D. Tsagkarogiannis (University of Sussex) Non-equilibrium processes for Current Reservoirs 3 November 2015 4 / 20



2. Continuum mechanics
In a region Ω each point (representing a large microscopic system) has reached a
local thermal equilibrium.

• Macroscopic states: functions ρ ∈ L1(Ω) .

• Postulate: thermodynamics of the system is determined by a free energy

functional: F(ρ) =

∫
Ω

f (ρ(r))dr .

• Dynamics: continuity equation (conservation of mass)

∂ρ

∂t
= −∂J

∂r

• Constitutive relation for the current (chosen such that free energy decreases)

J = −κ(ρ)
∂

∂r

(δF(ρ)

δρ(r)

)

• κ(ρ) > 0 is a model dependent coefficient called mobility.

• Boundary conditions? Periodic, Dirichlet or other?

D. Tsagkarogiannis (University of Sussex) Non-equilibrium processes for Current Reservoirs 3 November 2015 4 / 20



2. Continuum mechanics
In a region Ω each point (representing a large microscopic system) has reached a
local thermal equilibrium.

• Macroscopic states: functions ρ ∈ L1(Ω) .

• Postulate: thermodynamics of the system is determined by a free energy

functional: F(ρ) =

∫
Ω

f (ρ(r))dr .

• Dynamics: continuity equation (conservation of mass)

∂ρ

∂t
= −∂J

∂r

• Constitutive relation for the current (chosen such that free energy decreases)

J = −κ(ρ)
∂

∂r

(δF(ρ)

δρ(r)

)

• κ(ρ) > 0 is a model dependent coefficient called mobility.

• Boundary conditions? Periodic, Dirichlet or other?

D. Tsagkarogiannis (University of Sussex) Non-equilibrium processes for Current Reservoirs 3 November 2015 4 / 20



2. Continuum mechanics
In a region Ω each point (representing a large microscopic system) has reached a
local thermal equilibrium.

• Macroscopic states: functions ρ ∈ L1(Ω) .

• Postulate: thermodynamics of the system is determined by a free energy

functional: F(ρ) =

∫
Ω

f (ρ(r))dr .

• Dynamics: continuity equation (conservation of mass)

∂ρ

∂t
= −∂J

∂r

• Constitutive relation for the current (chosen such that free energy decreases)

J = −κ(ρ)
∂

∂r

(δF(ρ)

δρ(r)

)

• κ(ρ) > 0 is a model dependent coefficient called mobility.

• Boundary conditions? Periodic, Dirichlet or other?

D. Tsagkarogiannis (University of Sussex) Non-equilibrium processes for Current Reservoirs 3 November 2015 4 / 20



2. Continuum mechanics
In a region Ω each point (representing a large microscopic system) has reached a
local thermal equilibrium.

• Macroscopic states: functions ρ ∈ L1(Ω) .

• Postulate: thermodynamics of the system is determined by a free energy

functional: F(ρ) =

∫
Ω

f (ρ(r))dr .

• Dynamics: continuity equation (conservation of mass)

∂ρ

∂t
= −∂J

∂r

• Constitutive relation for the current (chosen such that free energy decreases)

J = −κ(ρ)
∂

∂r

(δF(ρ)

δρ(r)

)

• κ(ρ) > 0 is a model dependent coefficient called mobility.

• Boundary conditions? Periodic, Dirichlet or other?

D. Tsagkarogiannis (University of Sussex) Non-equilibrium processes for Current Reservoirs 3 November 2015 4 / 20



2. Continuum mechanics
In a region Ω each point (representing a large microscopic system) has reached a
local thermal equilibrium.

• Macroscopic states: functions ρ ∈ L1(Ω) .

• Postulate: thermodynamics of the system is determined by a free energy

functional: F(ρ) =

∫
Ω

f (ρ(r))dr .

• Dynamics: continuity equation (conservation of mass)

∂ρ

∂t
= −∂J

∂r

• Constitutive relation for the current (chosen such that free energy decreases)

J = −κ(ρ)
∂

∂r

(δF(ρ)

δρ(r)

)

• κ(ρ) > 0 is a model dependent coefficient called mobility.

• Boundary conditions? Periodic, Dirichlet or other?

D. Tsagkarogiannis (University of Sussex) Non-equilibrium processes for Current Reservoirs 3 November 2015 4 / 20



3. Periodic vs Dirichlet boundary conditions

Ω is the unit circle (−1, 1] and F(ρ) =

∫
Ω

f (ρ(r))dr is the free energy.

Equation:
∂ρ

∂t
= −∂J

∂r
, J = −κ(ρ)

∂f ′(ρ)

∂r
, r ∈ (−1, 1]

The mass is conserved:
d
dt

∫ 1

−1
ρ(r, t)dr = 0

The free energy is monotone:

dF(ρ(·, t))
dt

=

∫
Ω

δF(ρ)

δρ(r)
∂ρ

∂t
dr = −

∫ 1

−1
κ(ρ)

(∂f ′(ρ(r, t)
∂r

)2
dr

(integrating by parts and using periodicity)
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2. Periodic vs Dirichlet boundary conditions

Ω = [−1, 1] and F(ρ) =

∫
Ω

f (ρ(r))dr is the free energy.

Density reservoirs: complement the equation with Dirichlet b. c.:

∂ρ

∂t
= −∂J

∂r
, J = −κ(ρ)

∂f ′(ρ)

∂r
, r ∈ (−1, 1)

ρ(−1, t) = ρ−1, ρ(1, t) = ρ1, ρ(r, 0) given

The mass is not conserved:

d
dt

∫ 1

−1
ρ(r, t)dr = J(−1, t)− J(1, t)

The free energy is not monotone:

dF(ρ(·, t))
dt

= −
∫ 1

−1
κ(ρ)

(∂f ′(ρ(r, t)
∂r

)2
dr + J(−1, t)f ′(ρ−1)− J(1, t)f ′(ρ1)
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Reservoirs

But the “total” mass is conserved: let

X−(t) =

∫ t

0
J(−1, s)ds, X+(t) =

∫ t

0
J(1, s)ds

be the mass that the system exchanges with the reservoirs (enters at 1 and exits at
−1 ) within time t .

Then the total mass is conserved:

d
dt

(∫ 1

−1
ρ(r, t)dr + X+(t)− X−(t)

)
= 0

Similarly for the free energy.
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Define the “total” free energy:

Ftotal = F(ρ(·, t)) + FΛ−,t + FΛ+,t

Assume that |Λ−| and |Λ+| are so large that the reservoirs “instantaneously”
homogenize any change of mass, then

FΛ−,t = |Λ−| f (ρ−1 −
X−(t)
|Λ−|

) ≈ FΛ−,0 − f ′(ρ−1)X−(t)

FΛ+,t = |Λ+| f
(
ρ1 +

X+(t)
|Λ+|

) ≈ FΛ+,0 + f ′(ρ1)X+(t)

Hence,
Ftotal ≈ F(ρ(·, t)) + FΛ−,0 − f ′(ρ−1)X−(t) + FΛ+,0 + f ′(ρ1)X+(t)

and it is monotone non increasing:

dFtotal

dt
=

dF(ρ(·, t))
dt

− f ′(ρ−1)J(−1, t) + f ′(ρ1)J(1, t) = −
∫ 1

−1
κ(ρ)

(∂f ′(ρ(r, t)
∂r

)2
dr
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Fluctuations

Given a fluctuation (ρ,X±) there is a unique smooth function E(x, t) s.t.

∂ρ

∂t
= −∂J

∂r
, J = −κ(ρ)(E +

∂f ′(ρ)

∂r
), r ∈ (−1, 1)

ρ(−1, t) = ρ−1, ρ(1, t) = ρ1, ρ(r, 0) given

Suffices to choose:

J(x, t) :=
d
dt

X−(t)−
∫ x

−1

d
dt
ρ(y, t) dy, E := κ−1(J + κ

d
dx

f ′(ρ))

Note that E has a non-local dependence on ρ .
Power dissipated by E :

PT(ρ,X±) =

∫ T

0
dt
∫ 1

−1
dx κ(ρ)E(x, t)2
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4. Microscopic stochastic model
Symmetric simple exclusion process on Λε = [0, ε−1] ∩ Z = {0, 1, ...,N} ,
N = [ε−1] .
{ηt(x) ∈ {0, 1} , x ∈ Λε , t ≥ 0} is the process with generator:

L0f (η) =
1
2

∑
x∈Λε

∑
y:|y−x|=1

(
f (η(x,y))− f (η)

)

Put two independent Poisson clocks of intensity 1
2 at the pairs (−N,−N + 1) and

(N,N + 1) .

ρ+

1-ρ+ρ-

1-ρ-
1/2 1/2

When it rings at (N,N + 1) , we put a particle at N with prob. ρ1 and remove with
probability 1− ρ1 . Similarly at (−N,−N + 1) .

D. Tsagkarogiannis (University of Sussex) Non-equilibrium processes for Current Reservoirs 3 November 2015 10 / 20



4. Microscopic stochastic model
Symmetric simple exclusion process on Λε = [0, ε−1] ∩ Z = {0, 1, ...,N} ,
N = [ε−1] .
{ηt(x) ∈ {0, 1} , x ∈ Λε , t ≥ 0} is the process with generator:

L0f (η) =
1
2

∑
x∈Λε

∑
y:|y−x|=1

(
f (η(x,y))− f (η)

)
Put two independent Poisson clocks of intensity 1

2 at the pairs (−N,−N + 1) and
(N,N + 1) .

ρ+

1-ρ+ρ-

1-ρ-
1/2 1/2

When it rings at (N,N + 1) , we put a particle at N with prob. ρ1 and remove with
probability 1− ρ1 . Similarly at (−N,−N + 1) .

D. Tsagkarogiannis (University of Sussex) Non-equilibrium processes for Current Reservoirs 3 November 2015 10 / 20



Hydrodynamic limit exists:

∂ρ

∂t
=

1
2
∂2ρ

∂r2 , r ∈ (−1, 1)

with Dirichlet b.c. ρ(−1, t) = ρ−1 , ρ(1, t) = ρ1 .
The unique invariant measure µε is such that for any x ∈ Λε

lim
ε→0,εx→r

µε

(
η(x)

)
= (ρ1 − ρ−1)r + ρ−1

Microscopic current and Fick’s law

lim
ε→0

ε−1 µε

(
η(x)− η(x + 1)

)
= ρ1 − ρ−1

Large deviations for the density and the current
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5. Macroscopic theory, current reservoirs
Ω = [−1, 1] , free energy F(ρ) =

∫ 1

−1
f (ρ(r))dr

∂ρ

∂t
= −∂J

∂r
, J = −κ(ρ)

∂f ′(ρ)

∂r
r ∈ (−1, 1)

Before, we had an assumption of “big” reservoirs maintaining

ρ(−1, t) = ρ−1 and ρ(1, t) = ρ1

Current reservoirs play a more active role as they directly force a flux of mass into the
system (without freezing the order parameter at the endpoints).
A current reservoir of parameter j ∈ R is such that the currents at the endpoints are:

J(−1, t) = jλ−
(
ρ(−1, t)

)
J(1, t) = jλ+

(
ρ(1, t)

)
where λ−(·), λ+(·) are model dependent, mobility parameters.
A flux of mass J(1, t) enters into the system at the point 1 and
a flux of mass J(−1, t) leaves the system at the point −1
(producing a change of density ρ(±1, t)± J(±1, t) dt ).

How about the case λ ≡ 1?
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6. Microscopic theory, current reservoirs
In the interior simple exclusion process for η(x) ∈ {0, 1} . Let f be a test function

L0f (η) :=
1
2

N−1∑
x=−N

[f (η(x,x+1))− f (η)],

On the boundary ( |I±| = K , finite!) we impose a (microscopic) current εj
2 with ε = 1/N

Lb,±f (η) :=
εj
2

∑
x∈I±

D±η(x)[f (η(x))− f (η)],

where

D+η(x) = [1− η(x)]η(x + 1)η(x + 2) . . . η(N), x ∈ I+
D−η(x) = η(x)[1− η(x− 1)][1− η(x− 2)] . . . [1− η(−N)], x ∈ I−.
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7. Results

d
dt
Eε[η(x, t)] = Eε[L0(η) + Lb(η)]

=
1
2

∆εEε[η(x, t)] + Eε
εj
2

∑
x∈I±

D±η(x)[f (η(x))− f (η)]

Can we close it with respect to ρε(x, t) := Eε[η(x, t)]?

• Propagation of chaos. Considering the correlation functions:

vε(x, t|µε) := Eε
[ n∏

i=1

{η(xi, t)− ρε(xi, t)}
]
, x ∈ Λn,6=

N , n ≥ 1

Theorem (propagation of chaos, EJP ’12)
∃τ > 0, c∗ > 0 , s.t. ∀β∗ > 0, n ∈ Z+ , ∃cn s.t. ∀ε > 0

sup
x∈Λ

n,6=
N

|vε(x, t|µε)| ≤

{
cn(ε

−2t)−c∗n, t ≤ εβ
∗

cnε
(2−β∗)c∗n εβ

∗
≤ t ≤ τ log ε−1
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• In the limit ε→ 0 : heat equation with special boundary conditions: (JSP ’11):

∂

∂t
ρ(r, t) =

1
2
∂2

∂r2 ρ(r, t), r ∈ (−1, 1),

∂ρ(r, t)
∂r

|r=1 = j(1− ρ(1, t)K),
∂ρ(r, t)
∂r

|r=−1 = j(1− (1− ρ(−1, t))K)

In the sense that for any t1 > t0 > 0 :

lim
ε→0

sup
x∈ΛN

sup
t0≤t≤t1

|ρε(x, t)− ρ(εx, t)| = 0

Hence, we found in our model the reservoir mobilities:

λ
(
ρ(1, t)

)
= 1− ρ(1, t)K and λ(ρ(−1, t)) = 1− (1− ρ(−1, t))K

• Validity of Fourier law: the expected current through x + 1
2 is

j(ε)(x, t) =
ε−2

2
Eε
[
ε{η(x, t)− η(x + 1, t)}

]
= −1

2
Eε
[η(x + 1, t)− η(x, t)

ε

]
.

and we prove that for r ∈ (−1, 1)

lim
ε→0

j(ε)([ε−1r], t) = −1
2

dρ(r, t)
dr

.
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• As ε→ 0 , the profile corresponding to the (unique) invariant measure =
stationary solution of the equation. (JSP ’12).

How does it look like? Solve:

ρ′′(x) = 0, ρ′(1) = j(1− ρK
+), ρ′(−1) = j(1− (1− ρ−)K)

We obtain ρ∗(x) = jeffx + 1
2 where jeff = j(1− αK)

(α is the solution of α(1 + jαK−1) = j + 1
2 ).

E.g. for K = 1 :

jeff =
1
2

j
1 + j

j_eff

+1-1

+1
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Stationary measure, (JSP ’12)
Let µN be the unique invariant measure.

lim
N→∞

max
(x1,..,xk)∈Λ

k, 6=
N

∣∣∣µN
(
η(x1) · · · η(xk)

)
− ρ∗(x1/N) · · · ρ∗(xk/N)

∣∣∣ = 0

where ρ∗(r) is the unique stationary solution of the macroscopic equation.

Main idea: both process and equation preserve order.

• Let η0 and ξ0 be two particle configurations such that η0 ≤ ξ0 , and let Pη0 ,
respectively Pξ0 , be the law of the process starting from η0 , respectively ξ0 .
Then there is a coupling Q of Pη0 and Pξ0 such that

Q{(η, ξ) : ηt ≤ ξt , ∀t} = 1

• The analogous monotonicity property holds for the macroscopic equation.
Hence, if ρ̄(r, t) denotes the solution with initial datum ρ ≡ 1 , and ρ(r, t) the one
corresponding to initial datum ρ ≡ 0 , then for any ρ0 :

ρ(r, t) ≤ ρ(r, t|ρ0) ≤ ρ̄(r, t).
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Hence, after times of order N2 , the measure µN shrinks concentrating on a
L1 -neighborhood of the limit profile ρ∗ .

Spectral gap, (Bernoulli ’15)
In our case we have that for any initial measure

‖µ(t)
N − µ

st
N‖ ≤ cNe−bN−2t

where for any signed measure λ , ‖λ‖ =
∑
η |λ(η)| .

In some respect surprising!

• With j = 0 , L = L0 (stirring process) restricted to any of the invariant subspaces
{η :

∑
η(x) = M} has a spectral gap that scales as N−2 (Lu-Yau, CMP’93).

• The full process with L = L0 +
j
N

Lb in a time of the same order N2 manage to

equilibrate among all the above subspaces according to µst
N .

• Density reservoirs: L = L0 + L′ same spectral gap: ‖µ(t)
N − µst

N‖ ≤ cNe−bN−2t . (Here
the birth-death events are not scaled down with N .)
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8. Summary

• New suggested model with current reservoirs

• Proof of hydrodynamic limit, stationary solutions, spectral gap for K finite.
• How about K →∞?
• Large deviations?
• Other models?
• ...

Thank you!
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