A theoretical (bio)physicist looks at cancer metastasis

Mohit Kumar Jolly

Computational Cancer Biology Fellow, Gulf Coast Consortia, Houston (Mentors: Prof. Herbert Levine (Rice U), Prof. Samir Hanash (MDACC))

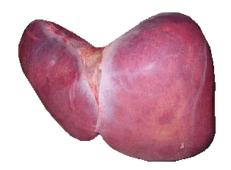
· WINNER OF THE PULITZER PRIZE

THE

EMPEROR

OF ALL

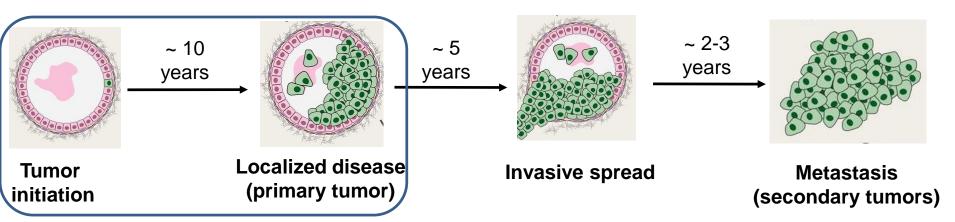
MALADIES

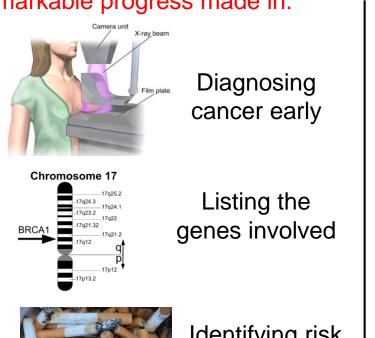

A BIOGRAPHY OF CANCER

SIDDHARTHA MUKHERJEE

AUTHOR OF THE GENE

"Accompulatively madable, surprisingly uplifting, and vividuals. Thrilling."

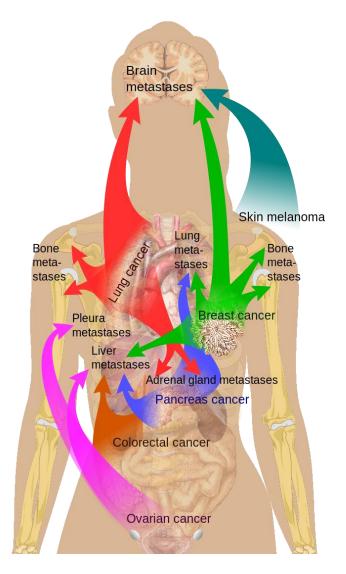

—O. THE OPERN MAGAZINE

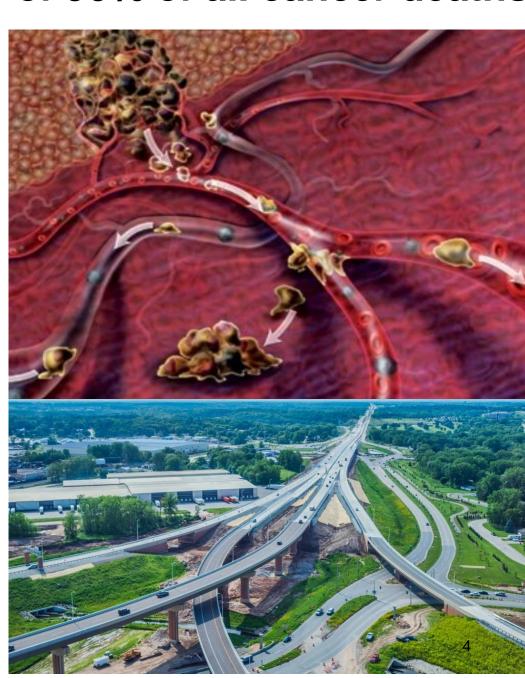

Uncontrolled growth of abnormal cells

Stages of cancer progression

Remarkable progress made in:

Identifying risk factors

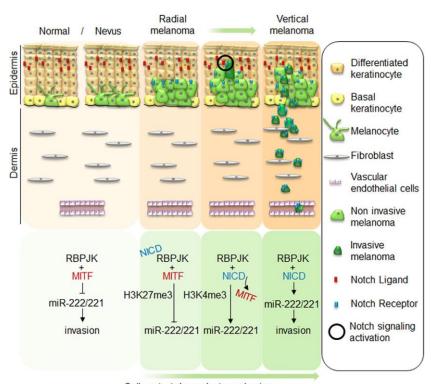



Developing new therapies

Sas-Chen et al. Biochem Soc Trans 2017

Metastasis: the cause of 90% of all cancer deaths

More than 80% cancers happen in epithelial organs, i.e. cells that do NOT move/invade.

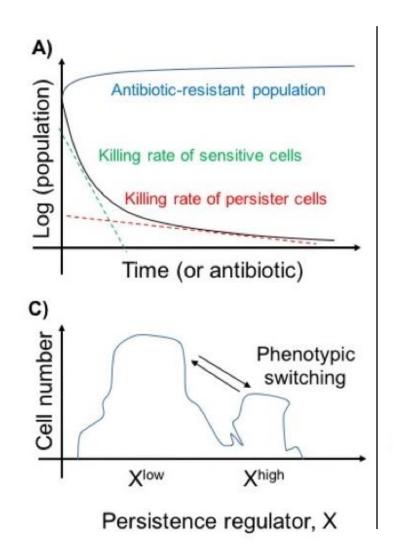

Is genetics the answer? Not always

- Large amount of money spent on cancer genomics, but no unique signature has emerged for metastasis
- One example: Inflammatory Breast Cancer (IBC)
 - About 30% of IBC patients have distant metastases at the time of diagnosis as compared to only 5% of non-IBC type
 - Though only 2-4% of breast cancer cases each year are of IBC type, IBC patients account for 10% of the annual breast cancer related mortalities
 - Despite several studies, no robust gene signature associated with IBC has yet been identified.

Is genetics the answer? Not always

 Large amount of money spent on cancer genomics, but no unique signature has emerged for metastasis

Another example: Melanoma metastasis



Cells become metastatic competent by being exposed to a new chemical environment

Phenotypic transition is not caused by additional mutations

Cell context-dependent mechanism of melanoma radial to vertical growth transition

Can cancer proceed without mutations? Perhaps!

A Chromatin-Mediated Reversible Drug-Tolerant State in Cancer Cell Subpopulations

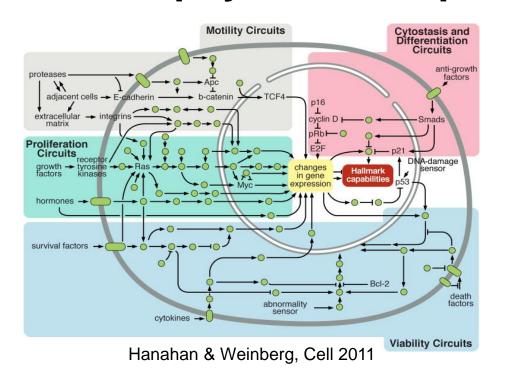
Sreenath V. Sharma,¹ Diana Y. Lee,¹ Bihua Li,¹ Margaret P. Quinlan,¹ Fumiyuki Takahashi,¹ Shyamala Maheswaran,¹ Ultan McDermott,¹ Nancy Azizian,¹ Lee Zou,¹ Michael A. Fischbach,¹ Kwok-Kin Wong,² Kathleyn Brandstetter,² Ben Wittner,¹ Sridhar Ramaswamy,¹ Marie Classon,^{1,3,*} and Jeff Settleman^{1,3,*}

Tumor cells can follow distinct evolutionary paths to become resistant to epidermal growth factor receptor inhibition

Aaron N Hata^{1,2,14}, Matthew J Niederst^{1,2,14}, Hannah L Archibald¹, Maria Gomez-Caraballo¹, Faria M Siddiqui¹, Hillary E Mulvey¹, Yosef E Maruvka^{1,3}, Fei Ji⁴, Hyo-eun C Bhang⁵, Viveksagar Krishnamurthy Radhakrishna⁵, Giulia Siravegna^{6,7}, Haichuan Hu¹, Sana Raoof^{1,2}, Elizabeth Lockerman¹, Anuj Kalsy¹, Dana Lee¹, Celina L Keating⁵, David A Ruddy⁸, Leah J Damon¹, Adam S Crystal^{1,13}, Carlotta Costa^{1,2}, Zofia Piotrowska^{1,2}, Alberto Bardelli^{6,7}, Anthony J Iafrate⁹, Ruslan I Sadreyev^{4,9}, Frank Stegmeier⁵, Gad Getz^{1,3,9,10}, Lecia V Sequist^{1,2}, Anthony C Faber^{11,12} & Jeffrey A Engelman^{1,2}

Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance

Sydney M. Shaffer^{1,2}, Margaret C. Dunagin¹, Stefan R. Torborg^{1,3}, Eduardo A. Torre^{1,2}, Benjamin Emert^{2,4}, Clemens Krepler⁵, Marilda Beqiri⁵, Katrin Sproesser⁵, Patricia A. Brafford⁵, Min Xiao⁵, Elliott Eggan², Ioannis N. Anastopoulos², Cesar A. Vargas–Garcia⁶, Abhyudai Singh^{6,7}, Katherine L. Nathanson², Meenhard Herlyn⁵ & Arjun Raj^{1,8}


Non-heritable mechanisms of drug resistance observed in bacterial and viral populations, and more recently in cancer

¹Massachusetts General Hospital Cancer Center, 149 13th Street, Charlestown, MA 02129, USA

²Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA ³These authors contributed equally to this work

^{*}Correspondence: classon@helix.mgh.harvard.edu (M.C.), settleman@helix.mgh.harvard.edu (J.S.) DOI 10.1016/j.cell.2010.02.027

Can physicists help decode cancer? Yes!

Cellular phenotypes = 'attractors' or stable states of this multi-dimensional system

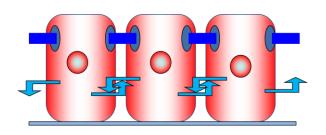
Switching between different states in response to internal or external signals = phenotypic plasticity

"One day, we imagine that cancer biology and treatment.....will become a science with a conceptual structure and logical coherence that rivals that of chemistry or physics."

"And, as before, we continue to foresee cancer research as an increasingly logical science, in which myriad phenotypic complexities are manifestations of a small set of underlying organizing principles."

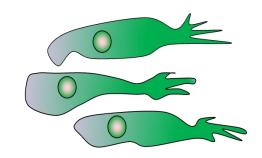
⁻ Hanahan & Weinberg, Cell 2011

Cancer biology still needs physicists


Considering game theory and the role of physical forces could lead to better treatments for cancer, says **Robert Austin**.

- Inventing new experimental methods (MRI, e.g.)
- Enhancing existing treatments (radiation therapy)
- Applying physical perturbations to tissues (heating via nanoparticles, for example)
- Developing sophisticated data analysis tools
- •
- Here: Using mathematical models to isolate the mechanisms underlying observed phenomena. Analogous to the use of physics in other complex systems, such as climate change.

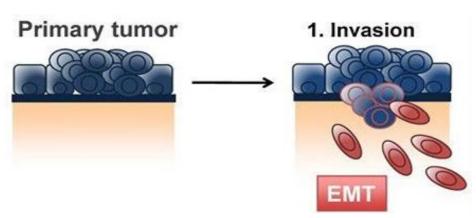
We are...


- Not inferring networks by data-mining from "omics" data
- Not focusing exclusively on one dataset or even on one type of cancer
- We are attempting to build a conceptual framework, a quantitative version of the framework that biologists build to help think through their data

EMT/MET: The engine of metastasis

Adhere to neighbors
Do NOT migrate or invade

Epithelial (E)


Do NOT adhere to neighbors Migrate and invade Mesenchymal (M)

Mesenchymal-to-Epithelial Transition (MET)

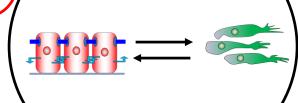
6. Colonization

5. Dormancy

Epithelial-to-Mesenchymal Transition (EMT)

EMT/MET: motor of cellular plasticity

Lu*, Jolly* et al. PNAS 2013
Jia*, Jolly* et al. Oncotarget 2015
Huang, Jolly et al. Sci Rep 2016
Jolly et al. Oncotarget 2016
Jolly et al. NPJ Br Cancer 2017
Boekhorst..Jolly et al., in preparation


Migration and invasion

Boareto, **Jolly** et al.
J R Soc Interface 2016
Tripathi...**Jolly** et al.
Cancer Res 2017

Chemoresistance

Somarelli, Shelter, **Jolly** *et al.*Mol Cell Biol 2016 (Cover article)
Kulkarni, **Jolly** *et al.*, in revision
Eichelberger... **Jolly** *et al.*, in
preparation

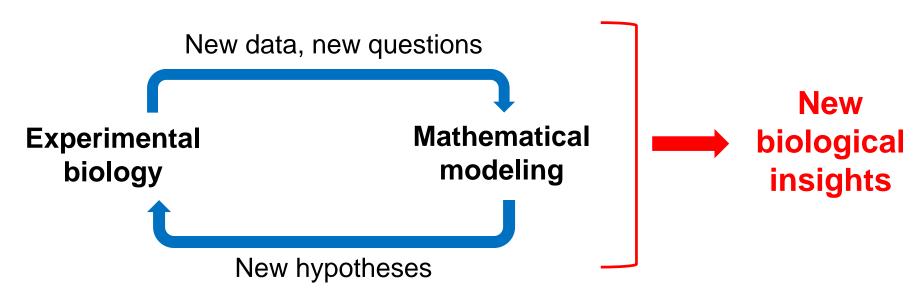
Genomic/epigenetic reprogramming

Tumor-initiation potential

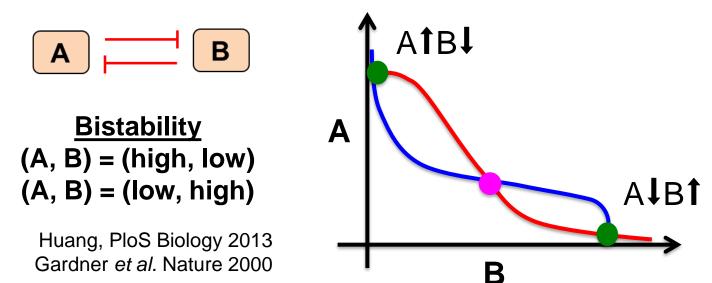
Jolly et al. J R Soc Interface 2014 Jolly*, Jia* et al. Oncotarget 2015 Jolly et al. NPJ Br Cancer 2017 Jolly et al., in preparation

Evasion of immune system

Tripathi...**Jolly** *et al.*PNAS 2016
Li, **Jolly** *et al.*, in preparation

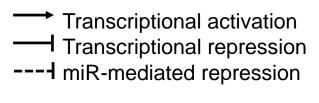

Resistance to cell death

Evans.. **Jolly** *et al.*, in revision Gearhart .. **Jolly** *et al.*, in preparation Somarelli.. **Jolly** *et al.*, in preparation

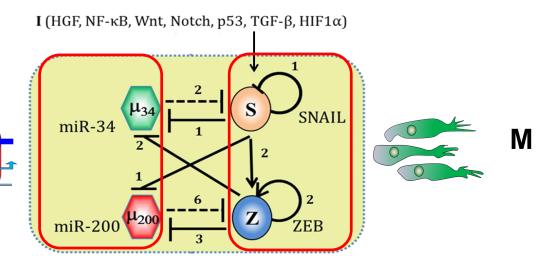

A systems biology approach to investigate EMT

Can a systems or engineering approach help defeat cancer metastasis?

Toggle switch: A systems biology model



$$\frac{dA}{dt} = \mathbf{g}_A \frac{(B_0)^{n_B}}{(B_0)^{n_B} + B^{n_B}} - k_A A$$
Production
$$\frac{dB}{dt} = \mathbf{g}_B \frac{(A_0)^{n_A}}{(A_0)^{n_A} + A^{n_A}} - k_B B$$
Regulation
$$A_0, B_0 = \text{Threshold concentrations}$$


Steps involved:

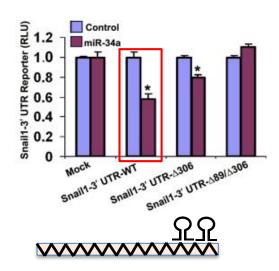
- Solving ODEs, plotting nullclines
- Stability analysis (Jacobian Matrix)
- Sensitivity analysis
- Bifurcation analysis
- Phase diagrams
- Hallmark of cell-fate decision making during embryonic development
- One of the first synthetic bio circuits designed

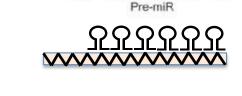
Systems biology model for EMT/MET

E TOMONO

1.2

0.8


0.6


0.4

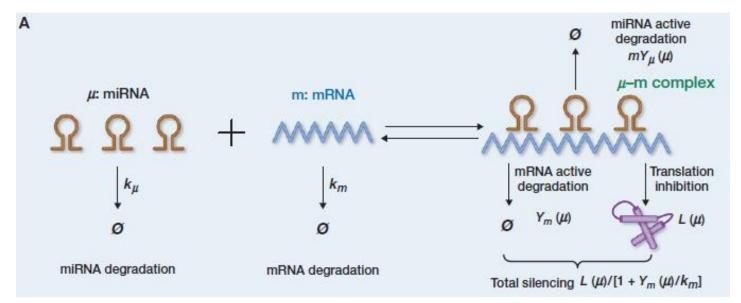
0.2

Lu*, Jolly* et al. PNAS 2013

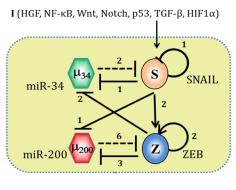
Example input data for the model:

200a

200b


Neg

RL-ZEB1


miR-200b mutant

205

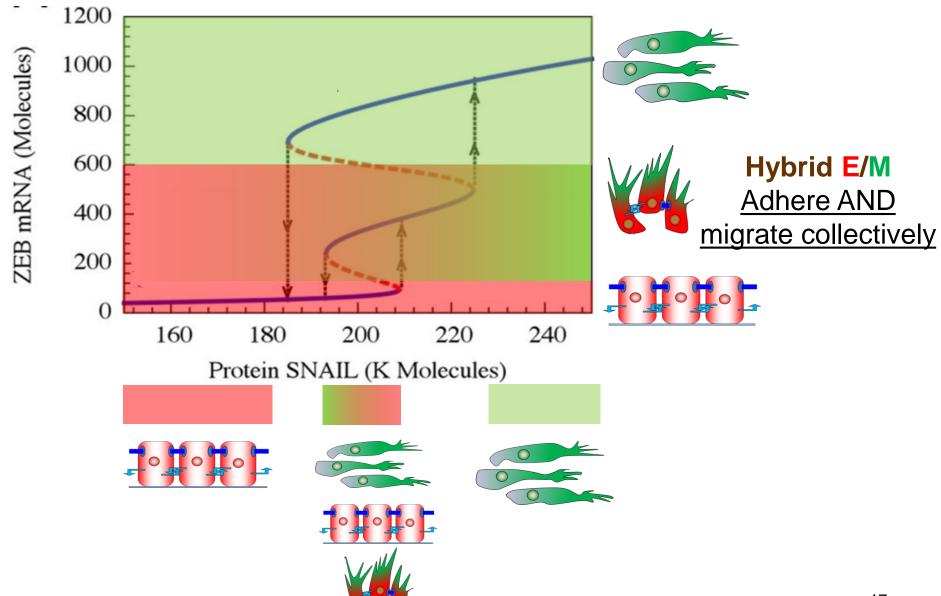
Theoretical framework for miRNA-based circuits

Lu*, Jolly* et al. PNAS 2013

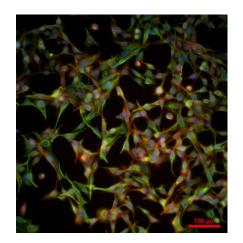
- Production
- Degradation
- miR regulation
- TF regulation

$$\frac{dm_{200}}{dt} = g_{m_{200}} H^{S}(Z, /_{Z,m_{200}}) H^{S}(S, /_{Z,m_{200}}) - m_{Z} Y_{m}(m_{200}) - k_{m_{200}} m_{200} \quad \text{miR-200}$$

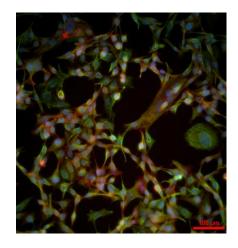
$$\frac{dm_{Z}}{dt} = g_{m_{Z}} H^{S}(Z, /_{Z,m_{Z}}) H^{S}(S, /_{S,m_{Z}}) - m_{Z} Y_{m}(m_{200}) - k_{m_{Z}} m_{Z} \quad \text{ZEB mRNA}$$


$$\frac{dZ}{dt} = g_{Z} m_{Z} L(m_{200}) - k_{Z} Z \quad \text{ZEB}$$

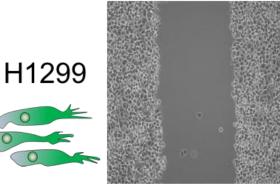
$$\frac{dm_{34}}{dt} = g_{m_{34}} H^{S}(Z, /_{Z,m_{34}}) H^{S}(S, /_{Z,m_{340}}) - m_{S} Y_{m}(m_{34}) - k_{m_{34}} m_{34} \quad \text{miR-34}$$

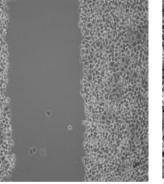

$$\frac{dm_{S}}{dt} = g_{m_{S}} H^{S}(S, /_{S,m_{S}}) H^{S}(I, /_{I,m_{S}}) - m_{S} Y_{m}(m_{34}) - k_{m_{S}} m_{S} \quad \text{SNAIL mRNA}$$

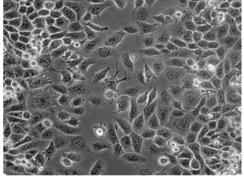
$$\frac{dS}{dt} = g_{S} m_{S} L(m_{34}) - k_{S} S \quad \text{SNAIL } 16$$

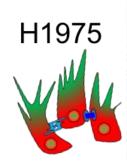

Tristability in the underlying EMT network

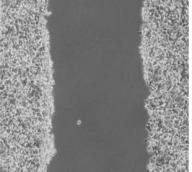
Hybrid E/M can be a stable phenotype

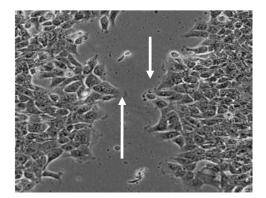


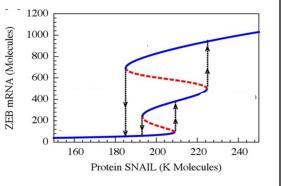

H1975, T=0




H1975, T=2 months

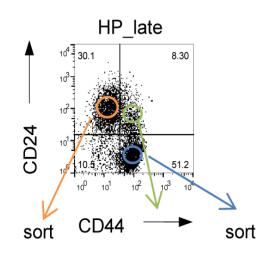





Hybrid E/M cells tend to move collectively

CDH1 (E-marker) VIM (M-marker)

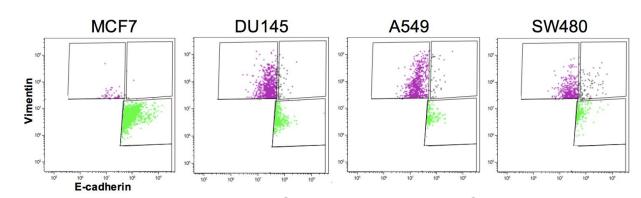
Jolly et al. Oncotarget 2016 Jolly et al. Mol Oncol 2017 Satyendra Tripathi, Sam Hanash (MDACC)


Co-existence of phenotypes seen experimentally

Theoretical prediction

Lu*, Jolly* et al. PNAS 2013

Experimental validation

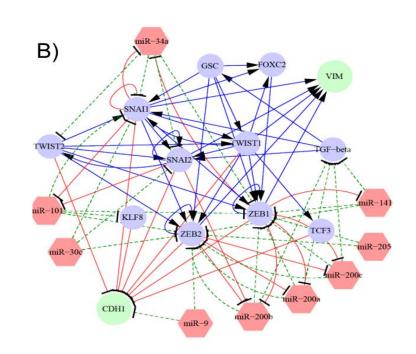


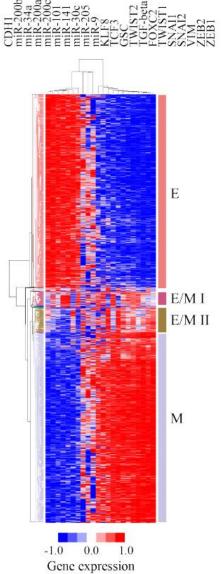
Quantification of cells in different phenotypic states

Cell line	E (%)	E=M (%)	M (%)
A549	82	10.2	7.80
LT73	24.5	28.6	46.9
H460	19.5	4.8	75.6
H460_ miR-200c	39.5	20.8	39.6

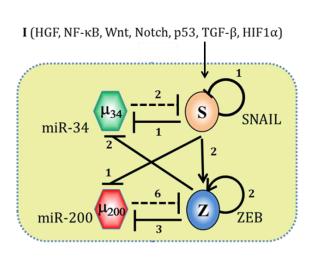
Grosse-Wilde et al. PLoS ONE 2015

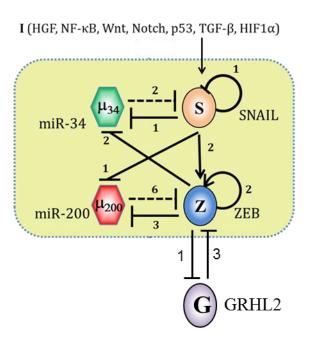
Andriani et al. Mol Oncol 2016

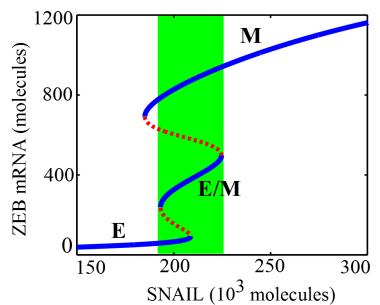

George*, Jolly* et al. Cancer Res 2017 Shengnan Xu, Jason A Somarelli (Duke University)

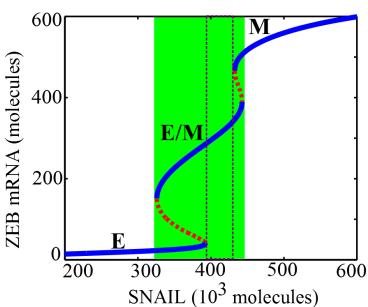

Quantifying the EMT spectrum of states

Hybrid E/M state(s) also predicted by other computational models:

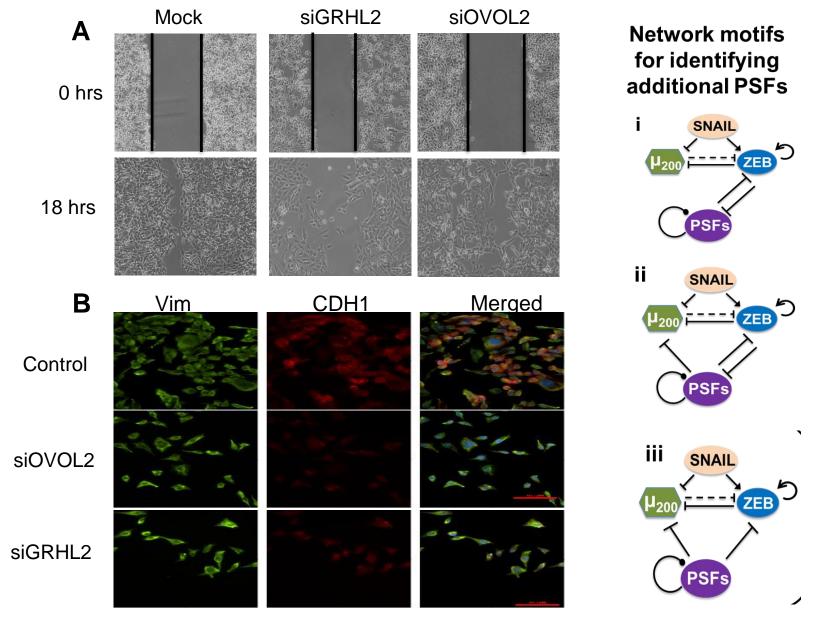

- Xing group (Pittsburgh) (Tian et al. Biophys J 2013, Zhang et al. Sci Signal 2014)
- Albert group (Penn State Univ)
 (Steinway et al. Cancer Res 2014, Steinway et al. NPJ Syst Bio Appl 2014)


Ensemble of kinetic models with fixed circuit topology but with randomly selected parameters also enable hybrid E/M state(s)

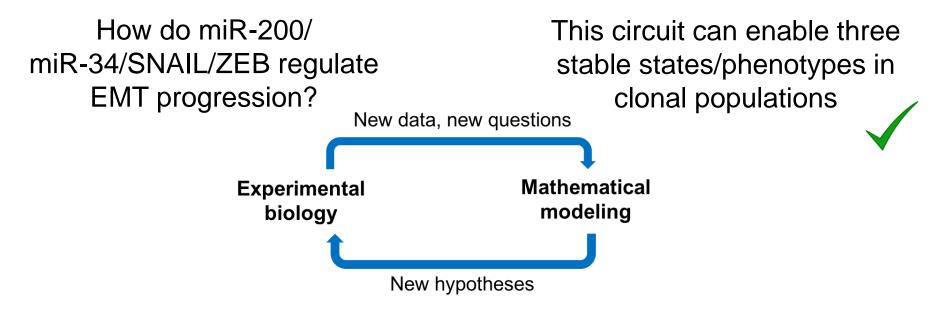




Identifying 'phenotypic stability factors' (PSFs)



Jolly et al. Oncotarget 2016

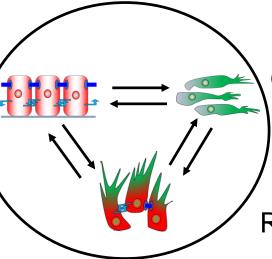

Other PSFs:

- OVOL2 (Jia*, Jolly* et al. Oncotarget 2015; Watanabe et al. Dev Cell 2014; Hong et al. PLoS Comp Biol 2015)
- ΔNP63α (Jolly et al. NPJ Br Cancer 2017; Dang et al. Cancer Res 2015)
- NUMB (Bocci*, Jolly* *et al.* J R Soc Interface 2017)
- NRF2 (Bocci, Jolly *et al.*, in preparation)

Knockdown of PSFs can drive a complete EMT

Summary: Systems Biology of EMT

How do H1975 maintain a hybrid E/M phenotype stably?


GRHL2 or OVOL2 can stabilize a hybrid E/M state

EMT/MET: motor of cellular plasticity

Lu*, Jolly* et al. PNAS 2013
Jia*, Jolly* et al. Oncotarget 2015
Huang, Jolly et al. Sci Rep 2016
Jolly et al. Oncotarget 2016
Jolly et al. NPJ Br Cancer 2017
Boekhorst...Jolly et al., in preparation
Migration and invasion

Boareto, **Jolly** *et al.*J R Soc Interface 2016
Tripathi...**Jolly** *et al.*Cancer Res 2017

Chemoresistance

Somarelli, Shelter, **Jolly** *et al.*Mol Cell Biol 2016 (Cover article)
Kulkarni, **Jolly** *et al.*, in revision
Eichelberger... **Jolly** *et al.*, in
preparation

Genomic/epigenetic reprogramming

Tumor-initiation potential (Stemness)

Jolly et al. J R Soc Interface 2014 Jolly*, Jia* et al. Oncotarget 2015 Jolly et al. NPJ Br Cancer 2017 Jolly et al., in preparation

Evasion of immune system

Tripathi...**Jolly** *et al.*PNAS 2016
Li, **Jolly** *et al.*, in preparation

Resistance to cell death

Evans.. **Jolly** *et al.*, in revision Gearhart .. **Jolly** *et al.*, in preparation Somarelli.. **Jolly** *et al.*, in preparation

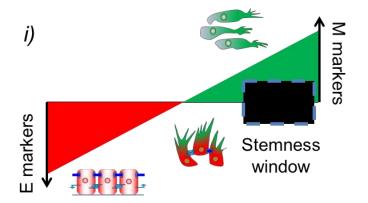
How EMT alters tumor-initiation ability (stemness)?

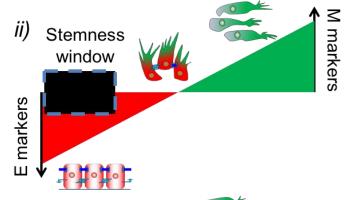
The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells

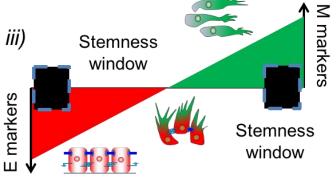
Sendurai A. Mani, 1,3,10,* Wenjun Guo, 1,10 Mai-Jing Liao, 1,10 Elinor Ng. Eaton, 1 Ayyakkannu Ayyanan, 4 Alicia Y. Zhou, 1,2 Mary Brooks, 1 Ferenc Reinhard, 1 Cheng Cheng Zhang, 1 Michail Shipitsin, 5,6 Lauren L. Campbell, 5,7 Kornelia Polyak, 5,6,7 Cathrin Brisken, 4 Jing Yang, 8 and Robert A. Weinberg 1,2,9,*

Mani et al. Cell 2008

Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells

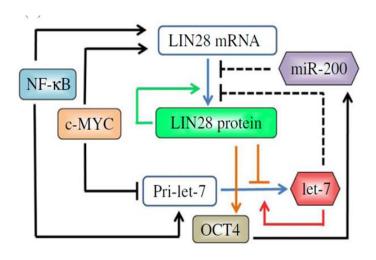

Toni Celià-Terrassa,¹ Óscar Meca-Cortés,¹ Francesca Mateo,¹ Alexia Martínez de Paz,¹ Nuria Rubio,² Anna Arnal-Estapé,³ Brian J. Ell,⁴ Raquel Bermudo,⁵.⁶ Alba Díaz,⁶ Marta Guerra-Rebollo,² Juan José Lozano,² Conchi Estarás,⁶ Catalina Ulloa,¹ Daniel Álvarez-Simón,¹ Jordi Milà,⁶ Ramón Vilella,⁶ Rosanna Paciucci,¹⁰ Marian Martínez-Balbás,⁶ Antonio García de Herreros,¹¹ Roger R. Gomis,³.¹² Yibin Kang,⁴ Jerónimo Blanco,² Pedro L. Fernández,⁵.⁶.¹³ and Timothy M. Thomson¹

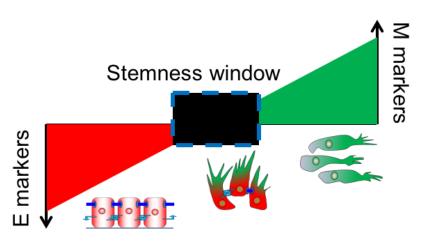

Celia-Terrassa et al. J Clin Invest 2012


Breast Cancer Stem Cells Transition between Epithelial and Mesenchymal States Reflective of their Normal Counterparts

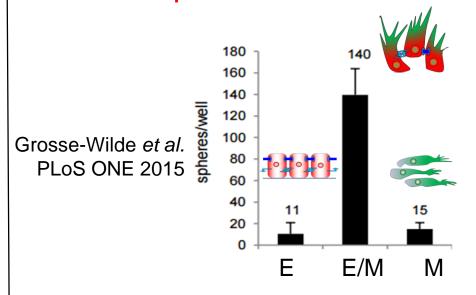
Suling Liu,^{1,6,*} Yang Cong,^{2,6} Dong Wang,¹ Yu Sun,¹ Lu Deng,¹ Yajing Liu,³ Rachel Martin-Trevino,³ Li Shang,³ Sean P. McDermott,³ Melissa D. Landis,⁴ Suhyung Hong,³ April Adams,³ Rosemarie D'Angelo,³ Christophe Ginestier,⁵ Emmanuelle Charafe-Jauffret,⁵ Shawn G. Clouthier,³ Daniel Birnbaum,⁵ Stephen T. Wong,² Ming Zhan,^{2,7} Jenny C. Chang,^{4,7} and Max S. Wicha^{3,7,*}

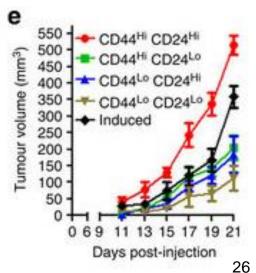
Liu et al. Stem Cell Reports 2013





Hybrid E/M cells can form many more tumors


Theoretical prediction



Jolly et al. J R Soc Interface 2014 Jolly*, Jia* et al. Oncotarget 2015

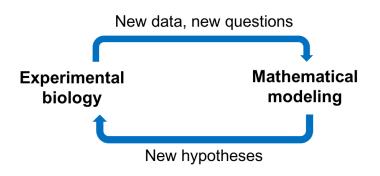
Experimental validation

Goldman *et al.* Nat Comm 2015

Hybrid E/M cells can form many more tumors

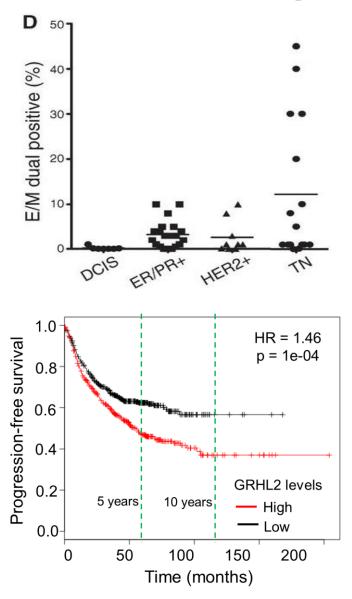
Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells

Brian Bierie^a, Sarah E. Pierce^b, Cornelia Kroeger^a, Daniel G. Stover^c, Diwakar R. Pattabiraman^a, Prathapan Thiru^a, Joana Liu Donaher^a, Ferenc Reinhardt^a, Christine L. Chaffer^a, Zuzana Keckesova^a, and Robert A. Weinberg^{a,d,e,1}


Bierie et al. PNAS 2017

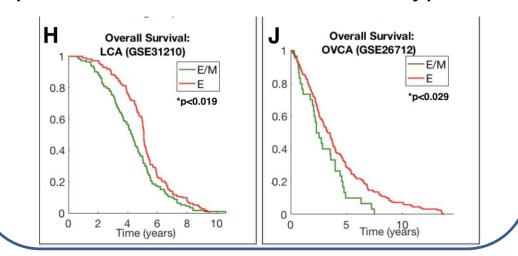
Heterogeneity of normal human breast stem and progenitor cells as revealed by transcriptional profiling

Justin A. Colacino^{1,2,3*}, Ebrahim Azizi^{3,4}, Michael D. Brooks^{3,4}, Shamileh Fouladdel^{3,4}, Sean P. McDermott^{3,4}, Michael Lee⁴, David Hill⁴, Maureen A. Sartor^{3,5}, Laura S. Rozek^{1,3}, Max S. Wicha^{3,4,*}


Colacino et al. biorxiv 2017

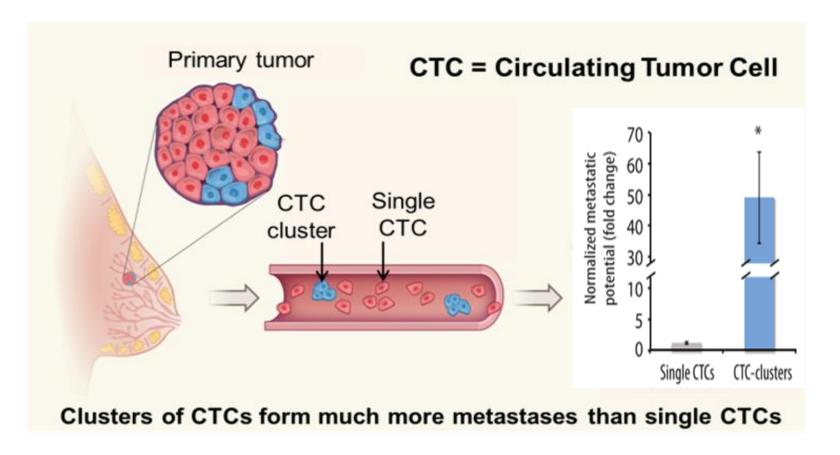
Where does 'stemness window' lie on 'EMT axis'?

Hybrid E/M phenotype is more likely to be stem-like than E or M.


Clinical implications of hybrid E/M cells

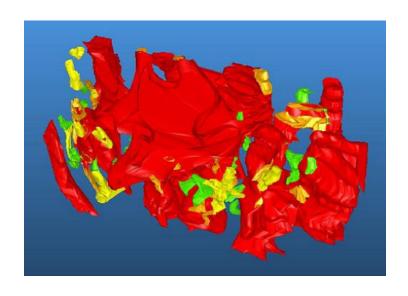
Higher levels of GRHL2 associate with worse prognosis

The more **aggressive** the cancer, the higher the number of **hybrid** E/M cells Yu *et al.* Science 2013


Correlate EMT score (on a scale of 0 to 2) with data on drug sensitivity and patient outcome across cancer types

Hybrid E/M phenotype may be more aggressive than a complete EMT

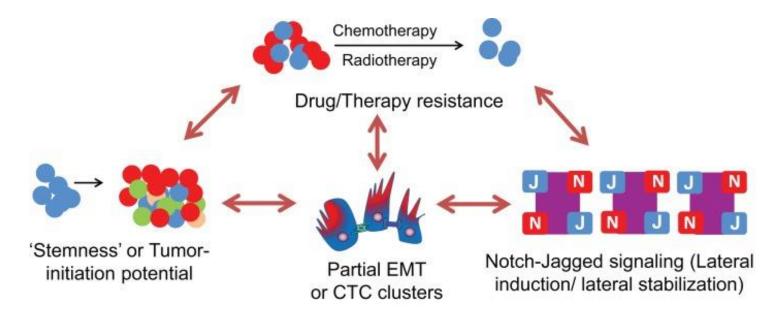
George*, Jolly* et al. Cancer Res 2017 Jolly et al. Oncotarget 2016


Hybrid E/M phenotype may form CTC clusters

Clusters of CTCs:

- Comprise of 5-8 cells
- Associate with worse patient survival
- Resist cell death in circulation
- Are formed before entering the circulation

Collective motility may lead to CTC clusters


- Clusters are typically composed of several cells
- Cells in cluster express ZEB1, reduced membrane resident Ecadherin
- Hypothesized to be partial EMT phenotype

Main tumor = red, multicellular buds = green (Bronsert et J. Path (2014))

Clusters can be better at metastasis!

- Cells can help each other develop anoikis resistance
- Clusters can navigate more effectively
- Clusters can survive stresses in the circulation
- Hybrid E/M cells can more easily initiate new tumors

Biological insights gained

- Elucidated how tumor cells form stable clusters of Circulating Tumor Cells (CTCs) – the primary 'villains' of metastasis
- Offered a potential mechanistic understanding of why clusters of CTCs form much more metastases
- Identified potential targets that maintain these clusters and enhance their tumor forming ability – GRHL2, OVOL2, JAG1

Conclusion

Existing framework:

Hybrid E/M state is transient, and the more the EMT, the more aggressive the cancer

Tam and Weinberg, Nat Med 2013, Savagner P Curr Opin Dev Biol 2015

Proposed framework:

Hybrid E/M state is stable and may be more aggressive than a complete EMT

Jolly et al. Front Oncol 2015, Jolly et al. Oncotarget 2016

with biophysical models. Computational modeling, including those that consider the mutual inhibitory loops between several microRNAs (miRNAs) and EMT transcriptional drivers like Snail1 and Zeb1, also accepts an intermediate hybrid EMT state that could favor the progress of developmental programs and metastatic potential (Jolly et al., 2015; Lu et al., 2013; Tian et al., 2013; Zhang et al., 2014). The inclusion of additional reciprocal inhibitory loops that involve other transcription factors (e.g., Zeb1 with Ovol2 and Grhl2) and the description of these as phenotypic stability factors indicates that the network is capable of generating additional intermediate stabilized states that, therefore, are not necessarily metastable (Hong et al., 2015; Jolly et al., 2016).

"Instead, there is growing evidence that a cell that has undergone only a partial EMT, thereby expressing both retained epithelial and acquired mesenchymal traits, is best positioned to acquire stem-like properties (Grosse-Wilde et al., 2015; Jolly et al., 2015 a,b, Andriani et al., 2016)"

Pattabiraman & Weinberg, CSHL Quant Bio 2017

Nieto MA, Thiery JP, Cell 2016

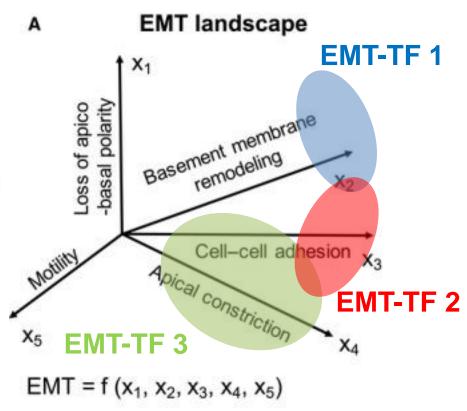
Why does having a theoretical framework help?

- What do we mean by theoretical framework?
 - An integrated understanding of how all the complex pieces fit together to get cancer phenotypes
 - Understanding the connections between EMT and other "hallmarks"
 will help prevent surprise side effects of treatment options

- Theory can point to the most critical experiments and most useful data analysis approaches
 - This role is becoming increasingly prevalent in basic cell and developmental biology and should be imported to cancer biology field

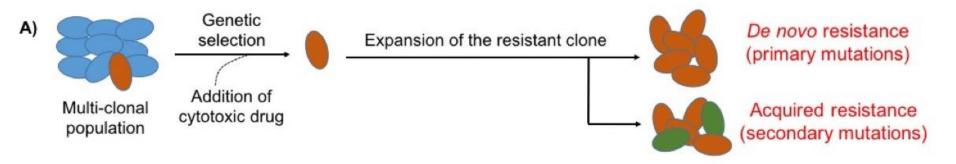
Can we define EMT mathematically?

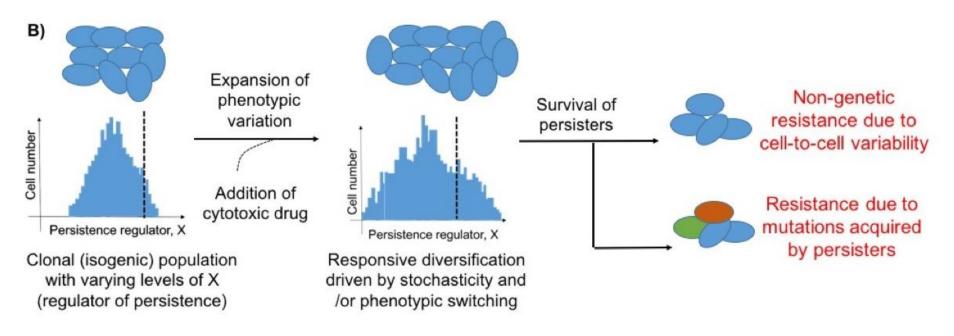
Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer


Xiaofeng Zhengl*, Julienne L. Carstensl*, Jiha Kiml, Matthew Scheiblel, Judith Kayel, Hikaru Sugimotol, Chia–Chin Wu², Valerie S. LeBleul & Raghu Kalluri $^{\rm 1,3,4}$

Zheng et al. Nature 2015; Fischer et al. Nature 2015

Epithelial-mesenchymal transition (EMT) and metastasis: yes, no, maybe?


Maren Diepenbruck and Gerhard Christofori



- EMT is a highly non-linear and multi-dimensional process
- Connections among genetics and biophysics of EMT still being elucidated

Role for phenotypic plasticity in cancer

Non-heritable mechanisms of drug resistance observed in bacterial and viral populations, and more recently in cancer

Acknowledgement

Herbert Levine

E Ben-Jacob

JN Onuchic

Mingyang Lu Dongya Jia Bin Huang Marcelo Boareto Jason George A Dan Grigore Federico Bocci Arpan Bhowmick Xuefei Li

MC Farach-Carson Sendurai A Mani

Duke Cancer Institute

Jason A Somarelli Shengnan Xu Samantha Shetler **Andrew Armstrong** Gayathri Devi MA Garcia-Blanco

Ken J Pienta

Samir Hanash

Donald S Coffey Steven M Mooney

Cancer Center

Satyendra Tripathi Wendy Woodward **Bisrat Debeb**

Aaron Goldman Shiladitya Sengupta