Exercises

1. Write down a picture of particles of H_{2^+} molecular system with their coordinates and describe Schrödinger equation in atomic unit within the Born-Oppenheimer approximation.

picture

Schrödinger equation

2. Solve the H_{2^+} molecular system using a linear combination of two 1s orbital of nuclear A and B. Obtain two normalized wave functions and corresponding energy levels.

You can use the following notations for integrals.

$$H_{AB} = H_{BA} = \left\langle \phi_{1s_{A}} \left| \hat{H} \right| \phi_{1s_{B}} \right\rangle = \left\langle \phi_{1s_{B}} \left| \hat{H} \right| \phi_{1s_{A}} \right\rangle \quad H_{AA} = H_{BB} = \left\langle \phi_{1s_{A}} \left| \hat{H} \right| \phi_{1s_{A}} \right\rangle = \left\langle \phi_{1s_{B}} \left| \hat{H} \right| \phi_{1s_{B}} \right\rangle$$
$$S_{AB} = S_{BA} = \left\langle \phi_{1s_{A}} \left| \phi_{1s_{B}} \right\rangle = \left\langle \phi_{1s_{B}} \left| \phi_{1s_{A}} \right\rangle = S \qquad S_{AA} = S_{BB} = \left\langle \phi_{1s_{A}} \left| \phi_{1s_{A}} \right\rangle = \left\langle \phi_{1s_{B}} \left| \phi_{1s_{B}} \right\rangle = 1$$

3. Write down a picture of bounding and anti-bounding orbitals of H_{2^+} system and its' energy diagram.

4. Write down a picture of molecular orbitals and with an energy diagram of 2p group elements such as N_2 molecule.

5. Which is the molecule with the strongest bond among B_2 , C_2 , N_2 , O_2 , and F_2 ? Discuss it from the bond-order concept.