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Kinetics of non-equilibrium particle growth : motivation

Many particles of one
material dispersed in
another.
Transport is diffusive or
advective.
Particles grow upon
contact.

Applications: surface physics, colloids, atmospheric science,
earth sciences, polymers, cloud physics.

Growth mechanisms:
Aggregation
Exchange-driven growth
Ostwald ripening
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Exchange-driven growth

Upon interaction clusters exchange a single monomer:

(i , j)
K (i,j)→ (i ± 1, j ∓ 1)

The interaction kernel, K (i , j), gives the rate of exchange which
typically depends on the sizes of the interacting particles.
Mean field rate equations for ck (t) - density of particles of size
k:

dck

dt
=
∑
i,j

K (i , j) ci cj
[
δk ,i+1 + δk ,i−1 − 2δk ,i

]
(1)

Monodisperse initial condition ck (0) = δk ,1.
Single conserved quantity, M1 =

∑∞
k=1 k ck (t), total mass.

E. Ben-Naim and P. Krapivsky, Phys. Rev. E, 68:031104, (2003)
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Irreversible aggregation

Upon interaction clusters merge:

(i , j)
K (i,j)→ (i + j).

Particle size distribution, Nm(t), satisfies the kinetic equation :

Smoluchowski equation :

∂tNm(t) =
1
2

∫ m

0
dm1 K (m1,m −m1) Nm1(t) Nm−m1(t)

− Nm(t)
∫ M

0
dm1 K (m,m1) Nm1(t)

+ J δ(m −m0)

Microphysics is encoded in the coagulation kernel, K (m1,m2).
Source: particles of size m0 are continuously added to the
system at rate J.
Sink: particles larger than cut-off, M, are removed from the
system.http://www.slideshare.net/connaughtonc arXiv:1508.07516



Scale invariant interaction kernels

Notation:In many applications kernel is homogeneous:

K (am1,am2) = a2γ K (m1,m2)

K (m1,m2) ∼ mµ
1 mν

2 m1�m2.

Clearly 2γ = µ+ ν.
Examples:
Brownian coagulation of spherical droplets (ν = 1

3 , µ = −1
3 ):

K (m1,m2) =

(
m1

m2

) 1
3

+

(
m2

m1

) 1
3

+ 2

Gravitational settling of spherical droplets in laminar flow
(ν = 4

3 , µ = 0) :

K (m1,m2) =

(
m

1
3
1 + m

1
3
2

)2 ∣∣∣∣m 2
3
1 −m

2
3
2

∣∣∣∣
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Self-similar evolution of particle size distribution

For homogeneous kernels, clus-
ter size distribution often self-
similar. Without source:

Nm(t) ∼ s(t)−2 F (z) z =
m

s(t)

s(t) is the typical cluster size. The scaling function, F (z),
determining the shape of the cluster size distribution, satisfies:

−2F (z) + z
dF (z)

dz
=

1
2

∫ z

0
dz1K (z1, z − z1)F (z1)F (z − z1)

− F (z)

∫ ∞
0

dz1K (z, z1)F (z1).
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Violation of mass conservation: the gelation transition

Microscopic dynamics conserve mass: cm1 + cm2 → cm1+m2 .

M1(t) for K (m1,m2) = (m1m2)3/4.

Smoluchowski equation formally
conserves the total mass,
M1(t) =

∫∞
0 m N(m, t) dm.

However for 2 γ > 1:

M1(t) <
∫ ∞

0
m N(m,0) dm t > t∗.

(Lushnikov [1977], Ziff [1980])
Mean field theory violates mass
conservation!!!

Best studied by introducing cut-off, M, and studying limit
M →∞. (Laurencot [2004])
Physical interpretation? Intermediate asymptotics...
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Instantaneous gelation

Asymptotic behaviour of the kernel controls the aggregation of
small clusters and large:

K (m1,m2) ∼ mµ
1 mν

2 m1�m2.

µ+ ν = 2 γ so that gelation always occurs if ν is big enough.

Instantaneous Gelation
If ν > 1 then t∗ = 0. (Van Dongen & Ernst [1987])
Worse: gelation is complete: M1(t) = 0 for t > 0.

Instantaneously gelling kernels cannot describe even the
intermediate asymptotics of any physical problem.
Mathematically pathological?
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Instantaneous gelation in presence of a cut-off

M(t) for K (m1,m2) = m
3
2
1 + m

3
2
2 .

With cut-off, M, regularized
gelation time, t∗M , is clearly
identifiable.
t∗M decreases as M increases.
Van Dongen & Ernst recovered in
limit M →∞.

Decrease of t∗M as M is very slow. Numerics and heuristics
suggest that for ν > 1:

t∗M ∼ log M−α α = ν − 1?

This suggests such models are physically reasonable.
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Gelation transition in exchange-driven growth

Similar phenomenology applies to the mean-field theory of
exchange-driven growth (Ben-Naim & Krapivsky, PRE, (2003)).

For K (i , j) = (ij)γ , there are 3 regimes based, on the value of γ
and the growth of the typical cluster size, m(t),:

No gelation m(t) ∼ t
1

3−2γ 0 < γ < 3
2

Regular gelation m(t) ∼ (t∗ − t)
1

3−2γ 3
2 < γ < 2

Instantaneous gelation m(t) =∞ γ > 2

Gelation is "harder" to achieve for exchange-driven growth than
for irreversible aggregation (the critical value of γ is higher)
since dynamics allows particles to shrink as well as grow.
For finite systems of size N, heuristic argument gives the
gelation time

T ∗N ∼ (log N)−(γ−2) as N →∞.
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Spatially extended models of non-equilibrium growth

We now consider an class of spatially extended models which
generalise the Zero-Range Process.

Lattice of size L: ΛL (in our case a ring).
Configurations: η = {ηx : x ∈ ΛL} (ηx is # particles at site x).
Particles jump from site x to site y with rate:

c(η, x , y) = p(x , y) u(ηx , ηy )

Symmetric transport: p(x , y) = 1
2δy ,x+1 + 1

2δy ,x−1.
Asymmetric transport: p(x , y) = δy ,x+1.

Exchange-driven growth is an analogue at mean field level.
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Stationary state distribution

We consider the product form for the jump rates:

u(n,m) = nγ (d + mγ) with γ > 1 and d > 0. (2)

One of a class of models [M. Evans, S. Majumdar & R. Zia, J.
Phys. A, 37(25):L275, (2004)] with factorised stationary state :

PL
φ(η) =

∏
x∈ΛL

pφ(ηx ) =
∏

x∈ΛL

1
z(φ)

w(ηx )φηx .

Here the stationary weights are

w(n) =
n∏

k=1

(k − 1)γ + d
kγ

∼ n−γ as n→∞,

and the single site partition function is

z(φ) =
∞∑

k=0

w(k)φk .
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Condensation transition

The parameter φ controls the average particle density:

R(φ) = 〈ηx〉φ = φ∂φ log z(φ).

R(φ) increases monotonically from R(0) = 0 to ρc = R(1):

Key observation: ρc <
∞ when γ > 2. If the
initial density exceeds ρc ,
the excess particles con-
centrate on a single site.

This phenomenon is referred to as the condensation transition:
in the limit L→∞, a finite fraction of the total mass in the
stationary state is found on a single site.
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Kinetics of the condensation transition

Knowledge of the stationary state does not tell us anything
about the dynamics

Snapshots of configurations of Zero Range Process, u(n,m) = 1 + γ/n, with γ = 5, L = 128 and ρ = 2 > ρc .

(from Y.-X. Chau, PhD thesis, Univ. of Warwick (2015))

In particular, we would like to know what is the characteristic
time to reach the stationary state as a function of the system
size, L? If, γ > 2 and ρ > ρ what is the time, Tss, until the
condensate forms? Mean field model doesn’t help: Tss = 0!

[movie for ZRP with γ = 3 - from B. Waclaw & M. Evans, PRL
(2012)]

http://www.slideshare.net/connaughtonc arXiv:1508.07516



Explosive condensation for asymmetric transport

B. Waclaw and M. R. Evans. Phys. Rev. Lett., 108(7):070601
(2012) studied the following model:

u(n,m) = ((n + d)γ − dγ) (d + m)γ with γ > 1 and d > 0.
(3)

with totally asymmetric transport. They found that for γ > 2:

〈TSS〉 ∼ (log L)1−γ as L→∞.

Condensation is instantaneous as L→∞ : explosive
condensation.

[movie for Model 3 with γ = 3 - from B. Waclaw & M. Evans,
PRL (2012)]
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Explosive condensation for symmetric transport

Is the asymmetric dynamics required for explosive
condensation? We considered the simpler rates

u(n,m) = nγ (d + mγ) with γ > 2 and d > 0.

with totally symmetric hopping rates. We find that explosive
condensation is delayed to γ > 3. Thereafter

〈TSS〉 ∼ (log L)3−γ as L→∞.

TSS vs L for above rates with γ = 5 (left) and γ = 7 (right) and values of d = 0.1 (top) and d = 1.0 (bottom).
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Coarsening: a regime dominated by spatial
correlations

In the range 2 < γ < 3 (for which the asymmetric model
exhibits explosive condensation), the symmetric model exhibits
condensate growth by coarsening. This leads to a condensate
size growing algebraically in time and 〈TSS〉 increases with the
system size:

〈TSS〉 ∼ L3−γ as L→∞.

TSS vs L in coarsening regime for γ = 2.5 (blue) and γ = 2.75 (red) and d = 0.1 (left) and d = 0.01 (right).

Mixing is too weak to overcome spatial correlations generated
by interactions.
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The mechanism of explosive condensation

The average cluster size is dominated by the growth of the
largest cluster. A cluster of size m gains mass at a rate D(m)/m
where D(m) is the hopping rate. A heuristic argument suggests

D(m) ∼ mγ−1.

Then for γ > 3, the largest cluster grows according to

dm
dt

= c mγ−2 ⇒ m(t) = c (t∗ − t)−
1

γ−3

where t∗ = c−1 m(0)3−γ . The initial condition m(0) comes from
initial fluctuations in site occupancy. For Poisson initial
conditions, these fluctuations are of order log L.
This gives a time to formation of the condensate,
t∗ ∼ (log L)3−γ .
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Summary

Instantaneous gelation is a physically relevant
phenomenon rather than a mathematical curiosity but it
must be interpreted carefully via regularisation.
The slow dependence of the regularised gelation time on
the regularisation parameter may make it difficult to
observe in practice.
Explosive condensation can be thought of as a spatially
extended example although the analogy is closer with
exchange-driven growth than with aggregation.
Explosive condensation can occur in models with
symmetric dynamics although its onset is delayed (γ > 3)
compared to the asymmetric and mean field cases (γ > 2).
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