Instantaneous gelation and explosive condensation in non-equilibrium cluster growth

Colm Connaughton

Mathematics Institute and Centre for Complexity Science, University of Warwick, UK

Collaborators: S. Grosskinsky (Warwick) and Y.-X. Chau (Warwick).

Non-equilibrium statistical physics ICTS Bangalore 27 October 2015

http://www.slideshare.net/connaughtonc arXiv:1508.07516

Kinetics of non-equilibrium particle growth : motivation

- Many particles of one material dispersed in another.
- Transport is diffusive or advective.
- Particles grow upon contact.

Applications: surface physics, colloids, atmospheric science, earth sciences, polymers, cloud physics.

Growth mechanisms:

- Aggregation
- Exchange-driven growth
- Ostwald ripening

Upon interaction clusters exchange a single monomer:

$$(i,j) \stackrel{K(i,j)}{\rightarrow} (i \pm 1, j \mp 1)$$

The interaction kernel, K(i, j), gives the rate of exchange which typically depends on the sizes of the interacting particles. Mean field rate equations for $c_k(t)$ - density of particles of size k:

$$\frac{\partial c_k}{\partial t} = \sum_{i,j} \mathcal{K}(i,j) c_i c_j \left[\delta_{k,i+1} + \delta_{k,i-1} - 2\delta_{k,i} \right]$$
(1)

WARWICK

ヘロト ヘヨト ヘヨト ヘ

Monodisperse initial condition $c_k(0) = \delta_{k,1}$. Single conserved quantity, $M_1 = \sum_{k=1}^{\infty} k c_k(t)$, total mass.

E. Ben-Naim and P. Krapivsky, Phys. Rev. E, 68:031104, (2003)

Upon interaction clusters merge:

 $(i,j) \stackrel{K(i,j)}{\rightarrow} (i+j).$

Particle size distribution, $N_m(t)$, satisfies the kinetic equation :

Smoluchowski equation :

$$\partial_t N_m(t) = \frac{1}{2} \int_0^m dm_1 K(m_1, m - m_1) N_{m_1}(t) N_{m-m_1}(t) \\ - N_m(t) \int_0^M dm_1 K(m, m_1) N_{m_1}(t) \\ + J \,\delta(m - m_0)$$

Microphysics is encoded in the coagulation kernel, $K(m_1, m_2)$.

- Source: particles of size *m*₀ are continuously added to the system at rate *J*.
- Sink: particles larger than cut-off, *M*, are removed from the

Scale invariant interaction kernels

Notation: In many applications kernel is homogeneous:

$$K(am_1, am_2) = a^{2\gamma} K(m_1, m_2)$$

 $K(m_1, m_2) \sim m_1^{\mu} m_2^{\nu} m_1 \ll m_2.$

Clearly $2\gamma = \mu + \nu$. Examples:

Brownian coagulation of spherical droplets ($\nu = \frac{1}{3}, \mu = -\frac{1}{3}$):

$$K(m_1, m_2) = \left(\frac{m_1}{m_2}\right)^{\frac{1}{3}} + \left(\frac{m_2}{m_1}\right)^{\frac{1}{3}} + 2$$

Gravitational settling of spherical droplets in laminar flow ($\nu=\frac{4}{3},\,\mu=$ 0) :

$$K(m_1,m_2) = \left(m_1^{\frac{1}{3}} + m_2^{\frac{1}{3}}\right)^2 \left|m_1^{\frac{2}{3}} - m_2^{\frac{2}{3}}\right|$$

WARW

ヘロン 人間 とくほ とくほ とう

Self-similar evolution of particle size distribution

For homogeneous kernels, cluster size distribution often selfsimilar. Without source:

$$N_m(t) \sim s(t)^{-2} F(z) \quad z = rac{m}{s(t)}$$

s(t) is the typical cluster size. The scaling function, F(z), determining the shape of the cluster size distribution, satisfies:

$$-2F(z) + z \frac{dF(z)}{dz} = \frac{1}{2} \int_0^z dz_1 K(z_1, z - z_1) F(z_1) F(z - z_1)$$

- $F(z) \int_0^\infty dz_1 K(z, z_1) F(z_1).$

Violation of mass conservation: the gelation transition

Microscopic dynamics conserve mass: $c_{m_1} + c_{m_2} \rightarrow c_{m_1+m_2}$.

 Smoluchowski equation formally conserves the total mass,

$$M_1(t) = \int_0^\infty m N(m, t) \, dm.$$

• However for $2\gamma > 1$:

$$M_1(t) < \int_0^\infty m N(m,0) \, dm \, t > t^*.$$

(Lushnikov [1977], Ziff [1980])

• Mean field theory violates mass conservation!!!

Best studied by introducing cut-off, *M*, and studying limit $M \rightarrow \infty$. (Laurencot [2004]) Physical interpretation? Intermediate asymptotics... Asymptotic behaviour of the kernel controls the aggregation of small clusters and large:

$$K(m_1, m_2) \sim m_1^{\mu} m_2^{\nu} m_1 \ll m_2.$$

 $\mu + \nu = 2 \gamma$ so that gelation always occurs if ν is big enough.

Instantaneous Gelation

- If $\nu > 1$ then $t^* = 0$. (Van Dongen & Ernst [1987])
- Worse: gelation is *complete*: $M_1(t) = 0$ for t > 0.

Instantaneously gelling kernels cannot describe even the intermediate asymptotics of any physical problem. Mathematically pathological?

・ロ・・ (日・・ 日・・ 日)

Instantaneous gelation in presence of a cut-off

- With cut-off, M, regularized gelation time, t_M^* , is clearly identifiable.
- t_M^* decreases as M increases.
- Van Dongen & Ernst recovered in limit $M \to \infty$.
- Decrease of t^{*}_M as M is very slow. Numerics and heuristics suggest that for ν > 1:

$$t_M^* \sim \log M^{-lpha}$$
 $\alpha = \nu - 1?$

This suggests such models are physically reasonable.

Gelation transition in exchange-driven growth

Similar phenomenology applies to the mean-field theory of exchange-driven growth (Ben-Naim & Krapivsky, PRE, (2003)).

For $K(i,j) = (ij)^{\gamma}$, there are 3 regimes based, on the value of γ and the growth of the typical cluster size, m(t),:

No gelation $m(t) \sim t^{\frac{1}{3-2\gamma}}$ $0 < \gamma < \frac{3}{2}$ Regular gelation $m(t) \sim (t^* - t)^{\frac{1}{3-2\gamma}}$ $\frac{3}{2} < \gamma < 2$ Instantaneous gelation $m(t) = \infty$ $\gamma > 2$

Gelation is "harder" to achieve for exchange-driven growth than for irreversible aggregation (the critical value of γ is higher) since dynamics allows particles to shrink as well as grow. For finite systems of size *N*, heuristic argument gives the gelation time

$$T_N^* \sim (\log N)^{-(\gamma-2)}$$
 as $N \to \infty$.

WARWI

・ロト ・四ト ・ヨト ・ヨト

Spatially extended models of non-equilibrium growth

We now consider an class of spatially extended models which generalise the Zero-Range Process.

Lattice of size *L*: Λ_L (in our case a ring). Configurations: $\eta = \{\eta_x : x \in \Lambda_L\}$ (η_x is # particles at site *x*). Particles jump from site *x* to site *y* with rate:

$$c(\eta, x, y) = p(x, y) u(\eta_x, \eta_y)$$

Symmetric transport: $p(x, y) = \frac{1}{2}\delta_{y,x+1} + \frac{1}{2}\delta_{y,x-1}$. Asymmetric transport: $p(x, y) = \delta_{y,x+1}$.

Exchange-driven growth is an analogue at mean field level.WARWICK

Stationary state distribution

We consider the product form for the jump rates:

$$u(n,m) = n^{\gamma} (d+m^{\gamma})$$
 with $\gamma > 1$ and $d > 0$. (2)

One of a class of models [M. Evans, S. Majumdar & R. Zia, J. Phys. A, 37(25):L275, (2004)] with factorised stationary state :

$$\mathbb{P}^L_\phi(\eta) = \prod_{x \in \Lambda_L} p_\phi(\eta_x) = \prod_{x \in \Lambda_L} rac{1}{Z(\phi)} w(\eta_x) \phi^{\eta_x}$$

Here the stationary weights are

$$w(n) = \prod_{k=1}^{n} \frac{(k-1)^{\gamma} + d}{k^{\gamma}} \sim n^{-\gamma}$$
 as $n \to \infty$,

and the single site partition function is

$$z(\phi) = \sum_{k=0}^{\infty} w(k) \phi^k.$$

Condensation transition

The parameter ϕ controls the average particle density:

$$R(\phi) = \langle \eta_{\mathbf{x}} \rangle_{\phi} = \phi \, \partial_{\phi} \log z(\phi).$$

 $R(\phi)$ increases monotonically from R(0) = 0 to $\rho_c = R(1)$:

Key observation: $\rho_c < \infty$ when $\gamma > 2$. If the initial density exceeds ρ_c , the excess particles concentrate on a single site.

This phenomenon is referred to as the *condensation transition*: in the limit $L \to \infty$, a finite fraction of the total mass in the stationary state is found on a single site.

Kinetics of the condensation transition

Knowledge of the stationary state does not tell us anything about the dynamics

Snapshots of configurations of Zero Range Process, $u(n, m) = 1 + \gamma/n$, with $\gamma = 5$, L = 128 and $\rho = 2 > \rho_c$.

(from Y.-X. Chau, PhD thesis, Univ. of Warwick (2015))

In particular, we would like to know what is the characteristic time to reach the stationary state as a function of the system size, *L*? If, $\gamma > 2$ and $\rho > \rho$ what is the time, T_{ss} , until the condensate forms? Mean field model doesn't help: $T_{ss} = 0!$

[movie for ZRP with $\gamma = 3$ - from B. Waclaw & M. Evans, PRLARWICK (2012)]

Explosive condensation for asymmetric transport

B. Waclaw and M. R. Evans. Phys. Rev. Lett., 108(7):070601 (2012) studied the following model:

$$u(n,m) = ((n+d)^{\gamma} - d^{\gamma}) (d+m)^{\gamma} \text{ with } \gamma > 1 \text{ and } d > 0.$$
(3)

with totally asymmetric transport. They found that for $\gamma > 2$:

$$\langle \mathcal{T}_{SS}
angle \sim (\log L)^{1-\gamma} \;\; ext{as} \; L
ightarrow \infty.$$

Condensation is instantaneous as $L \rightarrow \infty$: *explosive condensation*.

[movie for Model 3 with $\gamma = 3$ - from B. Waclaw & M. Evanshe university of PRL (2012)]

Explosive condensation for symmetric transport

Is the asymmetric dynamics required for explosive condensation? We considered the simpler rates

 $u(n,m) = n^{\gamma} (d + m^{\gamma})$ with $\gamma > 2$ and d > 0.

with totally symmetric hopping rates. We find that explosive condensation is delayed to $\gamma > 3$. Thereafter

$$\langle T_{SS} \rangle \sim (\log L)^{3-\gamma}$$
 as $L \to \infty$.

 T_{SS} vs L for above rates with $\gamma = 5$ (left) and $\gamma = 7$ (right) and values of d = 0.1 (top) and d = 1.0 (bottom). RWIC k

< ロ > < 同 > < 三 >

http://www.slideshare.net/connaughtonc arXiv:1508.07516

Coarsening: a regime dominated by spatial correlations

In the range 2 < γ < 3 (for which the asymmetric model exhibits explosive condensation), the symmetric model exhibits condensate growth by coarsening. This leads to a condensate size growing algebraically in time and $\langle T_{SS} \rangle$ increases with the system size:

 $\langle T_{SS} \rangle \sim L^{3-\gamma}$ as $L \to \infty$.

 T_{SS} vs L in coarsening regime for $\gamma = 2.5$ (blue) and $\gamma = 2.75$ (red) and d = 0.1 (left) and d = 0.01 (right).

Mixing is too weak to overcome spatial correlations generated by interactions.

The mechanism of explosive condensation

The average cluster size is dominated by the growth of the largest cluster. A cluster of size *m* gains mass at a rate D(m)/m where D(m) is the hopping rate. A heuristic argument suggests

$$D(m) \sim m^{\gamma-1}$$

Then for $\gamma >$ 3, the largest cluster grows according to

$$\frac{dm}{dt} = c \, m^{\gamma-2} \Rightarrow m(t) = c \, (t^* - t)^{-\frac{1}{\gamma-3}}$$

where $t^* = c^{-1} m(0)^{3-\gamma}$. The initial condition m(0) comes from initial fluctuations in site occupancy. For Poisson initial conditions, these fluctuations are of order log *L*. This gives a time to formation of the condensate, $t^* \sim (\log L)^{3-\gamma}$.

・ コ ト ・ 四 ト ・ 回 ト ・

Summary

- Instantaneous gelation is a physically relevant phenomenon rather than a mathematical curiosity but it must be interpreted carefully via regularisation.
- The slow dependence of the regularised gelation time on the regularisation parameter may make it difficult to observe in practice.
- Explosive condensation can be thought of as a spatially extended example although the analogy is closer with exchange-driven growth than with aggregation.
- Explosive condensation can occur in models with symmetric dynamics although its onset is delayed (γ > 3) compared to the asymmetric and mean field cases (γ > 2).

ヘロト ヘヨト ヘヨト ヘ