\section*{| 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- |}

Modeling Maxwell's demon

D Mandal, UC Berkeley

A curious observation

One liter of ordinary air has enough thermal energy to toss a 7 kilogram bowling ball 3 meters off the ground!

A solution to the energy crisis?

Maxwell's demon
 (born in 1867)

Fast
Slow

Before operation

Maxwell's demon

(born in 1867)

Before operation

During operation

Violation of the second law!

No process is possible whose sole result is the extraction of energy from a single heat bath and its conversion into work.

Accepted resolution

Landauer's principle: A minimum of $\mathrm{kT} \ln (2)$ amount of heat needs to be dissipated to erase one bit of information

Accepted resolution

Landauer's principle: A minimum of $\mathrm{kT} \ln (2)$ amount of heat needs to be dissipated to erase one bit of information

Thermodynamics of information processing: - Writing information increases entropy of memory

- Erasing information decreases entropy of memory

Goal

- An autonomous physical system, without intelligence or explicit thermodynamic force, that behaves like a demon

Goal

- An autonomous physical system, without intelligence or explicit thermodynamic force, that behaves like a demon
- Implications for the second law of thermodynamics

Model*: Overview

Three essential components, all immersed in a heat bath:

- Demon
- Bits
- Mass
*Mandal and Jarzynski, PNAS 109, 11641 (2012)

Demon

No complete rotation

Bit

State 0

State 1

No intrinsic transitions

Demon + Bit

State C

State A

State 1

Demon + Stream of bits

- Stream of uncorrelated bits: $\mathrm{p}_{0 / 1}=$ proportion of $0 / 1^{\prime} \mathrm{s}$
- The demon interacts with the nearest bit
- Interaction interval: $\tau=d / v$

Claim

The demon rotates clockwise if all the incoming bits are in state 0
(Rectification of thermal fluctuations,
using information)

Justification

State C
State 0
State A
State 1

- If all incoming bits are in state 0
- No full counter clockwise rotation
- Sustained clockwise rotation on average
- Thermal fluctuations are rectified!

Demonstration of rectification

Demonstration of rectification

New interacting bit

Demonstration of rectification

Demonstration of rectification

The bit flipped

Demonstration of rectification

One complete clockwise rotation!

Demon + Bit + Mass

State C
State 0
State A
State 1

Complete setup

- Mixture of 0's and 1's
- $p_{0 / 1}\left(p^{\prime}{ }_{0 / 1}\right)$: Proportion of incoming (outgoing) bits in state 0/1

Information entropy

- Information / bit
- $H_{\text {in }}=-p_{0} \ln p_{0}-p_{1} \ln p_{1}$
- $\mathrm{H}_{\text {out }}=-\mathrm{p}_{0}^{\prime} \ln \mathrm{p}_{0}^{\prime}-\mathrm{p}_{1}^{\prime} \ln \mathrm{p}_{1}^{\prime}$
- $0 \leq H \leq \ln 2$

Information entropy

- Information / bit
- $H_{\text {in }}=-p_{0} \ln p_{0}-p_{1} \ln p_{1}$
- $\mathrm{H}_{\text {out }}=-\mathrm{p}_{0}^{\prime} \ln \mathrm{p}_{0}^{\prime}-\mathrm{p}_{1}^{\prime} \ln \mathrm{p}_{1}^{\prime}$
- $0 \leq \mathrm{H} \leq \ln 2$
- $\mathrm{H}=0$: all bits either 0 or 1 ("blank")
- $H=\ln 2:$ equal \# of 0 's and 1's (``full")

Information entropy

- Information / bit
- $H_{\text {in }}=-p_{0} \ln p_{0}-p_{1} \ln p_{1}$
- $\mathrm{H}_{\text {out }}=-\mathrm{p}_{0}^{\prime} \ln \mathrm{p}_{0}^{\prime}-\mathrm{p}_{1}^{\prime} \ln \mathrm{p}_{1}^{\prime}$
- $0 \leq \mathrm{H} \leq \ln 2$
- $\mathrm{H}=0$: all bits either 0 or 1 ("blank")
- $H=\ln 2$: equal \# of 0 's and 1's ("full")
- $\Delta S_{B}=k_{B}\left(H_{\text {out }}-H_{i n}\right)$: change in information $\left(\times k_{B}\right)$

Relevant variables

- (key) Parameters
- $\delta=p_{0}-p_{1}$: excess 0 's of incoming bits
- $\varepsilon=\tanh [\mathrm{m} g \Delta \mathrm{~h} / 2 \mathrm{k} \mathrm{T}]:$ rescaled mass
- $\tau=d / v$: interaction time / bit

Relevant variables

- (key) Parameters
- $\delta=p_{0}-p_{1}$: excess 0 's of incoming bits
- $\varepsilon=\tanh [\mathrm{mg} \Delta \mathrm{h} / 2 \mathrm{kT}]$: rescaled mass
- $\tau=d / v$: interaction time / bit
- Quantities of interest
- $\Phi=p_{1}^{\prime}-p_{1}$: Avg. clockwise rotation / bit
- W = Ф m g $\Delta \mathrm{h}$: Avg. work / bit
- $\Delta \mathrm{S}_{\mathrm{B}}=\mathrm{H}_{\text {out }}{ }^{-} \mathrm{H}_{\text {in }}$: Change in information $\left(\times \mathrm{k}_{\mathrm{B}}\right) /$ bit

Analytical results

- Φ : Avg. clockwise current per τ

$$
\Phi(\delta, \varepsilon ; \tau)=\frac{\delta-\varepsilon}{2} \eta
$$

$$
\begin{aligned}
& \eta=\left[1-\frac{1}{3} K(\tau)+\frac{\varepsilon \delta}{6} J(\tau, \varepsilon \delta)\right] \geq 0 \\
& K()=e^{2} \frac{(1+8+4 \sqrt{3})(2+7+4 \sqrt{3}) e^{2}}{3(2+) e^{2}} \\
& J(,)=\frac{(1 e) 2 e^{2}(+\sqrt{3} \quad 1)^{2}}{3(1 \quad e)(1 \quad)(2+) e^{2} 3(2+) e^{2}} \\
& \quad=\sinh (\sqrt{3}) \\
& \quad=\cosh (\sqrt{3})
\end{aligned}
$$

Analytical results

- Ф: Avg. clockwise current per τ

$$
\Phi(\delta, \varepsilon ; \tau)=\frac{\delta-\varepsilon}{2} \eta
$$

- W : Avg. work per $\tau=\Phi k T \ln \left(\frac{1+\varepsilon}{1-\varepsilon}\right)$

Analytical results

- Ф: Avg. clockwise current per τ

$$
\Phi(\delta, \varepsilon ; \tau)=\frac{\delta-\varepsilon}{2} \eta
$$

- $\mathrm{W}:$: Avg. work per $\tau=\Phi k T \ln \left(\frac{1+\varepsilon}{1-\varepsilon}\right)$
- $\Delta \mathrm{S}_{\mathrm{B}}$: Change in entropy per bit $=H(2 \Phi-\delta)-H(\delta)$

Competition between two forces: δ and ε

$$
\Phi(\delta, \varepsilon ; \tau)=\frac{\delta-\varepsilon}{2} \eta, \quad \eta \geq 0
$$

- δ (excess incoming 0's) favors CW rotation
- ε (gravitational force) favors CCW rotation

Non-equilibrium phase diagram

Non-equilibrium phase diagram Engine ($W>0$)

$\delta: \mathrm{CW}$
ε : CCW

Non-equilibrium phase diagram Eraser ($\Delta \mathrm{S}_{\mathrm{B}}<0$)

$\delta: \mathrm{CW}$
ε : CCW

Non-equilibrium phase diagram Eraser ($\Delta \mathrm{S}_{\mathrm{B}}<0$)

$\delta: \mathrm{CW}$
ε : CCW

Implications for the second law

- From dynamics: $\Delta S_{B}-W / k T \geq 0$

Implications for the second law

- From dynamics: $\Delta S_{B}-W / k T \geq 0$
- As $\Delta S_{\text {Res }}=-W / k T$,

$$
\Delta \mathrm{S}_{\mathrm{B}}+\Delta \mathrm{S}_{\text {Res }} \geq 0
$$

Implications for the second law

- From dynamics: $\Delta S_{B}-W / k T \geq 0$
- As $\Delta S_{\text {Res }}=-W / k T$,

$$
\Delta \mathrm{S}_{\mathrm{B}}+\Delta \mathrm{S}_{\text {Res }} \geq 0
$$

- Engine: $0<\mathrm{W}<\mathrm{kT} \Delta \mathrm{S}_{\mathrm{B}}$
- Eraser:
$0>k T \Delta S_{B}>W$
- "Dud": $k T \Delta S_{B}>0>W$

Not a real solution to the energy crisis!

About 200 million terabytes of data to heat a gram of water by just a single degree Celsius an overwhelming demand for data storage!

Thank you!

Extra slides

Mechanical demon

Joint dynamics

Rate Equation: $\quad \frac{d p_{i}}{d t}=\sum_{j \neq i}\left(p_{j} R_{j \rightarrow i} \quad p_{i} R_{i \rightarrow j}\right), \quad i, j=A 0, \ldots, C 1$

Key steps in the derivation of Φ

1. periodic steady state of the demon, \mathbf{q}_{ps}
2. Statistics of the outgoing bits in the periodic case, $\left(\mathrm{p}_{0, \mathrm{ps}}^{\prime} \mathrm{p}_{1, \mathrm{ps}}^{\prime}\right)^{\top}$
3. $\Phi=\mathrm{p}_{1, \mathrm{ps}}^{\prime}-\mathrm{p}_{1}{ }^{*}$

$$
{ }^{*} p_{0}=(1+\delta) / 2, p_{1}=(1-\delta) / 2
$$

Step 1: Periodic steady state of the demon $\mathbf{p}_{\mathrm{D}, \mathrm{ps}}$

- $t=0$: Joint state of the demon and the $1^{\text {st }}$ bit is

$$
\mathbf{p}_{\mathrm{DB}}(0)=\mathbf{M} \mathbf{p}_{\mathrm{D}}(0)
$$

where $\mathbf{M}=(p 0 \mathbf{I}, p 1 \mathbf{I})^{\top}$ and \mathbf{I} is 3×3 identity matrix

Step 1: Periodic steady state of the demon $\mathbf{p}_{\mathrm{D}, \mathrm{ps}}$

- $t=0$: Joint state of the demon and the $1^{\text {st }}$ bit is

$$
\mathbf{p}_{\mathrm{DB}}(0)=\mathbf{M} \mathbf{p}_{\mathrm{D}}(0)
$$

where $\mathbf{M}=(p 0 \mathbf{I}, p 1 \mathbf{I})^{\top}$ and \mathbf{I} is 3×3 identity matrix

- $0<t<\tau$: $\mathbf{p}_{D B}$ follows rate equation $d p_{D B} / \mathrm{dt}=\mathbf{R} \mathbf{p}_{\mathrm{DB}}$ solution: $\mathbf{p}_{\mathrm{DB}}(\tau)=\operatorname{Exp}(\mathbf{R} \tau) \mathbf{p}_{\mathrm{DB}}(0)$

Step 1: Periodic steady state of the demon $\mathbf{p}_{\mathrm{D}, \mathrm{ps}}$

- $t=0$: Joint state of the demon and the $1^{\text {st }}$ bit is

$$
\mathbf{p}_{\mathrm{DB}}(0)=\mathbf{M} \mathbf{p}_{\mathrm{D}}(0)
$$

where $\mathbf{M}=(p 0 \mathrm{I}, \mathrm{p} 1 \mathrm{I})^{\top}$ and I is 3×3 identity matrix

- $0<t<\tau$: $\boldsymbol{p}_{\mathrm{DB}}$ follows rate equation $\mathrm{dp} \mathrm{p}_{\mathrm{DB}} / \mathrm{dt}=\mathbf{R} \mathbf{p}_{\mathrm{DB}}$

$$
\text { solution: } \mathbf{p}_{\mathrm{DB}}(\tau)=\operatorname{Exp}(\mathbf{R} \tau) \mathbf{p}_{\mathrm{DB}}(0)
$$

- $\mathrm{t}=\mathrm{t}$: State of the demon is

$$
\mathbf{p}_{\mathrm{D}}(\tau)=\mathbf{P}_{\mathrm{D}} \mathbf{p}_{\mathrm{DB}}(\tau)=\mathbf{T} \boldsymbol{p}_{\mathrm{D}}(0)
$$

where $\mathbf{P}_{\mathrm{D}}=(\mathbf{I}, \mathbf{I})$ and $\mathrm{T}(3 \times 3)=\mathbf{P}_{\mathrm{D}} \operatorname{Exp}(\mathbf{R} \tau) \mathbf{M}$

Step 1: Periodic steady state of the demon $\mathbf{p}_{\mathrm{D}, \mathrm{ps}}$

- $t=0$: Joint state of the demon and the $1^{\text {st }}$ bit is

$$
\mathbf{p}_{\mathrm{DB}}(0)=\mathbf{M} \mathbf{p}_{\mathrm{D}}(0)
$$

where $\mathbf{M}=(p 0 \mathrm{I}, \mathrm{p} 1 \mathrm{I})^{\top}$ and I is 3×3 identity matrix

- $0<t<\tau$: $\boldsymbol{p}_{\mathrm{DB}}$ follows rate equation $\mathrm{dp} \mathrm{p}_{\mathrm{DB}} / \mathrm{dt}=\mathbf{R} \boldsymbol{p}_{\mathrm{DB}}$

$$
\text { solution: } \mathbf{p}_{\mathrm{DB}}(\tau)=\operatorname{Exp}(\mathbf{R} \tau) \mathbf{p}_{\mathrm{DB}}(0)
$$

- $\mathrm{t}=\mathrm{t}$: State of the demon is

$$
\mathbf{p}_{\mathrm{D}}(\tau)=\mathbf{P}_{\mathrm{D}} \mathbf{p}_{\mathrm{DB}}(\tau)=\mathbf{T} \boldsymbol{p}_{\mathrm{D}}(0)
$$

where $\mathbf{P}_{\mathrm{D}}=(\mathbf{I}, \mathbf{I})$ and $\mathrm{T}(3 \times 3)=\mathbf{P}_{\mathrm{D}} \operatorname{Exp}(\mathbf{R} \tau) \mathbf{M}$

- $\mathrm{T}=\mathrm{n} \mathrm{\tau}$: State of the demon is $\boldsymbol{p}_{\mathrm{D}}(\mathrm{n} \tau)=\mathrm{T}^{\mathrm{n}} \boldsymbol{p}_{\mathrm{D}}(0)$

Step 1: Periodic steady state of the demon $\mathbf{p}_{\mathrm{D}, \mathrm{ps}}$

- $t=0$: Joint state of the demon and the $1^{\text {st }}$ bit is

$$
\mathbf{p}_{\mathrm{DB}}(0)=\mathbf{M} \mathbf{p}_{\mathrm{D}}(0)
$$

where $\mathbf{M}=(p 0 \mathrm{I}, \mathrm{p} 1 \mathrm{I})^{\top}$ and I is 3×3 identity matrix

- $0<t<\tau$: $\boldsymbol{p}_{\mathrm{DB}}$ follows rate equation $\mathrm{dp} \mathrm{p}_{\mathrm{DB}} / \mathrm{dt}=\mathbf{R} \boldsymbol{p}_{\mathrm{DB}}$

$$
\text { solution: } \mathbf{p}_{\mathrm{DB}}(\tau)=\operatorname{Exp}(\mathbf{R} \tau) \mathbf{p}_{\mathrm{DB}}(0)
$$

- $t=\tau$: State of the demon is

$$
\mathbf{p}_{\mathrm{D}}(\tau)=\mathbf{P}_{\mathrm{D}} \mathbf{p}_{\mathrm{DB}}(\tau)=\mathbf{T} \mathbf{p}_{\mathrm{D}}(0)
$$

where $\mathbf{P}_{\mathrm{D}}=(\mathbf{I}, \mathbf{I})$ and $\mathrm{T}(3 \times 3)=\mathbf{P}_{\mathrm{D}} \operatorname{Exp}(\mathbf{R} \tau) \mathbf{M}$

- $T=n \tau$: State of the demon is $\boldsymbol{p}_{\mathrm{D}}(\mathrm{n} \tau)=\mathrm{T}^{\mathrm{n}} \mathbf{p}_{\mathrm{D}}(0)$
- For $n \gg 1, p_{\mathrm{D}}(\mathrm{n} \tau) \approx \mathrm{p}_{\mathrm{D}, \mathrm{ps}}$ where $\mathrm{T}_{\mathrm{p}, \mathrm{ps}}=\mathrm{p}_{\mathrm{D}, \mathrm{ps}}$

Steps 2,3: Statistics of the outgoing bits and Φ

- Joint state of the demon and the interacting bit at the beginning of interaction is

$$
\mathbf{M} \mathbf{p}_{\mathrm{D}, \mathrm{ps}}
$$

Steps 2,3: Statistics of the outgoing bits and Φ

- Joint state of the demon and the interacting bit at the beginning of interaction is

$$
\mathbf{M} \mathbf{p}_{\mathrm{D}, \mathrm{ps}}
$$

- Joint state at the end of the interaction is

$$
\operatorname{Exp}(\mathbf{R} \tau) \mathbf{M} \mathbf{p}_{\mathrm{D}, \mathrm{ps}}
$$

Steps 2,3: Statistics of the outgoing bits and Φ

- Joint state of the demon and the interacting bit at the beginning of interaction is

$$
\mathbf{M} \mathbf{p}_{\mathrm{D}, \mathrm{ps}}
$$

- Joint state at the end of the interaction is

$$
\operatorname{Exp}(\mathbf{R} \tau) \mathbf{M} \mathbf{p}_{\mathrm{D}, \mathrm{ps}}
$$

- State of the outgoing bit is

$$
\left(\mathrm{p}_{0, \mathrm{ps}}^{\prime}, \mathrm{p}_{1, \mathrm{ps}}^{\prime}\right)^{\top}=\mathbf{P}_{\mathrm{B}} \operatorname{Exp}(\mathbf{R} \tau) \mathbf{M} \mathbf{p}_{\mathrm{D}, \mathrm{ps}}
$$

where

$$
\mathbf{P}_{\mathrm{B}}=\left(\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

Steps 2,3: Statistics of the outgoing bits and Φ

- Joint state of the demon and the interacting bit at the beginning of interaction is

$$
\mathbf{M} \mathbf{p}_{\mathrm{D}, \mathrm{ps}}
$$

- Joint state at the end of the interaction is

$$
\operatorname{Exp}(\mathbf{R} \tau) \mathbf{M} \mathbf{p}_{\mathrm{D}, \mathrm{ps}}
$$

- State of the outgoing bit is

$$
\left(\mathrm{p}_{0, \mathrm{ps}}^{\prime}, \mathrm{p}_{1, \mathrm{ps}}^{\prime}\right)^{\top}=\mathbf{P}_{\mathrm{B}} \operatorname{Exp}(\mathbf{R} \tau) \mathbf{M} \mathbf{p}_{\mathrm{D}, \mathrm{ps}}
$$

where

$$
\mathbf{P}_{\mathrm{B}}=\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

- $\Phi=\mathrm{p}_{1, \mathrm{ps}}^{\prime}-\mathrm{p}_{1}$

