Some

Secure Computation
Concepts

Manoj Prabhakaran



Keywords

@ Secure multi-party computation
@ Linear Secret-Sharing
@ Passive secure BGW protocol

@ Omitted: Yaos Garbled Circuit, Randomized Encoding, Conditional
Disclosure of Secrets, UC Security, ...

@ Private Information Retrieval, Oblivious RAM, Searchable Encryption
@ Homomorphic Encryption & Fully Homomorphic Encryption
@ More tools in the horizon

@ Obfuscation, Functional Encryption, ...



Secure Function Evaluation

B A general problem

®To compute a function of private
inputs without revealing
information about the inputs

@ Beyond what is
revealed by the
function




Poker With No Dealer?

®Need to ensure

@ Cards are shuffled and
dealt correctly

3 Complete secrecy

®No “cheating” by
players, even if
they collude

®No universally trusted
dealer




Mental Poker

Adi Shamir, Ronald L. Rivest
and Leonard M, Adleman

MASELQCHIEETTS IMSTITITE OF TECEMOTIOEY

MRSTR4CT

Uit oo poterstielly dishomest plegers play & Sair g of
pocdoer weothnam wesing, aeep camdi— e eample, e Hhen: ez
Theiz peapoer [“trrn:rrAWJ).lL... the fidle SO SR T

1 M. jEagmenes s hemsanbal peoed srgpdic., |
2 W, Oversact seond] poowepedets pereoon] @i,




Emulating Trusted
Computation

@ MPC: to emulate a source of trusted computation

@ Trusted means it will not “leak” a partys information to
others

@ And it will not cheat in the computation

@ A tool for mutually distrusting parties to collaborate



Is it for Real?

@ Getting there! Many implementations/platforms
@ Fairplay, VIFF
@ Sharemind
@ SCAPI
@ Obliv-C
@ JustGarble
@ SPDZ/MASCOT
@ OblivM

o ..

@ www.multipartycomputation.com/mpc-software




Is it for Real?

@ And many practical systems using some form of MPC
@ Danish company Partisia with real-life deployments (since 2008)

@ sugar beet auction, electricity auction, spectrum auction, key
management

@ A prototype for credit rating, supported by Danish banks
@ A proposal to the Estonian Tax & Customs Board
@ A proposal for Satellite Collision Analysis

@ Proposed legislation in the US to use MPC for an application
(“higher education data system®)

o ..



MPC Dimensions

Output delivery

Efficient

Guaranteed

Asynchronous ™ [nefficient

Commitment
Broadcast

Iz A 1

Standalone

T



Secret-Sharing

@ Dealer encodes a message into n shares for n parties

@ Privileged subsets of parties should be able to reconstruct the
secret

@ View of an unprivileged subset should be independent of the
secret

@ Very useful

@ Direct applications (distributed storage of data or keys)

@ Important component in other cryptographic constructions
@ Secure multi-party computation
@ Attribute-Based Encryption
@ Leakage resilience ...



Threshold Secret-Sharing

@ (n,t)-secret-sharing

@ Divide a message m into n shares s;,...,Sn, such that

@ any t shares are enough to reconstruct the secret

@ up to t-1 shares should have no information about the

secret

@ (2,2) secret-sharing

\/

\_

e.g., (s1,...,5+-1) has the same
distribution for every m in
the message space

N

y

@ One share is a key, and the other an encryption of the

message using the key

@ One-time encryption suffices: One share is K and the other

IS mMeK



Threshold Secref—Sharlng

Addlhve Secret- |
Sharing

A 4

@ Construction: (n,n) secret-sharing

@ Message-space = share-space = G, a finite group

@ e.g. G = 7§ (group of d-bit strings, with @ as the group operation)
@ Share(M):

@ Pick si,...,5n-1 uniformly at random from G
@Llet sn=-(S1+ .. +5n1) + M

@ Reconstruct(sy,...,5n): M = S1 + ... + Sp,




An Application

@ Gives a "private summation” protocol (for commutative groups)

Clients with inputs

6

Share 9 _j //O // /O
P
rCan generalise to any\

linear combination Servers
. —__ Add
over (say) a ring

Add ) ,
Client with output

@ “Secure against passive corruption” (i.e., no colluding set of
servers/clients learn more than what they must) if at least one
server stays out of the collusion




Linear Secret-Sharing

@ Recall (n,n) secret-sharing

@ Share(M): si,...,Sn-1 uniform, and sp = - (S1 + ... + Sn-1) + M

@ Reconstruct(si,...,5n): M = S1 + ... + Sp

R ‘ M R S1
A \ g S1 S2
\ sz =
Reconstruction vector W :
RstRW=[10..O0] % e ] B

Sn

@ (n,t) secret-sharing: for each privileged set T C n (i.e,, T with |T| > t)

IRt with support only on positions in T, s.t. Rt-W =[1 0 ... O]

@ Linearity guarantees that for unprivileged sets, the view is equally

likely for all messages



Linear Secret-Sharing

@ (n,1) secret-sharing: for each privileged set T C n (i.e., T with |T| > 1)
IRt with support only on positions in T, s.t. Rt*W = [1 O ... O]

@ Linearity guarantees that for unprivileged sets, the view is equally
likely for all messages

Rt | Rt
1a a2 .. at! M S1

| e 1 az a2 .. az™! C1 S2
4
(o]

Polynomial

interpolation '
P Ct-1

l an anz (Y1) dnf'l sn

@ Shamir secret-sharing (all operations over a field):

@ Sharing: Using the Vandermonde matrix. n shares are evaluations of
a polynomial f(X) =M + ¢ci1X + ... + c+1X*! at points ay,...,an

@ Reconstruct({si}ict): Langrange interpolation to obtain M = f(0)




Linear Secret-Sharing

@ Allows computing on shares!

Ml MZ Mv
Ci1 C2i Cvi
Ci2 Ca2 Cv2

C l,u ‘Cz,u -Cv,u

011 O2;

Oi1n O2n

Ovi

o'Vl'l

L —

Product with each
row computed

locally by a party

@ Associativity of matrix multiplication: Can compute the shares of a
linear combination of the messages as a linear combination of the

shares of the messages



Switching Schemes

@ Can move from any linear secret-sharing scheme W to any other
linear secret-sharing scheme Z “securely”

@ Share each w; using scheme Z: (0iy,...,0in)— Z.Share(w;)
@ Locally each party j reconstructs using scheme W:
z; — W.Recon (03ij,...,0nj)

Pl

m VY1
r

— M-

= A

i

P

o



Switching Schemes

@ Can move from any linear secret-sharing scheme W to any other

linear secret-sharing scheme Z “securely”

@ Given shafes (Wi, ..., Wn) 7 W.Share(m)

@ Locally each party j reconstructs using scheme W:
z; — W.Recon (0yj,...,0nj)

Party i picks ith
column




Switching Schemes

@ Can move from any linear secret-sharing scheme W to any other

linear secret-sharing scheme Z “securely”

LY A T ———— St R e e——— . aW |

@ Given shares (wy, , Wp) < W.Share(m)
@ Share each w; using scheme Z: (0ii,...,0in)<— Z.Share(w;)

Party j computes jth row




MPC from Shamir Secret-Sharing

@ A function f given as a program with linear steps and

multiplications: arithmetic circuit (over a finite field)
Clients with inputs

.8 8 8 8
//

Linear
Need n > 2d parties. steps EBo
Security against d
colluding parties Mult. Mult. Mult.

Client with output

@ Locally multiplying degree d shares of M; and M; gives a degree
2d share of M;-M; . Then switch back to a degree d share

(involves communicating deg. d shares of deg. 2d shares)



MPC Protocols

@ For every function, if there is an honest majority (or #honest
parties > n/3, when colluding parties can be actively corrupt)

@ Based on Secret-Sharing and broadcast (e.g., BGW scheme)

@ No computational hardness required

Or similar

@ Not applicable in the 2-party setting

@ Also possible for every function when there is no honest majority
(e.g., in the 2-party setting), using Oblivious Transfer

@ e.g., scheme based on Yaos Garbled Circuit (a special case of
"Randomized Encoding”) or "MPC in the head” techniques

@ Oblivious Transfer requires computational hardness

@ Also possible for a few functions without honest majority and
without computational hardness T

Exactly which ones
remains open!




An OT Protocol

(passive corruption)
B Using a (special) encryption

B PKE in which one can sample
a public-key without knowing
secret-key

P c;p inscrutable to a
passive corrupt receiver

(SKb, pr) &« KegGen
Sample PK/

3 Sender learns nothinc




Additional Aspects

@ Efficiency/Scalability
@ What is OK fo compute
@ cf. Differential Privacy
@ Effect of “leakages”?
@ Network model
@ Incomplete network
@ Variable set of participants
@ Not everyone online at once

@ Asynchronous communication vs. need for good throughput



Securing Cloud Storage

3 Private Information Retrieval
@ Retrieve D[i] from a server without revealing i

@ Oblivious RAM

@ Allow read and write operations on data stored on the
server, and do not reveal access pattern

@ Searchable Encryption

@ Allow search operations on data stored encrypted on
the server (OK to reveal the access pattern)



Homomorphic Encryption

@ Group Homomorphism: Two groups G and G' are homomorphic if
there exists a function (homomorphism) f:G—G" such that for all

X,y € G, f(x) +c¢ fly) = f(x +c y)

@ Homomorphic Encryption: A CPA secure (public-key) encryption
s.t. Dec(C) +m Dec(D) = Dec (C +¢ D) for ciphertexts C, D

@ i.e. Enc(x) +c Enc(y) is like Enc(x +m V)
@ Interesting when +c doesnt require the decryption key

@ e.g. El Gamal Encryption:
Given PK, Y=gv, Ency(m;x) = (gx,mY*) (x being random).
So, (gxl'lexl) X (glemzYXZ) = (gx3,m1m2Y><3)



Homomorphic Encryption:
Examples

@ Group structure of the message space determined by the
construction of the encryption scheme

@ ElGamal: Message space is a group where the Decisional Diffie-
Hellman assumption is made (e.g., quadratic residues modulo a
“safe prime,” with group operation being modular multiplication)

® Goldwasser-Micali: Message space is Z; (i.e., bits with XOR as

the group operation)

@ Paillier: Message space is Z, for specially chosen n (group

operation is modular addition)

® Damgard-Jurik: Message space Zns Yields ciphertext space within

Zns+1. Enables encrypt-compute-encrypt-compute-...



Computational PIR from HE

@ In the following: database values are integers in [O,m), and we can
use any homomorphic encryption scheme with a message space
iIsomorphic with Z, with n 2 m

@ e.g., Paillier encryption with message space Z, (n > m)

[+]
T

@ For integer a and ciphertext ¢, can define a*c recursively:
Oxc = E(0); 1*c = ¢; (a+b)*c = a*c [+] bx*c.

K
: =




Private “_I_nFormqfion Retrieval

X1 - Server communication
IS very short. But
X2 client communication
is larger than the db!
>
| X




Full-Fledged PIR protfocol

@ Uses Damgard-Jurik to

1T ] treat ciphertext at one

@+ | level as plaintext at the
next level

@ Total communication

[ [ from server

@ = O(log N log m)
[ T 1

¢




Learning With Errors

N H
.
=
. -
- 2
g
.

@ A consequence of LWE: Can generate a pseudorandom matrix

M € Eq"‘x"' and z € Zg" s.t. entries of Mz are all “small”



FHE from LWE

!=H

@ A scheme to encrypt bits, supporting homomorphic NAND
@ Enc(u) = MR + uG where R «— {0,1}™*™ and G € Z"*™ to be defined

@ Decz(C) : 2C = 8T + uz'G where 8T =eTR. Check if it is "small.’
@ NAND(C1,C2) : G - C;-B(C2), where B carries out “bit decomposition”
@ G is a ciphertext of 1, and C;-B(Cz) works as AND(C,,C>)



FHE from LWE

@ A scheme to encrypt bits, supporting homomorphic NAND
@ Enc(u) = MR + UG where R < {0,1}™*™ and G € Z"*™ to be defined

@ Decz(C) : 2C = 8T + uz'G where 8T =eTR. Check if it is "small.’
@ NAND(C,,Cz) : G - C;-B(Cz2), where B carries out "bit decomposition”
@ G is a ciphertext of 1, and C;-B(Cz) works as AND(C,,C>)

@ G is the matrix that inverts bit decomposition: G-B(X) = X
@ 27C;-B(C2) = 27C1-B(C2) = (81T + M127G) B(C2)
= 8:7B(Cz) + MiZTCo = o7 + M1M2ZTG
where 8T = §:7B(Cz) + M182T has “small” entries

@ In general, error gets multiplied by km. Allows depth = log,,, q



Keywords

@ Secure multi-party computation
@ Linear Secret-Sharing
@ Passive secure BGW protocol

@ Omitted: Yaos Garbled Circuit, Randomized Encoding, Conditional
Disclosure of Secrets, Composition (e.g., UC security), ...

@ Private Information Retrieval, Oblivious RAM, Searchable Encryption
@ Homomorphic Encryption & Fully Homomorphic Encryption
@ More tools in the horizon

@ Obfuscation, Functional Encryption, ...



