Dynamic Nuclear Polarization and the Paradox of Quantum Thermalization

Alberto Rosso LPTMS CNRS - University Paris-Saclay

A. De Luca and A. Rosso, Phys. Rev. Lett. 115, 080401, 2015

Dynamic Nuclear Polarisation (DNP)

Solid material doped with unpaired electrons

 P_{e} = 94% and P_{C} = 0.086%

• $T = 1 \text{ K}, H_0 = 3.3 \text{ Tesla}$

- $\omega_e \simeq 100 \text{ Ghz}$
- $\omega_{13C} \simeq 32 \text{ Mhz}$

DNP profile (after ~ 1 hour):

Metabolic Imaging (2006)

Dynamic Nuclear Polarisation (DNP)

Solid material doped with unpaired electrons

 P_{e} = 94% and P_{C} = 0.086%

• $T = 1 \text{ K}, H_0 = 3.3 \text{ Tesla}$

- $\omega_e \simeq 100 \text{ Ghz}$
- $\omega_{13C} \simeq 32 \text{ Mhz}$

DNP profile (after ~ 1 hour):

Dilute spins randomly placed in a matrix

$$\hat{H}_{S} = \hbar \sum_{i=1}^{N} \left(\omega_{e} + \Delta_{i} \right) \hat{S}_{z}^{i} + \sum_{i < j} A_{ij} \left(\hat{S}_{+}^{i} \hat{S}_{-}^{j} + c.c. \right),$$

• Disorder:
$$\Delta_i \in \left(-\frac{\Delta\omega_e}{2}, \frac{\Delta\omega_e}{2}\right)$$

• Dipolar interactions: A_{ij} (here we took $A_{ij} \sim U/\sqrt{N}$)

Two conservation laws:

• energy
$$E = \langle \hat{H}_S \rangle$$

• electron polarization $S = \langle \sum_i \hat{S}^i_z \rangle$

Quantum Ergodicity and Eigenstates

Eigenstate Thermalization Hypothesis (ETH)

$$\delta M_n^i \equiv \langle n+1 | S_z^i | n+1 \rangle - \langle n | S_z^i | n \rangle$$

$$\hat{\mathcal{H}} = \omega_e (\hat{S}_z^1 + \hat{S}_z^2) + \hat{\mathcal{H}}_{pert}$$

Quantum Quench

At
$$t = 0$$
 $\Psi(0) = |\uparrow, \downarrow, \downarrow, ...\rangle$

Unitary Evolution

Quantum dynamics preserves eigenstates occupation probability

Dynamic Nuclear Polarisation (DNP)

Solid material doped with unpaired electrons

 P_{e} = 94% and P_{C} = 0.086%

• $T = 1 \text{ K}, H_0 = 3.3 \text{ Tesla}$

- $\omega_e \simeq 100 \text{ Ghz}$
- $\omega_{13C} \simeq 32 \text{ Mhz}$

DNP profile (after ~ 1 hour):

The spin temperature (experiment)

 $\omega_{1H} \simeq 127 \text{Mhz}$ $\omega_{13C} \simeq 32 \text{Mhz}$

MW-irradiated electron spins reach a low *spin temperature* and cool down nuclear spins

The spin temperature

 $\omega_{1H} \simeq 127 \text{Mhz}$ $\omega_{13C} \simeq 32 \text{Mhz}$

Spin temperature is elusive to microscopic approaches

Theory: Vega group (Weizmann), Kockenberger group (Nottingham)

Two challenging ingredients

Coupling with a bath

$$\hat{\mathcal{H}} = \hat{H}_S + \hat{H}_B + \lambda \hat{H}_{SB}$$

MW- irradiation

$$\hat{H}_{MW} = 2\omega_1 \cos(\omega_{MW} t) \hat{S}_x$$

IMPORTANT:

Interactions stronger than coupling with bath and MW

Master equation for occupation probabilities of eigenstates

The master equation

$$\frac{d\rho_{nn}}{dt} = \sum_{n' \neq n} W_{n,n'}\rho_{n'n'} - W_{n',n}\rho_{nn}$$
$$W_{n,n'} = W_{n,n'}^{\text{bath}} + W_{n,n'}^{\text{MW}}$$

 $\rho^{\rm stat}$ is eigenvector associated to eigenvalue 0

Transitions bath-induced

Transitions MW-induced

 $\hat{H}_{MW} = 2\omega_1 \cos(\omega_{MW} t) \hat{S}_x$

$$W_{n,n'}^{\mathrm{MW}} = \frac{1}{T_{\mathrm{MW}}} |\langle n | \hat{S}_x | n' \rangle|^2$$

$$\frac{1}{T_{\rm MW}} = \frac{\omega_1^2 T_2}{1 + (\omega_{nn'} - \omega_{\rm MW})^2 T_2^2}$$

Resonance condition

$$\omega_{nn'} = \omega_{\rm MW}$$

Do electron spins hyperpolarize nuclear spins?

- N electron spins $\hat{S}_z^i, \hat{S}_x^i, \hat{S}_y^i$
- nuclear spin $\hat{I}_z, \hat{I}_x, \hat{I}_y$

$$\hat{H}_S + \hbar \omega_n \hat{I}_z + \hat{H}_{I+S}$$
$$\hat{H}_{I+S} = \sum_i B_i \left(\hat{S}_z^i \hat{I}_- + \hat{S}_z^i \hat{I}_+ \right)$$

 B_i hyperfine interactions, $\overline{B_i^2} = b^2/N$

Yes, they do!

N = 12 electron spins + 1 nuclear spin

T_1 (sec.)	T_2 (sec.)	ω_1 (Mhz)	$\Delta \omega_e \ (\mathrm{Mhz})$
1	10^{-6}	0.025	108.0

Does the stationary state look thermal?

Two conserved quantities: E, S

Steady state:

Thermal Ansatz

 $\rho^{\text{stat}} \qquad \rho_{nn}^{\text{Ans}} \propto e^{-\beta_s(\epsilon_n + hs_{z,n})}$

Yes, it does!

Spin temperature and Quantum Thermalization

- Spin temperature arises in ergodic systems:
 - 1. memory of local imbalances only in E and S_z
 - 2. study of eigenstates shows ETH phase
- Spin temperature breakdown: what happens at MBL ?

MBL varying radical concentration

Experimental situation

Conclusions

- Spin temperature profile in presence of dipolar interactions
- Spin temperature and ETH phase
- Agreement with two experimental facts

Perspectives

- Understand the spin temperature behavior (Applications: go beyond trial-and-error strategies)
- DNP samples good candidates to observe many body localisation transition

In collaboration with Pavia group, PCCP 2014

The bath: weak coupling and Lindblad $\hat{H}_{SB} = 2 \quad \sum \quad \hat{S}^j_\alpha \hat{\Phi}^j_\alpha$ $\hat{\mathcal{H}} = \hat{H}_S + \hat{H}_B + \lambda \hat{H}_{SB}$ $\alpha = x, y, z$ time dependent perturbation theory $\frac{d\rho}{dt} = -i[\hat{H}_S, \rho] + \lambda^2 \mathcal{L}\rho$

Case
$$N = 1$$

 $\rho(t=0) = |\psi_0\rangle\langle\psi_0| \qquad \qquad \rho_{eq}(\beta)$ $\begin{pmatrix} \rho_{11}(0) & \rho_{12}(0) \\ \rho_{21}(0) & \rho_{22}(0) \end{pmatrix} \xrightarrow{\text{Lindblad time evolution}} \frac{1}{Z} \begin{pmatrix} e^{-\beta\epsilon_1} & 0 \\ 0 & e^{-\beta\epsilon_2} \end{pmatrix}$

[A] out-off-diagonal terms and dephasing

$$\frac{d\rho_{nm}}{dt} = -i\left(\epsilon_n - \epsilon_m\right)\rho_{nm} - \frac{\rho_{nm}}{T_{2,nm}}$$

 ρ_{nm} averages to 0 on a time scale $T_2 \sim 10^{-6}$ sec.

[B] diagonal terms and relaxation

 ρ_{nn} relax to $e^{-\beta\epsilon_n}/Z$ on a time scale $T_1 \sim 1$ sec.

$$\begin{pmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{pmatrix} \xrightarrow{\text{[A] dephasing}}_{T_2 \approx 10^{-6} \text{sec.}} \begin{pmatrix} \rho_{11} & 0 \\ 0 & \rho_{22} \end{pmatrix} \xrightarrow{\text{[B] relaxation}}_{T_1 \approx 1 \text{sec.}} \begin{pmatrix} \frac{e^{-\beta\epsilon_1}}{Z} & 0 \\ 0 & \frac{e^{-\beta\epsilon_2}}{Z} \end{pmatrix}$$

"Trivial" localized case

EPR spectrum (numerical simulations)

 $U = 1.5 \,\mathrm{Mhz}$

 $U = 15 \,\mathrm{Mhz}$

Localized phase

Thermal phase

Experiments: Atsarkin, Soviet Physics JETP (1970).