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A curious observation 

One liter of ordinary air has enough thermal 
energy to toss a 7 kilogram bowling ball 3 

meters off the ground! 

 

A solution to the energy crisis? 



Maxwell’s demon 
(born in 1867) 
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Violation of the second law! 

No process is possible whose sole result is the 
extraction of energy from a single heat bath and 

its conversion into work. 

 



Accepted resolution 

Landauer’s principle: A minimum of kT ln(2) amount of 
heat needs to be dissipated to erase one bit of 

information 
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Landauer (1961), Penrose (1970), and Bennett (1982) 



Accepted resolution 

Landauer’s principle: A minimum of kT ln(2) amount of 
heat needs to be dissipated to erase one bit of 

information 

 

Thermodynamics of information processing: 

– Writing information increases entropy of memory 

– Erasing information decreases entropy of memory 
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Goal 

• An autonomous physical system, without 
intelligence or explicit thermodynamic force, 
that behaves like a demon 
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• An autonomous physical system, without 
intelligence or explicit thermodynamic force, 
that behaves like a demon 

• Implications for the second law of 
thermodynamics 
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Model*: Overview 

Three essential components, all immersed in a 
heat bath:  

– Demon 

– Bits  

– Mass 

 

*Mandal and Jarzynski, PNAS 109, 11641 (2012) 

  0 1 0 1 1 0 0 1 0 0 

A C 

B 

m d 

v 



Demon 

A C 

B 

A C 

B 

A C 

B 

State A State C State B 

No complete rotation 

11 



Bit 

State 0 State 1 

0 

1 

0 

1 

12 

No intrinsic transitions 



Demon + Bit 
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Demon + Stream of bits 

• Stream of uncorrelated bits: p0/1 = proportion of 0/1’s 

• The demon interacts with the nearest bit 

• Interaction interval: τ = d/v 
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Claim 

 

The demon rotates clockwise if all the incoming 
bits are in state 0 

 

(Rectification of thermal fluctuations, 

using information) 



Justification 

• If all incoming bits are in state 0 

– No full counter clockwise rotation 

– Sustained clockwise rotation on average 

– Thermal fluctuations are rectified! 
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Demonstration of rectification 
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Demonstration of rectification 
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Demonstration of rectification 
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Demonstration of rectification 
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Demonstration of rectification 

One complete clockwise rotation! 



Demon + Bit + Mass 
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Complete setup 
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• Mixture of 0’s and 1’s 
• p0/1(p’0/1): Proportion of incoming (outgoing) 

bits in state 0/1 
 



Information entropy 

• Information / bit 
 Hin = − p0  ln p0  − p1  ln p1  

 Hout = − p’0 ln p’0  − p’1 ln p’1 

 0 ≤ H ≤ ln 2 

 
• H = 0:   all bits either 0 or 1  (``blank”) 
• H = ln 2:  equal # of 0’s and 1’s (``full”) 

 
• ΔSB = kB (Hout − Hin): change in information (× kB) 
          (``burnt thermodynamic fuel”) 
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Relevant variables 
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• (key) Parameters 

 δ = p0 – p1: excess 0’s of incoming bits 

 ε = tanh[m g Δh/2 k T]: rescaled mass 

 τ = d/v: interaction time / bit 



Relevant variables 

• Quantities of interest 

 Φ = p’1 – p1: Avg. clockwise rotation / bit 

 W = Φ m g Δh: Avg. work / bit 

 ΔSB= Hout- Hin: Change in information (× kB) / bit  
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• (key) Parameters 

 δ = p0 – p1: excess 0’s of incoming bits 

 ε = tanh[m g Δh/2 k T]: rescaled mass 

 τ = d/v: interaction time / bit 



• Φ: Avg. clockwise current per τ 

 

 

 

 

 

 

Analytical results 
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• Φ: Avg. clockwise current per τ 

 

 

• W   : Avg. work per τ =  

 

 

Analytical results 
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• Φ: Avg. clockwise current per τ 

 

 

• W   : Avg. work per τ =  

 

• ΔSB : Change in entropy per bit = 

 

Analytical results 
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Competition between two forces: 
δ and ε 

• δ (excess incoming 0’s) favors CW rotation 

• ε (gravitational force)  favors CCW rotation 
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Non-equilibrium phase diagram – 
Engine (W > 0) 
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Non-equilibrium phase diagram – 
Engine (W > 0) 

|δ| > |ε| 

34 

A C 

B 

m 

Δh 

δ: CW 
ε: CCW 



Non-equilibrium phase diagram – 
Eraser (ΔSB < 0) 
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Non-equilibrium phase diagram – 
Eraser (ΔSB < 0) 
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Implications for the second law 

• From dynamics: ΔSB – W / k T ≥ 0 

• As ΔSRes = − W / k T, 

    ΔSB + ΔSRes ≥ 0 

37 



Implications for the second law 

• From dynamics: ΔSB – W / k T ≥ 0 

• As ΔSRes = − W / k T, 

    ΔSB + ΔSRes ≥ 0 

38 
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    ΔSB + ΔSRes ≥ 0 
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• Engine: 0 < W < kT ΔSB 

 

• Eraser: 0 > k T ΔSB > W 
 

• “Dud”: k T ΔSB > 0 > W 



Not a real solution to the energy crisis! 

About 200 million terabytes of data to heat a 
gram of water by just a single degree Celsius — 

an overwhelming demand  
for data storage!  



Thank you! 
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Extra slides 
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Mechanical demon 
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Demon 

Bits 

Fixed rods 

Moving down  
with constant  
speed 



Joint dynamics 
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RA1«B1 = RB1«C1 =1

RC0®A1 =1-e, RA1®C0 =1+e

RA0«B0 = RB0«C0 =1

dpi

dt
= p jRj®i - piRi® j( )

j¹i

å , i, j = A0,...,C1Rate Equation: 



Key steps in the derivation of Φ 

1. periodic steady state of the demon, qps 

2. Statistics of the outgoing bits in the periodic 
case, (p’0,ps, p’1,ps)

T  

3. Φ = p’1,ps – p1
*

 

*p0 = (1 + δ)/2, p1 = (1 - δ)/2 



Step 1: Periodic steady state of the demon pD,ps 

• t = 0: Joint state of the demon and the 1st bit is  
 

pDB (0) = M pD(0)  
 

where M = (p0 I, p1 I)T and I is 3×3 identity matrix 
• 0 < t < τ: pDB evolves following the rate equation  
 

pDB(τ) = Exp(R τ) pDB(0) 
 

• t = τ: State of the demon is  
 

pD(τ) = PD pDB(τ) = Τ pD(0)  
 

where PD = (I, I) and T (3×3) = PD Exp(R τ) M  
• T = n τ: State of the demon is pD(n τ) = Tn pD(0) 
• For n >>1, pD(n τ) ≈ pD,ps where T pD,ps = pD,p 
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Steps 2,3: Statistics of the outgoing bits and Φ 

• Joint state of the demon and the interacting bit at the 
beginning of interaction is  

M pD,ps 

• Joint state at the end of the interaction is  

Exp(R τ) M pD,ps 

• State of the outgoing bit is  

(p’0,ps, p’1,ps)
T = PB Exp(R τ) M pD,ps  

     where  

PB =  

• Φ = p’1,ps – p1 
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