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1 Introduction

Since its inception in the 1920’s quantum field theory has been built on a pertur-
bative framework. The idea of incorporating interaction in a quantum field theory
as a perturbation on a free field and then computing physical quantities (like corre-
lation functions) as power series with perturbative corrections suppressed through
successively higher powers of the (small) coupling constant has, supplemented with
the procedure of renormalisation, led to much success in quantum electrodynamics
and in the theory of the electroweak interaction.

However, being rooted in perturbation theory, it is clear that there are many
questions, several of outstanding significance, that such a formulation can not even
begin to describe. Thus the existence of solitonic and other topologically nontrivial
field configurations can not be seen through a perturbative analysis. Another well
known inherently non-perturbative phenomenon is the formation of hadronic bound
states (that is the existence of the proton, neutron etc.). This remains a puzzle
because the mechanism of colour confinement is still a mystery and lies hidden in
the strongly coupled regime of the SU(3)c Yang-Mills theory (QCD). QCD is known
to be a renormalisable, asymptotically free theory. Thus while at high energies the
coupling constant is small and the theory is susceptible to a perturbative treatment,
with the perturbative spectrum comprising of quarks and gluons , at low energies it
is large and the true degrees of freedom are hadrons. The potential between quarks
(as observed experimentally) grows linearly with distance leading to the formation
of “flux tubes” and we get colour confinement in hadrons.

In this essay we will focus on one important tool - the BPS state - which enables
to reach out beyond the perturbative framework and gain insight into the strongly
coupled regime of supersymmetric field theories. We’ll begin with a brief review
(section 2) of electric-magnetic duality and the strong-weak coupling duality it leads
to when trying to construct a consistent quantum theory incorporating magnetic
monopoles. In section 3 we will see how BPS states arise as low energy static
monopole configurations of a non-abelian SU(2) gauge field theory (the Georgi-
Glashow model) with a Higgs field (in the adjoint representation of the gauge group)
spontaneously breaking the symmetry. We will see that there is an inequality (the
Bogomolnyi inequality) relating the mass of the solitonic field configuration to its
electric and magnetic charges. Then the state which has the least possible mass
given the charges it carries is defined to be a BPS state and shown to satisfy
certain first order field equations- the Bogomolnyi equations. We then discuss the
Montonen-Olive duality conjecture and its generalisation to S duality (section 4).
This leads to the charge lattice and the BPS states defined on it, with their mass
being shown to be S duality invariant and hence defined non-perturbatively as well.

In section 5 we discuss how these states arise when the supersymmetry algebra
has a central extension and define them to belong to special short representations of
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the algebra. This definition is later (section 5.4) tied up with our earlier description
of BPS states. Next we describe how supersymmetry provides a natural setting for
BPS states and how the Bogomolnyi bound emerges naturally as a consequence of
short representations of the supersymmetry algebra to which BPS states belong.
We also evaluate the central charge in supersymmetric field theories first in the
simpler case of a 1 + 1 dimensional theory and then in N = 2 supersymmetric
Yang-Mills with gauge group SU(2). We argue how supersymmetry makes BPS
states immune to perturbative modifications so that semiclassical formulas can be
true even with quantum corrections taken into account.

2 Electric-Magnetic Duality and Magnetic Monopoles

The invariance of the Maxwell field equations (in vacuum) under the duality

transformation ~E → ~B, ~B → − ~E, or more generally the SO(2) rotation in

field space ~E → ~E cosα + ~B sinα, ~B → − ~E sinα + ~B cosα, was noted al-
ready in the nineteenth century. Thus the transformation of the complex 3-
vector ~E + i ~B → e−iα( ~E + i ~B) leaves unchanged the equations ~∇.( ~E + i ~B) =

0, ~∇× ( ~E + i ~B)− i ∂
∂t

( ~E + i ~B) = 0
The presence of electric charges (q) however spoils this duality unless magnetic

charges (g) are also included and transform under duality as q+ ig → e−iα(q+ ig).
The electric and magnetic charge/current densities also transform similarly so that
the Maxwell equations:

~∇.( ~E + i ~B) = ρe + iρm ~∇× ( ~E + i ~B)− i ∂
∂t

( ~E + i ~B) = i(~je + ~ijm) (1)

are invariant under duality transformations.
The occurrence of magnetic charges, however, comes into conflict with the ex-

istence of a vector potential ~A - an everywhere well-defined (non-singular) ~A can

not exist for this would imply ~∇. ~B = 0 everywhere in space. At most we can
define different non-singular vector potentials (giving the same field) covering up
space in patches and in an overlap region the two being connected by a gauge
transformation ~A2 − ~A1 = ~∇λ

The vector potential, however, is fundamental in any quantum mechanical treat-
ment as it is incorporated into the equations of motion via the minimal coupling
prescription. Dirac showed that magnetic monopoles can be incorporated in quan-
tum theory and that the presence of a magnetic monopole (of strength g) coupled
to an electromagnetic field due to a source with electric charge e leads to (by
demanding single-valuedness of the wavefunction) the quantisation condition:

eg = 2πn} n = 0,±1,±2, ..... (2)
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We give the Wu-Yang derivation of the above relation. Consider a magnetic
monopole at the origin with a magnetic field (which is singular at the origin)-
~B = g

4πr2
r̂. Define

~A1 =
g(1− cos θ)

4πr sin θ
φ̂ θ < π − ε ~A2 =

−g(1 + cos θ)

4πr sin θ
φ̂ θ > ε

where ε is some small positive number. Both these potentials give the same ~B in the
region in which they are defined and are connected through a gauge transformation
on the overlap region (which is all of space except the z axis)- ~A2− ~A1 = ~∇(−gφ

2π
)≡

~∇λ. The wavefunctions of a particle of electric charge e in these two different
gauges differ by a phase factor ψ2 = ψ1exp(ieλφ) . Suppose the charge e is moved
around the equator (θ = π/2) once so that φ → φ + 2π and ψ2(φ + 2π) = ψ1(φ +
2π)exp(ieλ(φ + 2π)) . The single valuedness of the wavefunction implies ψ1,2(φ +
2π) = ψ1,2(φ) so we must have exp(2πieλ) = 1⇒ eg = 2nπ, n ∈ Z.

The Dirac quanitisation condition can be generalised, if we consider dyonic
charges (q1, g1) (q2, g2), to the Dirac-Schwinger-Zwanziger condition

q1g2 − q2g1 = 2πn} n ∈ Z (3)

This is seen to be invariant under the duality transformation of the charges.
The quantisation condition, in conjunction with electric-magnetic duality, leads

to the strong-weak coupling duality. We can use duality to transform e→ g. If we
assume the electric coupling constant to be small (e<<1) then we can analyse our
electric theory perturbatively in terms of perturbative expansions in e. But the
quantisation condition then implies that g must be large and the dual magnetic
theory, describing the same physical phenomenon, would be a strongly coupled
(and thus necessarily non-perturbative) theory. As the converse is obviously also
true, this leads to the remarkable possibility that a strongly coupled field theory
can have a dual description which is weakly coupled and hence amenable to a
perturbative treatment.

In abelian electrodynamics the singular magnetic charge has a value undeter-
mined by the theory. But in non-abelian gauge theories it is possible to have
non-singular field configurations which asymptotically look like a radial monopole
field, the associated magnetic charge being, however, a topological feature and can
be evaluated [5]. We now turn to a simple illustration of this and it is here that
we will see the occurrence of BPS states.
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3 BPS Monopoles in the Georgi-Glashow Model

and the Bogomolnyi Inequality

The Georgi-Glashow model was an attempt to describe the electromagnetic and
weak interactions using the SU(2) gauge group. It proved inadmissible as a model
for the electroweak force as it doesn’t incorporate weak neutral currents and was
eventually replaced by the Weinberg-Salam theory.

Looking for solitonic states (finite energy stable field configurations) in this
model we will find (following [3]) that the mass of such states is constrained by the
charges (electric and magnetic) that they carry - this is the Bogomolnyi inequality
[6].

For our purposes we need only consider the bosonic part of the Georgi-Glashow
Lagrangian. This is1

L = −1

4
~F µν . ~Fµν +

1

2
Dµ~φ.Dµ

~φ− V (φ) (4)

where V (φ) = λ
4
(~φ.~φ − a2) is the Higgs Potential. Here ~F µν is the gauge field

strength (~Fµν)
a = F a

µν ; Fµν = F a
µνTa given in terms of the gauge potential ~Aµ by

~Fµν = ∂µ ~Aν − ∂ν ~Aµ − e ~Aµ × ~Aν . Also Dµ
~φ = ∂µ~φ − e ~Aµ × ~φ. All fields are thus

represented as vectors in the (three dimensional) adjoint representation of SU(2).
All the vacuum states of this theory lie on a two-sphere in field space. For a
perturbative evaluation of the spectrum we need to identify a particular vacuum
state. This choice induces a spontaneous symmetry breaking from SU(2) to U(1).
The perturbative spectrum consists of a massive Higgs particle, a massless photon
and the charged massive vector bosons W+,W−.

The equations of motion for the fields ~φ and ~Aµ determined by the above La-
grangian are :

Dν
~F µν = −e~φ×Dµ

~φ DµD
µ~φ = −λ(φ2 − a2) (5)

We also have the Bianchi identity for the dual of F : Dν ∗ ~F µν = 0, ∗~F µν =
1
2
εµνρσ ~Fρσ

We define the non-abelian electric and magnetic fields by

~Ei = ~F i0, ~Bi =
1

2
εijk ~F

jk (6)

1a, b, c, ...(= 1, 2, ..., dimG) denote the gauge group indices; µ, ν, ...(= 0, 1, 2, 3) are spacetime
indices; i, j, k(= 1, 2, 3)are spatial indices; α, β, γ, ... (= 1, 2) will be 2-spinor indices. Here fields
~Ei etc. are vectors in 3D space as well as the internal isospin space- ~E denotes a vector in isospace
while i refers to its spatial components.
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The energy density in the field can be expressed in terms of the field variables ~Bi, ~φ
and the associated canonically conjugate momenta ~Ei, D0

~φ respectively.

H =
1

2
( ~Ei. ~Ei + ~Bi. ~Bi +D0

~φ.D0
~φ+Di

~φ.Di
~φ) + V (φ) (7)

If the energy density vanishes throughout space we must have: ~Fµν = 0, Dµ
~φ =

0, V (φ) = 0 - we define this to be the vacuum configuration. If the gauge field
strength is non-zero but the other two conditions are still obeyed we have a Higgs
vacuum.

We seek now solutions to the field equations (5) which have finite total energy:
E =

´
Hd3x < ∞. It is then clear that in such a field configuration there will be

energy localisation in bounded regions of space and at spatial infinity H vanishes.
Thus, asymptotically, the fields must be in vacuum configuration and, in particular,
the Higgs field must be in the Higgs vacuum: Dµ

~φ = 0, V (φ) = 0⇒ ~φ.~φ = a2. So

in the Higgs vacuum: ∂µ~φ = e ~Aµ × ~φ. Suppose ~Aµ = ~Aoµ + ~Apµ (sum of projections

orthogonal and parallel to the Higgs vacuum ~φ). Define bµ through ~Apµ = ~(Aµ.φ̂)φ̂ =

bµφ̂. Then we have

~φ× ∂µ~φ = ea2 ~(Aµ − ~(Aµ.φ̂)φ̂)⇒ ~Aµ =
1

a2e
(~φ× ∂µ~φ) +

bµ
a
~φ

since ~φ.~φ = a2 in the Higgs vacuum. Using this in the defining equation for ~Fµν
gives us the gauge field strength in the Higgs vacuum:

~Fµν =
~φ

a
{∂µbν − ∂νbµ +

1

ea3
~φ.(∂µ~φ× ∂ν~φ)} ≡ fµν~φ/a (8)

and shows that, asymptotically, it points in the direction of ~φ (fµν is the “electro-
magnetic field” tensor corresponding to the unbroken U(1) group). This implies
that at spatial infinity the electric and magnetic fields defined through eq. (6) also

lie in the direction (in isospin space) of ~φ in the Higgs vacuum. We will need this
result in the derivation of the Bogomolnyi bound [6,3].

3.1 The Bogomolnyi Inequality

If we consider the energy of our solitonic field configuration in the centre of mass
frame there will be no kinetic energy contribution and the total energy E would
be the (rest) mass M of the soliton.

M =

ˆ
R3

{1

2
( ~Ei. ~Ei + ~Bi. ~Bi +Di

~φ.Di
~φ+D0

~φ.D0
~φ) + V (φ)}d3x (9)

Since the last two terms in the integrand are non-negative we have
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M ≥
ˆ
R3

1

2
( ~Ei. ~Ei + ~Bi. ~Bi +Di

~φ.Di
~φ)d3x

This we can write as

M ≥
ˆ
R3

(
1

2
| ~Ei−sin θDi

~φ|2+1

2
| ~Bi−cos θDi

~φ|2+sin θ ~Ei.Di
~φ+cos θ ~Bi.Di

~φ)d3x (10)

θ being an arbitrary real parameter. Now

~Ei.Di
~φ = ~F i0.Di

~φ = (∂i~φ− e ~Ai × ~φ). ~F i0 = ∂i~φ. ~F
i0 − e~φ.(~F i0 × ~Ai)

The covariant derivative of the gauge field strength is

Dν
~F µν = ∂ν ~F

µν − e( ~Aν × ~F µν)

so that e(~F i0 × ~Ai) = Di
~F i0 − ∂i ~F i0. Hence

Di
~φ. ~Ei = ∂i(~φ. ~F

i0)− ~φ.Di
~F i0

But the last term in the above equation is zero using the equation of motion for

the gauge field : Di
~F i0 = e~φ ×D0

~φ. Hence ~Ei.Di
~φ = ∂i(~φ. ~Ei).Thus

´
R3
~Ei.Di

~φ =´
S∞

~φ. ~EidSi where we have used the divergence theorem in the last step. Since
the integration is over all space the sphere S∞ bounding the volume is at spatial
infinity where we have the Higgs vacuum so that, as proved before, ~φ and ~Ei are
collinear and hence ~Ei.~φ = aEi. Soˆ

R3

~Ei.Di
~φ = a

˛
S∞

EidSi = aq (11)

(the surface integral being the flux through S∞, q is thus the electric charge en-
closed). Similarly it follows (using the Bianchi identity) thatˆ

R3

~Bi.Di
~φ = a

˛
S∞

BidSi = ag (12)

g being the magnetic charge.
Now the first two terms in eq. (10) are non-negative and we get

M ≥ aq sin θ + ag cos θ ∀ θ
The bound is strongest when the function of θ on the right hand side attains its
maximum. This is when tan θ = q/g, the maximum value being a

√
q2 + g2. So we

have the Bogomolnyi inequality:

M ≥ a
√
q2 + g2 (13)
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3.2 The Bogomolnyi equation and the BPS monopole

From the preceding analysis it is clear that the lower bound in the inequality is
attained, and thus the mass determined in terms of the charges, when the non-
negative terms we neglected are actually zero - V (φ) = 0, D0

~φ = 0 and the
Bogomolnyi equations:

~Ei = sin θDi
~φ ~Bi = cos θDi

~φ (14)

Restricting ourselves to static (time independent and ~A0 = 0) field configurations

we have ~Ei = ∂0 ~Ai − ∂i ~A0 − e ~A0 × ~Ai = 0. Thus such a solution carries no
electric charge - it is a pure monopole solution. This is the ’t Hooft-Polyakov
monopole first considered in [5]. Now ~Ei = 0 ⇒ θ = 0, π and the Bogomolnyi

equation is ~Bi = ±Di
~φ [6]. The solutions to this equation are the BPS monopoles.

The condition V (φ) = 0 implies λ = 0 - no self interaction of the Higgs field.

This is because the other possibility - ~φ.~φ = a2 throughout space would imply
0 = ∂i(~φ.~φ) = 2~φ.∂i~φ = 2~φ.Di

~φ = ±2~φ. ~Bi. But since we know that ~φ and ~B are
in the same direction in the Higgs vacuum this would lead to the trivial solution
~Bi = 0.

If we consider time-independent solutions of the Bogomolnyi equations with
~A0 6= 0 it is possible to accommodate electric charges as well and get dyonic BPS
states [7].

The topological origin of magnetic charge of the non-abelian monopole can be
seen through an explicit evaluation of g =

¸
S∞

BidSi. Since S∞ lies in the Higgs

vacuum the gauge field strength on S∞ is given by eq. (8) so that Bi = 1
2
εijkfjk.

Thus

g =
1

2

˛
S∞

εijk{∂jbk − ∂kbj +
1

a3e
~φ.(∂j~φ× ∂k~φ)}dSi

Now εijk∂jbk = (~∇×~b)i and the vector field~b is nonsingular so that
¸
S∞

(~∇×~b).d~S =
0 so the first two terms in the integrand do not contribute and we get

g =
1

2a3e

˛
S∞

εijk ~φ.(∂j~φ× ∂k~φ)dSi

Thus the Higgs field configuration alone determines the magnetic charge of the
monopole. The integral above (divided by 8πa3) is the winding number (degree) m

of the map ~φ from the 2-sphere at spatial infinity (in 3D space) to the 2-sphere in
Higgs vacuum (in field space) so that we have for the ’t Hooft-Polyakov monopole:

g =
4πm

e
m ∈ Z (15)
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An explicit solution for the monopole can be obtained by considering the ’t
Hooft-Polyakov ansatz [5]. We consider spherically symmetric, finite energy, non
dissipative, static solutions of the form:

φa =
aρa

ρ2
H(ρ) W a

0 = 0 W a
i =
−aεaijρj

ρ2
(1−K(ρ)) (16)

where ρ = aer and H,K are functions to be determined. Substituting this ansatz
into the field equations (5) gives coupled nonlinear second order ordinary differ-
ential equations in H,K which are not analytically solvable. However in the BPS
limit (λ → 0) the solution is given by the Bogomolnyi equations, which with this
ansatz give the first order equations [8]:

ρ
dK

dρ
== −KH ρ

dH

dρ
= 1 +H −K2 (17)

with the solutions:

H(ρ) = ρ coth ρ− 1 K(ρ) = ρ/ sinh ρ (18)

which determines the field configuration completely for the BPS monopole. A
notable feature of this solitonic monopole solution is that it is everywhere smooth
(no singularities unlike the Dirac monopole). From equations (6), (16) and (18) it
follows that in the limit r → ∞ the magnetic field is radial and goes like ∼ 1/r2

and so we have a magnetic monopole configuration.

3.3 Montonen-Olive Duality

Having obtained the monopole solutions in the Georgi-Glashow SU(2) gauge theory
we note that the spectrum consists of a perturbative part (the W±, γ, φ as pertur-
bative excitations over the true vacuum of the theory) and a non-perturbative part
(M± as topological solitons with magnetic charge given by the winding number)
and also that the masses of these elementary states in the spectrum are determined
by their charges through the Bogomolnyi mass formula (the Higgs field is massless
in the BPS limit λ → 0). Also under a duality transformation e → g, g → −e
the spectrum is invariant (considering the masses and charges of the particles),
provided that we also interchange the perturbative and topological sectors, that
is, the gauge bosons (W±) and the BPS monopoles (M±) . This is the Montonen-
Olive duality conjecture [9] - a conjecture about the existence of a dual magnetic
formulation of the gauge field theory in which M±are the perturbative excitations
of dual fields and the W±are the topological solitons.

Since g ∼ 1/e the conjecture naturally relates the strongly coupled regime of a
theory to the weakly coupled perturbative regime of its dual. However in this gauge
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theory the massive gauge bosons have spin 1 whereas the monopole solutions, due
to rotational symmetry, have spin 0. Thus with this particle spectrum we can not
have an exact duality between the electric and magnetic sectors. However inclusion
of supersymmetry, which enlarges the spectrum of states, enables to overcome this
problem.

Another problem is that higher order radiative corrections are expected to
change M , the mass of the state, and the coupling constant as well, thus potentially
invalidating the Bogomolnyi bound. Again supersymmetry helps in resolving the
problem through the possibility of bosonic and fermionic contributions to higher
order loop corrections cancelling each other. We will see in section 5 that if all the
particle states saturate the Bogomolnyi bound then they will all belong to short
multiplets. Upon quantization the number of degrees of freedom (and hence the
number of states in the multiplet) can not change. The particle states thus continue
to belong to short multiplets and hence have their mass determined solely by the
the central charge in the supersymmetry algebra. Supersymmetry thus protects
the Bogomolnyi bound against quantum corrections.

4 The Witten Effect, Electric-Magnetic Charge

Lattice and SL(2,Z) Duality

Consider the addition of the following CP violating θ term to the Georgi-Glashow
Lagrangian:

Lθ =
θe2

32π2
~Fµν ∗ ~F µν (19)

θ is the vacuum angle. (That this is a surface term, and hence does not affect
the equations of motion, and is CP violating is most easily seen in the case of
electrodynamics - here Fµν ∗ F µν = 2∂µ(Aν ∗ F µν). Also Fµν ∗ F µν ∼ ~E. ~B and

under parity ~E → − ~E, ~B → ~B so that ~E. ~B → − ~E. ~B. Noting C invariance of Lθ
we see that it changes sign under a CP transformation).

Following [10] we will see that inclusion of this CP violating term implies that
the dyonic electric charge is no longer integral, the deviation from integrality being
proportional to θ.

Consider now the operator N generating gauge transformations which are ro-
tations (in isospace) about ~φ. For an arbitrary isovector ~v :

δ~v =
1

a
~φ× ~v

δ ~Aµ =
1

ea
Dµ

~φ
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In our theory with SU(2) spontaneously broken down to U(1) this operator is

the charge operator associated with the unbroken U(1) group. Clearly ~φ itself is

invariant under this transformation and δ ~Aµ = 0 in the Higgs vacuum at spatial

infinity (since Dµ
~φ = 0 there). N generates rotations in isospin space with rotation

angle 2π|~φ|/a which is equal to 2π in the Higgs vacuum. It need not be the identity
operator but can be any integral multiple thereof - we require exp(i2πN) = I.
Denoting the eigenvalue of N by n we get the associated Noether charge:

n =

ˆ
R3

{ ∂L
∂(∂0Aai )

δAai +
∂L

∂(∂0φa)
δφa}d3x

where L now includes the Lθ term. Since δ~φ = 0 and

∂(F a
µνF

aµν)

∂(∂0Aai )
= −4F ai0 = −4Ea

i

∂(F a
µν ∗ F aµν)

∂(∂0Aai )
= −4(

1

2
εijkF

ajk) = −4Ba
i

we have

n =
1

ae

ˆ
R3

~Ei.Di
~φd3x− eθ

8πa2

ˆ
R3

~Bi.Di
~φd3x

which can be written, using eqs. (11) and (12), as n = q
e
− eθg

8π2 . Since for the ’t
Hooft-Polyakov monopole: eg = 4πm, this becomes q = ne + meθ

2π
. The Witten

term eθ/2π thus measures the electric charge (q) a magnetic monopole (n = 0)
acquires due to the CP violating θ term. The quantized electric and magnetic
charges are then given by

q = ne+
meθ

2π
g =

4πm

e
n,m ∈ Z (20)

A dyonic state with charge (q, g) can then be represented in the complex q − g
plane as

q + ig = (ne+
meθ

2π
) + i

4πm

e
= e(n+mτ) (21)

where

τ ≡ θ

2π
+ i

4π

e2
(22)

As n,m are integers, the quantisation condition has imposed a lattice structure
on the q−g plane. The continuous SO(2) electric-magnetic duality has been broken
to a discrete subgroup and the allowed charges (electric and magnetic) carried by
the quantum states are represented by the lattice points (n,m) with the charge
lattice having periodicity (e, eτ) in the two directions.
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Now in terms of the complex field tensor ~Fµν = ~Fµν + i ∗ ~Fµν the Lagrangian
of the Georgi-Glashow model can be written as (after rescaling the gauge field by
absorbing a factor of e):

L = − 1

32π
Im(τ ~Fµν . ~Fµν) +Dµ

~φ.Dµ~φ− V (φ) (23)

With θ (the vacuum angle) defined modulo 2π, we have the duality transforma-
tion T : τ → τ + 1. At θ = 0 we have the electromagnetic duality transformation
S : τ → −1/τ . Duality invariance means that a theory and its dual with the
respective particle states, coupling constants and fields related by a duality trans-
formation are physically equivalent. The assumption of duality invariance then im-
plies that physics should be invariant under the full duality group generated by the
elements S, T . Successive action of S and T on τ transforms it to (aτ + b)/(cτ +d)
with integral coefficients, so duality acts on the complex parameter τ through linear
fractional transformations

τ →Mτ M =

[
a b
c d

]
(24)

Also det M =1 so M ∈ SL(2,Z) because S and T can be represented as

S =

[
0 −1
1 0

]
T =

[
1 1
0 1

]
both of which have determinant 1, so that the general element of the duality group
generated by successive action of these elements also has unit determinant. The
Montonen-Olive duality can thus be extended to SL(2,Z) duality - commonly
referred to as S duality.

Under S duality a state with lattice coordinates (n,m) and represented by
c = (m n)T is transformed to (MT )−1c = (dm − cn − bm + an)T . This can be
seen as follows. Consider a state

z = q + ig = e(n+mτ) =
(
eτ e

)( m
n

)
m,n being the magnetic and electric charge numbers, respectively. An SL(2,Z)
transformation rotates in the lattice the two primitive basis vectors eτ, e which
generate the lattice, to e′τ ′, e′. We have

e′τ ′ = aeτ + be (25)

e′ = ceτ + de

so that τ ′ = Mτ (since the unprimed basis vectors can be similarly expressed in
terms of the primed ones with integral coefficients we see again that the determinant
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of the transformation matrix has to be 1). With a change of basis the coordinates
n,m (which are integral points along the two axis specified by the basis vectors)
of a given state will also change to n′,m′. However since we only have a different
description of the same state z it must not change under such a transformation.
Now equations (25) imply

(
e′τ ′ e′

)
=
(
eτ e

)
MT so we require(

m′

n′

)
= (MT )−1

(
m
n

)
=

[
d −c
−b a

](
m
n

)
(26)

as claimed.
Defining

A(τ) =
1

Imτ

[
|τ |2 Reτ
Reτ 1

]
(27)

we have

4πa2cTA(τ)c = a2{(ne+
meθ

2π
)2 + (

4πm

e
)2} = a2(q2 + g2)

so that the mass formula for BPS states (the Bogomolnyi bound) can be put in the
form [2,3]

M2 = 4πa2cTA(τ)c (28)

A very important property of BPS states can now be demonstrated - the SL(2,Z)
invariance of their mass. Consider the action of duality on τ and c as described
above. Through explicit computation (using the form of the matrices M and A
given above) we find

M−1A(Mτ)(M−1)T = A(τ) (29)

Hence under a duality transformation M

4πa2cTA(τ)c→ 4πa2(M−1T c)TA(Mτ)M−1T c = 4πa2cTM−1A(Mτ)M−1T c

= 4πa2cTA(τ)c

where we have used eq.(29) in the last step. Thus the mass of BPS states is
invariant under S duality.

This means that changing the value of τ , say by increasing the coupling constant
from the weak to the strong coupling regime, does not affect the mass formula of
BPS states (which is determined by the supersymmetry algebra as we will see in the
next section). This robustness of BPS states under the tuning of the coupling con-
stant of a field theory is a key feature underlying its importance in understanding
the dynamics of the strongly coupled regime.

Not all points (n,m) of the charge lattice represent stable elementary states.
Following [11] we show that this is true only if n,m are coprime. Assuming the
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mass of all states to be given by the Bogomolnyi mass formula, that is all of them
being BPS states, the mass of such a state with charge q + ig is just the distance
of the corresponding lattice point (n,m) from the origin: M(q, g) = |q + ig| =√
q2 + g2. For any two BPS states with charges q1+ig1, q2+ig2 (lattice coordinates

(n1,m1), (n2,m2) respectively) we would expect a BPS state (n,m) with charge
q + ig (q = q1 + q2, g = g1 + g2) to be unstable if M(q, g) ≥ M(q1, g1) +M(q2, g2)
so that it could (obeying conservation of charge) decay into (n1,m1) and (n2,m2).
However the triangle inequality on the charge lattice implies

M(q, g) ≤M(q1, g1) +M(q2, g2) (30)

with the equality sign holding (and thus the BPS state being unstable) only when
the triangle degenerates into a line (the three lattice points representing the states
thus becoming collinear). When such is the case we have

m1

n1

=
m2

n2

=
m

n
≡ m1 +m2

n1 + n2

which is possible only if n,m have a common factor. Thus if n,m are coprime the
inequality (30) is strict and the BPS state (n,m) is stable.

Consider now the elementary stable BPS state (n = 1,m = 0) (This corresponds
to a W+ boson in our SU(2) gauge theory). Assuming its existence and stability for
all values of τ , S duality requires all its SL(2,Z) images to exist and be elementary
stable states. Thus instead of having just an ‘electric’ and a ‘magnetic’ description
we have a countably infinite number of ‘dyonic’ descriptions all related to each other

through S duality [11]. Hence all dyonic BPS states

[
d −c
−b a

](
0
1

)
=

(
−c
a

)
are part of the spectrum as well. However a and c are not arbitrary integers. Since
det(M) = ad − bc = 1, a and c must be coprime (If not and a = ka′, c = kc′ with
a′, c′ ∈ Z, k > 1 ∈ N then k(a′d − bc′) = 1. Since a′d − bc′ ∈ Z this is impossible
for integral k).

Thus we once again have the same result- S duality demands that all dyonic
BPS states (n,m) with n,m coprime are stable elementary states. Equivalently we
can say that the full spectrum of one-particle states comprises of all the primitive
vectors of the charge lattice (a primitive vector being defined as one which extends
from the origin to a lattice point without crossing any other lattice point).

5 Supersymmetry and BPS states

We will start by reviewing the basic features of the algebra of supersymmetry
generators and then go on to discuss unitary irreducible representations of this
algebra for one-particle massless and massive states.

13



The Poincare group of spacetime symmetries is described by the Lie Algebra of
its generators

[Pµ, Pν ] = 0

[Pσ,Mµν ] = i(ησνPµ − ησµPν) (31)

[Mµν ,Mλρ] = i(ηµλMνρ + ηνρMµλ − ηµρMνλ − ηνλMµρ)

Other than these symmetries a quantum field theory may possess “internal”
local gauge symmetries pertaining to invariance under transformations of the fields
(at each spacetime point) affected by appropriate representations of the underlying
gauge group of symmetries. This being a Lie group, the generators of symmetry
Ta have the Lie algebra: [Ta, Tb] = ifabcTc

The Coleman-Mandula theorem states that the Lie group of symmetries of the
(analytic) S-matrix of any unitary local relativistic quantum field theory (with
some additional requirements such as the presence of only one massless state and
existence of a finite energy gap between the unique vacuum and the lightest one-
particle state) must be reductive with a direct product structure of Poincare group
⊗ compact gauge group of internal symmetries (this gauge group must itself be
of the form: semi-simple ⊗ Abelian). The direct product structure implies that
all the gauge group generators commute with all the Poincare group generators-
[Ta, Pµ] = 0 = [Ta,Mµν ]; so Ta must be spin 0 operators, that is, (translationally
invariant) Lorentz scalars.

To get a non-trivial extension of the Poincare group of spacetime symmetries
we need to have spin half anti-commuting symmetry generators (denoted by QαI ,
α = 1, 2 and I = 1, 2, ....,N ). These will transform spinorialy under Lorentz
transformations and have nontrivial commutation relations with Mµν . The Haag-
Lopuszanski-Sohnius theorem is a “super” version of the Coleman-Mandula theo-
rem and states that the unique extension of the usual Lie algebra of symmetries
which is still consistent with the demands of unitarity, analyticity, locality and
causality is provided by the following Lie superalgebra:

{QαI , Q̄α̇J} = 2δIJσ
µ
αα̇Pµ {QαI , QβJ} = 2εαβZIJ {Q†αI , Q

†
βJ} = 2εαβZ

∗
IJ

[QαI , Ta] = (ta)IJQαJ [Q̄α̇I , Ta] = −Q̄α̇J(ta)JI

[QαI ,Mµν ] =
1

2
(σµν)

β
αQβI [Q̄α̇I ,Mµν ] = −1

2
Q̄β̇I(σ̄µν)

β̇
α̇ (32)

[QαI , Pµ] = 0 = [Qα̇I , Pµ] [ZIJ , X] = 0

together with the commutation relations mentioned above. Here X is any genera-
tor, ZIJ = −ZIJ = caIJTa is called the central charge in the algebra and caIJ , (ta)IJ
are constant coefficients. The possibility of occurrence of the central charges in the
algebra will be crucial in what follows.
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5.1 Irreducible unitary representations of the supersym-
metry algebra with central charge

We will now consider irreducible unitary representations of the supersymmetry
algebra for massless and massive one-particle states following [3,12].

Massless representations: For massless particles we can Lorentz transform to a
momentum kµ = (E, 0, 0, E) (E > 0) and then

{QαI , Q̄α̇J} = 2δIJσ
µ
αα̇Pµ = 4EδIJ

[
1 0
0 0

]
and thus {Q2I , Q̄2J} = 0. Since Q̄α̇J = Q†αJ we note that for an arbitrary state ψ

〈ψ|{Q2I , Q
†
2I}|ψ〉 =‖ Q2I |ψ〉||2+ ‖ Q†2I |ψ〉||

2) = 0

which is only possible for Q2I = 0. Thus half of the supersymmetry generators are
identically zero. From the relation {QαI , QβJ} = 2εαβZIJ we see that for mass-
less representations the central charge must vanish. Rescaling the supersymmetry
generators by defining aI = Q1I/2

√
E the supersymmetry algebra becomes

{aI , a†J} = δIJ {aI , aJ} = 0 = {a†I , a
†
J} (33)

so that the a, a† are fermionic annihilation/creation operators generating a Clifford
algebra in a 2N dimensional pseudo-Euclidean space with signature (N ,N ). The
Clifford vacuum |Ω〉 (which is different from the true vacuum - the ground state of
a field theory) is defined by

aI |Ω〉 = 0 ∀ I = 1, 2, ....N

and our supermultiplet, which determines the particle spectrum, is generated by
the action of a†I on |Ω〉. Thus |Ω〉, a†I |Ω〉, a

†
Ja
†
I |Ω〉, ....., a

†
1a
†
2....a

†
N |Ω〉 are the states

with different helicity, with respective multiplicity 1,NC1,
NC2, ...., 1 so that the

total number of states in the multiplet, and hence the dimension of the irreducible
representation of the algebra, is 2N .

The Clifford vacuum state |Ω〉 may be represented as |m,λ〉 - m denoting the
mass of the state (same for all states in a supermultiplet) and λ denoting its helicity.
Since in any supermultiplet the operators Q1I , Q

†
2I lower the helicity of a state by

one half while Q2I , Q
†
1I raise it by the same amount (see, for example [12] for a

proof) we see that in the massless supermultiplet the helicity ranges from λ to
λ+N /2 .

Massive representations: for massive particle states we can boost to the rest
frame so that kµ = (M, 0, 0, 0) and the supersymmetry algebra becomes

{QαI , Q̄α̇J} = 2δIJσ
µ
αα̇Pµ == 2MδIJ

[
1 0
0 1

]
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We consider first the case of no central charges. Then rescaling the supersymmetry
generators aαI = QαI/

√
2M gives

{aαI , a†βJ} = δIJδαβ {aαI , aβJ} = 0 = {a†αI , a
†
βJ}

This is again a Clifford Algebra, this time in a 4N dimensional pseudo-Euclidean
space with signature (2N , 2N ). This time, on account of their being twice as many
non-trivial fermionic annihilation/creation operators, the irreducible representation
of this algebra is now 22N dimensional.

In this case the Clifford vacuum is degenerate |Ω〉 = |m, s, s3〉 (s3 = −s,−s +
1, .......s− 1, s) so the degeneracy is 2s+ 1 fold. All the other states of the massive
supermultiplet are generated, as before, by the action of the fermionic creation
operators a†αI on |Ω〉 (This time the spins are added as in adding angular momenta,
that is, using Clebsh-Gordon coefficients). The highest spin state , with spin s +
N /2, is a†α1a

†
α2....a

†
αN |Ω〉, α = 1 or 2.

We consider now the case of massive representations when we have a central
extension of the supersymmetry algebra. The algebra is invariant under the auto-
morphism

QαI → UIJQαJ Q̄α̇I → Q̄α̇JU
∗
IJ

of the supersymmetry generators where U is an N ×N unitary matrix. Thus the
different supersymmetry generators can be transformed into one another under this
internal unitary symmetry. Since ZIJ is antisymmetric it can be brought, through a
unitary transformation, into the form ε⊗D, ε being the 2×2 antisymmetric matrix
and D an (N/2) × (N /2) diagonal matrix with real positive entries z1, z2, ....zN/2
(we are considering here the case of even N ). So

ZIJ =



0 z1
−z1 0

0 z2
−z2 0

. .

. .
0 zN/2

−zN/2 0


We split the index I into A, iwithA = 1, 2 and i = 1, 2, ....N /2, and write the
supersymmetry algebra as

{QαAi, Q
†
βBj} = 2MδijδαβδAB

{QαAi, QβBj} = 2εαβεABδijzi

16



Now defining

A±αi =
1

2
(Qα1i ± Q̄α̇

2i)

and noting that Q̄α̇ = εα̇β̇Q̄β̇ and Q†α = Q̄α̇, the supersymmetry algebra becomes

{A±αi, (A±βj)
†} = δαβδij(M ± zi)

so that in particular M ± zi = {S±αi, (S±αi)†} (sum over α, no sum over i) and so for
any normalized state ψ

M ± zi = 〈ψ|M ± zi|ψ〉 = ||A±αi|ψ〉||2 + ||(A±αi)†|ψ〉||2 (34)

and the non-negativity of the norm implies M ± zi ≥ 0 or

M ≥ |zi| ∀i = 1, 2, ......,N /2 (35)

The central charges thus constrain the mass of the state. As we will see later
the central charges are related to the electric and magnetic charges, as defined by
eqs.(11) and (12), in a non-abelian gauge field theory with gauge group sponta-
neously broken to U(1). The above inequality is then just the Bogomolnyi bound-
eq.(13). We thus see that supersymmetry provides a natural setting for the Bogo-
molnyi bound - and thus for BPS states - it follows naturally from the properties
of irreducible unitary representations of the supersymmetry algebra with a central
charge.

If M > zi ∀ i = 1, 2, ....N /2 then we can again define a±αi = A±αi/
√
M ± zi and

recombining (±, i) = I we recover the Clifford algebra for massless states (eqs.
(33)). Thus in this case we can rescale our supersymmetry generators to get the
usual algebra for massless representations. However something essentially different
happens if the bound M = zi is saturated for i = 1, 2, .....q (≤ N /2) . Then from
eq. (34) we note that

||A−αi|ψ〉||2 + ||(A−αi)†|ψ〉||2 = 0

so that A−αi = 0 ∀ i = 1, 2....q and α = 1, 2. Then 2q of the 2N supersymmetry
generators can be taken to be zero. The rest of the 2(N − q) generators again
generate a Clifford algebra whose irreducible representation is 22(N−q) dimensional.
The dimension of the representation is smallest, equal to 2N when the bound
M = zi is saturated for all i = 1, 2, ...,N /2 so that all the corresponding A−αI = 0 .
Hence N independent linear combinations of N of the supersymmetry generators
would annihilate all the states in such a multiplet.

Thus even though we have a massive representation, when the bound M = zi
is saturated for all i, the dimension of the representation - and hence the number
of states in the supermultiplet - equals that for the massless case. Such a repre-
sentation is called a short representation of the supersymmetry algebra and arises
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due to the presence of central charge. The states of the short multiplet are called
BPS states - these are thus annihilated by half of (some linear combinations of)
the supersymmetry generators.

We give below (following [13]) another derivation of the supersymmetric ana-
logue of the Bogomolnyi inequality. Consider the operator

AαI = QαI − UIJεαβQ†βJ
(repeated indices summed over). Here UIJ is any N × N unitary matrix which
“rotates” the Q’s into one another - it will later be fixed by the central charge of
the algebra. We note that {AαI , A†αI} is a positive definite operator:

〈ψ|{AαI , A†αI}|ψ〉 =
∑
α,I

(‖ AαI |ψ〉||2+ ‖ A†αI |ψ〉||
2) ≥ 0 (36)

for any state ψ (the equality holding only when ψ is zero). Evaluating the anti-
commutator we have:

{QαI − UIJεαβQ†βJ , Q
†
αI − U

∗
IKεαβQγK} = {QαI , Q

†
αI}+ δJKδβγ{Q†βJ , QγK}

−UIJεαβ{Q†βJ , Q
†
αI} − U

∗
IKεαγ{QαI , QγK} (37)

where we have used εαβεαγ = δβγ and U∗IKUIJ = δJK . Now using the supersymme-
try algebra (eqs.(32)) we have

{QαI , Q
†
αI} = 2PµTrσ

µTrIn = 4NP 0

as Tr~σ = 0. With εαβεαβ = 2, {QαI , QγK} = 2εαγZIK and {Q†βJ , Q
†
αI} = 2εαβZ

∗
IJ

the right hand side of eq. (37) simplifies to

8NP 0 − 4(UIJZ
∗
IJ + U∗IKZIK) = 8NP 0 − Tr(UZ† + U †Z)

We now use the polar representation for the operator Z: Z = RE where R is
positive hermitian (“radial” part) and E is unitary (“exponential” part). Fixing
our arbitrary U to be E we have Tr(UZ†+U †Z) = Tr(EE†R+E†RE) = 2Tr(R).

Also ZZ† = R2 ⇒ R =
√
ZZ†. Hence, boosting to the rest frame P 0 = M , the

non-negativity requirement (eq.(36)) implies 8MN − 8Tr(
√
ZZ†) ≥ 0 or,

M ≥ 1

N
Tr(
√
ZZ†) (38)

which gives a lower bound on the mass, given the central charge. For N = 2

supersymmetry (which we discuss below) ZIJ =

[
0 Z12

−Z12 0

]
so that there is

only one central charge Z12 and Tr(
√
ZZ†= Tr(|Z12|I2) = 2|Z12| so that in this

case the inequality is
M ≥ |Z12| (39)
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5.2 The central charge in a two-dimensional supersymmet-
ric field theory

The fact that a supersymmetric field theory naturally incorporates the Bogomolnyi
bound can be illustrated perhaps most simply (we follow the analysis of [1]) in a
1 + 1 dimensional supersymmetric field theory with Lagrangian:

L =
1

2
(∂+φ∂−φ+ iψ+∂+ψ+ + iψ−∂−ψ− −W 2(φ) + 2iW

′
(φ)ψ+ψ− (40)

Here we work in the lightcone variables with ∂± = ∂0±∂1 = (∂t±∂x). We have one
bosonic scalar field φ and one fermionic field - given by a Majorana spinor ψ with
chiral components ψ± (under a Lorentz boost with boost parameter (rapidity) ϑ,
ψ± → e±ϑ/2ψ±) of positive and negative chirality, respectively.

Invariance of the action under the infinitesimal supersymmetry transformations:
δφ = iεψ− δψ+ = εW δψ− = −ε∂+φ
δ
′
φ = iεψ+ δ

′
ψ+ = −ε∂−φ δ

′
ψ− = −εW

implies the existence of the following two conserved charges:

Q+ =

ˆ +∞

−∞
[(π + ∂1φ)−Wψ+]dx (41)

Q− =

ˆ +∞

−∞
[(π − ∂1φ) +Wψ−]dx

with π = ∂0φ ≡ φ̇. Invariance under space translation gives the field momentum
as a conserved charge:

P =

ˆ +∞

−∞
[π∂1φ+

i

2
(ψ+∂1ψ+ + ψ−∂1ψ−)]dx (42)

From the Lagrangian we can define the conjugate momentum variables π = ∂L/∂
.

φ =

φ̇ , η± = ∂L/∂
.

ψ± = i
2
ψ± and then define the Hamiltonian density through a Leg-

endre transform on L:

H =
1

2
(π2 + (∂1φ)2 − iψ+∂1ψ+ + iψ−∂1ψ− +W 2(φ)− 2iW

′
(φ)ψ+ψ−)

Canonical quantisation then leads to the usual equal-time commutation/anti-
commutation relations including the following non-vanishing ones:

[φ(x), π(y)] = iδ(x− y), {ψ+(x), ψ+(y)} = δ(x− y) = {ψ−(x), ψ−(y)} (43)

Upon quantisation the conserved supercharges become the supersymmetry gener-
ators and using eqs. (41), (42) and (43) we get for the supersymmetry algebra:

Q2
± = P± = H±P {Q+, Q−} =

ˆ +∞

−∞
2W (φ)(∂φ/∂x)dx = 2

ˆ +∞

−∞
(∂F (φ)/∂x)dx = 2Z
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where F
′
(φ) = W (φ). Z is usually zero but it is a characteristic feature of solitonic

solutions that due to topological reasons such boundary terms are non- zero. Now,

(Q+ ±Q−)2 = Q2
+ +Q2

− ± {Q+, Q−} = P+ + P− ± 2Z

So P+ + P− = (Q+ ± Q−)2 ∓ 2Z. Now in the rest frame P+ + P− = 2H = 2M
(M being the rest mass of the solitonic state) and (Q+ ± Q−)2 is a non-negative
operator. Thus it follows that M ≥ Z , the mass of the states being constrained by
the central charge in the supersymmetry algebra. This bound is saturated for BPS
states. In the quantum theory these are the states ψ for which (Q+ + Q−)ψ = 0
or (Q+ −Q−)ψ = 0.

5.3 N = 2 supersymmetric Yang-Mills theory

We will now consider a supersymmetric extension of the Georgi- Glashow model
with N = 2 supersymmetry [1,2,3]. The fermionic part of the Georgi-Glashow
Lagrangian would be of the type ∼ ψ̄γµDµψ with ψ a Dirac spinor so that the full
spectrum comprises of four on-shell fermionic degrees of freedom (two each from the
two independent 2-spinors which constitute ψ) and three bosonic degrees of freedom
(two from the gauge field and one from Higgs). For having supersymmetry we need
equal contributions from the bosonic and fermionic sectors of the supermultiplet so
we include a (pseudo)scalar field (P ) so that all the particles in the spectrum belong
to an N = 2 vector supermultiplet which consists of an N = 1 chiral multiplet -
a complex scalar (spin 0) and a Weyl fermion (spin 1/2)- adjoined to an N = 1
gauge multiplet - a Weyl fermion (spin 1/2) and a gauge boson (spin 1). With
all the fields in the adjoint representation of the gauge group SU(2) the N = 2
supersymmetric Lagrangian is

L = Tr(−1

4
FµνF

µν +
1

2
(DµS)2 +

1

2
(DµP )2 − e2

2
[S, P ]2 + iψ̄γµDµψ (44)

−eψ̄[S, ψ]− eψ̄γ5[P, ψ])

The potential term involving [S, P ] must be zero for lowest energy states. Since
the gauge group is SU(2) this means S and P must be parallel in isospace (for
successive rotations to commute they must have the same axis, that is, be coplanar).
An extra potential term ∼ λ(S2 + P 2 − a2) would break the supersymmetry but
we may give the fields S, P non-zero expectation values and then take λ→ 0. The
SO(2) symmetry in S and P evident from the above potential term implies that we
may take P = 0 and generate a non-zero P through a SO(2) rotation. With P set
to zero the bosonic part of the Lagrangian (44) is just that of the Georgi-Glashow
Lagrangian (with φ = S). As a result the N = 2 supersymmetric BPS monopole
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solutions (with the ’t Hooft Polyakov ansatz) are still given by eqs.(16). With an
SO(2) rotation we can then get a non-zero P , the solutions thus being of the form

Sa = α
aρa

ρ2
H(ρ) P = β

aρa

ρ2
H(ρ) W a

0 = 0 W a
i =
−aεaijρj

ρ2
(1−K(ρ)) (45)

where α and β are constrained by α2 + β2 = 1 and H,K are given by eqs. (18).
Similarly supersymmetry transformations would generate fermionic solutions (dis-
cussed in the next section). Under the supersymmetry transformations

δAµ = iᾱγµψ − iψ̄γµα

δS = iᾱψ − iψ̄α (46)

δP = ᾱγ5ψ − ψ̄γ5α

δψ = (γµνFµν − γµDµS + iγµDµPγ5 − i[P, S]γ5)α

(with α being a constant Dirac spinor and the generator γµν = 1
4
[γµ, γν ] being

an element of the spinorial representation of the Lorentz group) the Lagrangian
changes upto a total derivative so that the corresponding action is invariant.

The Lagrangian (44) can be written in terms of a single complex scalar field
φ = 1√

2
(S + iP ) and the two Weyl spinors χ1, χ2 which together form the Dirac

spinor ψ

L = Tr[−1

4
FµνF

µν +Dµφ†Dµφ−
e2

2
[φ, φ†]2 − iχ̄1σ

µDµχ1 − iχ̄2σ̄
µDµχ2 (47)

−ie
√

2φ†{χ1, χ2}+ ie
√

2{χ̄2, χ̄1}φ]

5.4 States of the short multiplet solve the Bogomolnyi equa-
tion

In our description of the Georgi-Glashow model we defined a BPS state to be
a static finite energy field configuration which solves the Bogomolnyi equation
~Bi = ±Di

~φ. However in describing irreducible unitary representations of the su-
persymmetry algebra with central charge we defined a BPS state as one belonging
to short representations of the algebra. Here we will show (for N = 2 supersym-
metry) that it is unambiguous to call them both BPS states as the two definitions
are in fact equivalent [2].

Already, we have seen that the mass of the classical solitonic BPS states is
given by the Bogomolnyi bound and for supersymmetric quantum states we have
a similar constraint on the mass (eq. (38)). In N = 2 supersymmetric Yang-Mills
theory there is only one central charge Z12 ≡ Z so for states in the short multiplet
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M = |Z| and as we will see in the next section |Z| =
√
q2 + g2 so that the mass

formula in both the cases is the same.
Considering now N = 2 supersymmetric Yang-Mills theory and the eqs. (46)

we see that starting with the classical (bosonic) solutions (fermionic fields set to
zero) a supersymmetry transformation on a BPS monopole background would leave
the gauge and scalar fields unchanged while the fermionic variation is:

δψ = (γµνFµν − γµDµS)α

As before we set P = 0 through an SO(2) rotation (a nonzero P can again be
generated by an SO(2) rotation of P and S). Since the BPS monopole is static
with D0S = 0 = F0i the above variation reduces to

δψ = (γijFij − γiDiS)α

Now Fij = 1
2
εijkBk and for the BPS monopole2 Bi = DiS so this becomes

δψ = (
1

2
εijkBkγ

ij − γiBi)α

Now using 1
2
εijkγ

ij = −γkγ0γ5 and defining γ0γ5 = Γ5 we have

δψ = −γkBk(1 + Γ5)α

Define P± = 1
2
(1±Γ5) then P 2

± = P±, P+P− = P−P+ = 0 so that P± are 3 projectors
and we have δψ = −γkBkP+α. If we take α = P−ε (α, ε constant Dirac spinors)
then δψ = 0 while a supersymmetric variation of the other chirality (P+α) gives
δψ = −γkBkε. Thus supersymmetry transformations with different chiralities act
differently and one half of the supersymmetry is broken while the other half does
not change the zero fermion field on the monopole background and so remains
unbroken.

So the BPS state, as defined through the solution of the Bogomolnyi equation, is
invariant under the action of half of supersymmetry transformations. In our earlier
analysis of short representations of the supersymmetry algebra we saw that half of
the supersymmetry generators (usually linear combinations of the generators) act
trivially on all states of a short multiplet, that is all such states are annihilated
by half of the generators. Thus we have shown that solutions of the Bogomolnyi
equation (in the N = 2 supersymmetric extension of the Georgi-Glashow model)
are states in the short representation of the supersymmetry algebra.

2Here we consider all fields to be Lie algebra valued- Xi = Xa
i Taand so do not need vector

signs

3We are using a basis in which γ0 =

[
0 i
−i 0

]
, γk =

[
−iσk 0

0 iσk

]
and γ5 =

[
0 −i
−i 0

]
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Following the above argument in reverse we can easily show the converse- states
annihilated by half of the supersymmetry generators (and thus belonging to short
multiplets) are solutions to the Bogomolnyi equation. We need only show that
δψ = 0 ⇒ the Bogomolnyi equation. Consider the supersymmetry variation of
negative chirality so that

δψ =
1

2
(−γkBkγ0γ5 − γiDiS)(1− Γ5)ε = 0

or,
γkBkΓ5 + γiDiS − γiΓ5DiS − γkBkΓ

2
5 = 0

With Γ2
5 = 1 we can put this in the form

γkBk(1− Γ5)ε+DkSγ
k(Γ5 − 1)ε = 0

or (Bk −DkS)γkBkε = 0⇒ DkS = Bk which is the Bogomolnyi equation. q.e.d.

5.5 The central charge in N = 2 super Yang-Mills theory

We will now evaluate the central charge in N = 2 supersymmetric pure (that is,
without matter) Yang-Mills gauge theory. This was first done in [1]. As in the
previous example, we will see that the central charge arises as a boundary term
and, in this case, can be expressed in terms of the electric and magnetic charges
associated with the field configuration. We follow references [1,14,15]

From the supersymmetry algebra we see that

2εαβZ = {Qα1, Qβ2} (48)

Since we have N = 2 supersymmetry there will be two independent supersymmet-
ric variations of the fields that leave the action invariant. By Noether’s theorem
we will then have two supercurrents and the volume integrals over their tempo-
ral components will give two independent conserved charges. Upon quantisation
these conserved charges will generate the respective supersymmetry transforma-
tions. Thus we need to evaluate

{Qα1, Qβ2} = {
ˆ
J0
α1d

3x,

ˆ
J0
β2d

3y} (49)

The conserved supercurrent arising from the supersymmetry transformation on the
Lagrangian (47) can be shown to be (see reference [14])

Jµα1 = σναα̇χ
aα̇
1 (iF aµν + ∗F aµν) +

√
2(σν σ̄µχa2)α(Dνφ

†)a + σµαα̇χ̄
aα̇
1 φ

†Taφ
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Due to the N = 2 supersymmetry the other supercurrent may be obtained from
this one through χ1 → χ2, χ→ −χ1. Hence using χ̄α̇1 = εα̇β̇χ†

β̇1
= (iσ2χ

†
1)
α̇ we get

J0
α1 = −(iσiσ2χ

†a
1 )α(iF a0i + ∗F a0i) +

√
2(σiχ

a
2Diφ

†a)α + (iσ2χ
†a
1 )αφ

†Taφ

and (with χ1 → χ2, χ2 → −χ1)

J0
α2 = −(iσiσ2χ

†a
2 )α(iF a0i + ∗F a0i)−

√
2(σiχ

a
1Diφ

†a)α + (iσ2χ
†a
2 )αφ

†Taφ

We can now evaluate the desired anti-commutator (eq. (49)). We notice that
the central charge contribution can come from the first term in the above two
equations and also, as χ1, χ2 are independent, the non-vanishing terms have the
anti-commutators ∼ {χ1, χ

†
1}, {χ2, χ

†
2}. Thus, noting the definitions of the non-

abelian electric and magnetic fields, we have

{Qα1, Qβ2} = i
√

2

ˆ ˆ
d3xd3y[(σiσ2)αγ(σj)βδ{χ†aγ1, χbδ1}

−(σj)αγ(σiσ2)βδ{χ†aγ2, χbδ2}](iEa
i +Ba

i )Djφ
†b

= i
√

2

ˆ
d3x[(σiσ2σ

T
j )αβ − (σiσ2σ

T
j )βα](iEa

i +Ba
i )Djφ

†b

where in the last step we have used

{χ†aγI(~x), χbδI(~y)} = δabδγδδ
3(~x− ~y) I = 1, 2

Now since σ2~σσ2 = −~σ and σjσi = 1
2
{σj, σi}+ 1

2
[σj, σi] = δji + iεjikσk we have

σiσ2σ
T
j = −σ2σTi σTj = −σ2(δij − iεijkσTk )

so that
(σiσ2σ

T
j )αβ − (σiσ2σ

T
j )βα = −2(σ2)αβδij = 2iεαβδij

as (σ2)αβ is antisymmetric and (εijkσ2σ
T
k )αβ is symmetric. So we get

{Qα1, Qβ2} = −2
√

2εαβ

ˆ
d3x(iEa

i +Ba
i )Diφ

†a

Now as noted before we can set P = 0 by an SO(2) rotation so that φ = 1√
2
S and

{Qα1, Qβ2} = −2εαβ(i

ˆ
d3x ~Ei.Di

~S +

ˆ
d3x ~Bi.Di

~S)

From eqs. (11) and (12) (with ~φ ≡ ~S) we see that

{Qα1, Qβ2} = −2aεαβ(iq + g) (50)
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so that we have the required central charge Z12 (see eq. (48)) which, using eq. (39)
gives

M ≥ a
√
q2 + g2

We have thus shown, for N = 2 supersymmetric Yang-Mills theory, that the in-
equality (38) is the same as the Bogomolnyi inequality (13).

In general the spectrum of states of a supersymmetric gauge field theory will
contain states other than BPS states. However, if mass is acquired through the
Higgs mechanism it may be argued that all fundamental one-particle states of the
theory must be BPS states. This is because the Higgs mechanism does not change
the degrees of freedom - turning on a non-zero vacuum expectation value for the
scalar Higgs field some states become massive while others disappear, but the total
number of degrees of freedom does not change [1,3]. Thus as the states in a massless
supermultiplet acquire mass, the dimension of the representation (=2N ) can not
change. So the massive states must necessarily belong to a short multiplet (and
hence the supersymmetry algebra must have a central charge).

Such is the case with N = 4 super Yang-Mills theory. All the states belong to a
short representation of dimension 24 = 16. Further there is a unique supermultiplet
of such states which is CPT self-conjugate, accommodates both gauge bosons and
monopoles and does not have particles with helicity greater than one in magnitude.
This theory is known to have a vanishing beta function - the coupling constant
doesn’t run with a renormalisation scale - which means that bare and renormalised
masses and charges are the same and hence the Bogomolnyi mass formula continues
to hold in the quantum theory. In N = 2 super Yang-Mills, monopoles still can not
have spin one as they belong to the N = 2 hypermultiplet whereas gauge bosons
with spin one belong to the different N = 2 vector multiplet. However N = 4
super Yang-Mills carries monopoles and gauge bosons in one supermultiplet and
both monopoles (in the topological sector) and gauge bosons (in the perturbative
sector ) possess spin one, so this theory is a suitable candidate for the realization
of the Montonen-Olive duality conjecture [16].

6 Discussion

In this essay we have reviewed some basic features of BPS states. Besides super-
symmetric field theories, these special states play a prominent role in string theory,
particularly in the dualities uncovered in the 1990’s which relate the perturbative
and non-perturbative sectors of the moduli spaces of different types of string the-
ories. The well known Strominger-Vafa microscopic derivation of the Bekenstein-
Hawking entropy formula for extremal supersymmetric black holes relies on their
BPS nature: the black hole mass is the least possible given its charges.
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In the last few years duality has been a key feature leading to important progress
in supersymmetric field theories, most notably the complete solution of N = 2
supersymmetric gauge theory provided by Seiberg and Witten. This is the first
known example of an exactly solvable strongly coupled quantum field theory in four
dimensions and the occurrence of monopole condensation in its low energy regime
seems to hold much promise for understanding colour confinement in Yang-Mills
[17,18]. Due to asymptotic freedom in QCD, the problem of quark confinement
involves the strongly coupled (hence non-perturbative) low energy regime. As we
saw in section 3 the low energy solitonic field configurations in non-abelian gauge
theories were given by BPS monopole solutions. This leads us to believe that
BPS states in the form of monopole configurations may play an important role in
determining the dynamics of an asymptotically free non-abelian gauge field theory
in the low energy regime.

Indeed, the Seiberg-Witten analysis of N = 2 supersymmetric SU(2) Yang-
Mills theory and construction of its low energy effective Lagrangian shows that
this theory has a confining phase where the fundamental states are no longer those
of the microscopic Lagrangian but are bound states of monopoles [17]. This is
closely analogous to what is actually realised in Nature - asymptotic freedom in
the ultraviolet regime with quarks and gluons as the fundamental states whereas
at low energy we get hadronic bound states (“infrared slavery”).

Of course, supersymmetry is central to this scheme and so, if Nature is super-
symmetric, a correct description of hadronic physics should be through a suitable
supersymmetric SU(3)Yang-Mills field theory. In such a case, the hope remains
that the powerful methods based on duality would shed more light on (and probably
eventually resolve?) the outstanding riddle of quark confinement in Nature.
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