
Secure Computation
Concepts

Manoj Prabhakaran

Some

Keywords
Secure multi-party computation

Linear Secret-Sharing

Passive secure BGW protocol

Omitted: Yao’s Garbled Circuit, Randomized Encoding, Conditional
Disclosure of Secrets, UC Security, …

Private Information Retrieval, Oblivious RAM, Searchable Encryption

Homomorphic Encryption & Fully Homomorphic Encryption

More tools in the horizon

Obfuscation, Functional Encryption, …

A general problem

To compute a function of private
inputs without revealing
information about the inputs

Beyond what is
revealed by the
function

f

Need to ensure

Cards are shuffled and
dealt correctly

Complete secrecy

No “cheating” by
players, even if
they collude

No universally trusted
dealer

Emulating Trusted
Computation

MPC: to emulate a source of trusted computation

Trusted means it will not “leak” a party’s information to
others

And it will not cheat in the computation

A tool for mutually distrusting parties to collaborate

Is it for Real?
Getting there! Many implementations/platforms

Fairplay, VIFF

Sharemind

SCAPI

Obliv-C

JustGarble

SPDZ/MASCOT

ObliVM

…

www.multipartycomputation.com/mpc-software

Is it for Real?
And many practical systems using some form of MPC

Danish company Partisia with real-life deployments (since 2008)

sugar beet auction, electricity auction, spectrum auction, key
management

A prototype for credit rating, supported by Danish banks

A proposal to the Estonian Tax & Customs Board

A proposal for Satellite Collision Analysis

Proposed legislation in the US to use MPC for an application
(“higher education data system”)

…

Secret-Sharing
Dealer encodes a message into n shares for n parties

Privileged subsets of parties should be able to reconstruct the
secret

View of an unprivileged subset should be independent of the
secret

Very useful

Direct applications (distributed storage of data or keys)

Important component in other cryptographic constructions
Secure multi-party computation
Attribute-Based Encryption
Leakage resilience ...

Threshold Secret-Sharing
(n,t)-secret-sharing

Divide a message m into n shares s1,...,sn, such that

any t shares are enough to reconstruct the secret

up to t-1 shares should have no information about the
secret

(2,2) secret-sharing

One share is a key, and the other an encryption of the
message using the key

One-time encryption suffices: One share is K and the other
is m⊕K

e.g., (s1,…,st-1) has the same
distribution for every m in

the message space

Threshold Secret-Sharing

Construction: (n,n) secret-sharing

Message-space = share-space = G, a finite group

e.g. G = Z2
d
 (group of d-bit strings, with ⊕ as the group operation)

Share(M):

Pick s1,...,sn-1 uniformly at random from G

Let sn = - (s1 + ... + sn-1) + M

Reconstruct(s1,...,sn): M = s1 + ... + sn

Additive Secret-
Sharing

An Application

“Secure against passive corruption” (i.e., no colluding set of
servers/clients learn more than what they must) if at least one
server stays out of the collusion

Gives a “private summation” protocol (for commutative groups)

Share

Add

Add

Clients with inputs

Client with output

Servers
Can generalise to any

linear combination
over (say) a ring

1 1 … 1 1 1 1 … 1 1

Linear Secret-Sharing
Recall (n,n) secret-sharing

Share(M): s1,...,sn-1 uniform, and sn = - (s1 + ... + sn-1) + M

Reconstruct(s1,...,sn): M = s1 + ... + sn

0 1 0 … 0

0 0 1 … 0

 :

0 0 0 … 1
1 -1 -1 … -1

 M
s1

s2

:

sn-1

s1

s2

:

sn

=

R R

WReconstruction vector
R s.t. R⋅W = [1 0 … 0]

(n,t) secret-sharing: for each privileged set T ⊆ n (i.e., T with |T| ≥ t)
∃RT with support only on positions in T, s.t. RT⋅W = [1 0 … 0]

Linearity guarantees that for unprivileged sets, the view is equally
likely for all messages

Linear Secret-Sharing

Shamir secret-sharing (all operations over a field):

Sharing: Using the Vandermonde matrix. n shares are evaluations of
a polynomial f(X) = M + c1X + … + ct-1Xt-1 at points a1,…,an

Reconstruct({si}i∈T): Langrange interpolation to obtain M = f(0)

 M
c1

c2

:

ct-1

s1

s2

:

sn

=

1 a1 a12 … a1t-1
1 a2 a22 … a2t-1

 :

1 an an2 … ant-1

RT RT

Polynomial
interpolation

(n,t) secret-sharing: for each privileged set T ⊆ n (i.e., T with |T| ≥ t)
∃RT with support only on positions in T, s.t. RT⋅W = [1 0 … 0]

Linearity guarantees that for unprivileged sets, the view is equally
likely for all messages

Linear Secret-Sharing

Allows computing on shares!

Associativity of matrix multiplication: Can compute the shares of a
linear combination of the messages as a linear combination of the
shares of the messages

W

 M1

 c11

 c12

 :

 c1,u

=

 M2

 c21

 c22

 :

 c2,u

 Mv

 cv1

 cv2

 :

 cv,u

:

σ1n

σ11

:

σvn

σv1

:

σ2n

σ21

Product with each
row computed

locally by a party

Q Q

Switching Schemes
Can move from any linear secret-sharing scheme W to any other
linear secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)
Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)
Locally each party j reconstructs using scheme W:
zj ← W.Recon (σ1j,…,σnj)

W

 m
c1
c2
:

ct-1

=

:

wn

w1

R
w1

:

wn

= m

Switching Schemes
Can move from any linear secret-sharing scheme W to any other
linear secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)
Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)
Locally each party j reconstructs using scheme W:
zj ← W.Recon (σ1j,…,σnj)

R
w1

:

wn

= m

 …

:

σvn

σv1

Z

 w1
 c11

 c12 …
 :

 c1,u

=

 w2
 c21

 c22

 :

 c2,u

 wn

 cv1

 cv2

 :

 cv,u

Party i picks ith

column

:

σ1n

σ11

:

σ2n

σ21

R

Switching Schemes
Can move from any linear secret-sharing scheme W to any other
linear secret-sharing scheme Z “securely”

Given shares (w1, …, wn) ← W.Share(m)
Share each wi using scheme Z: (σi1,…,σin)← Z.Share(wi)
Locally each party j reconstructs using scheme W:
zj ← W.Recon (σ1j,…,σnj)

R
w1

:

wn

= m

 …

:

σvn

σv1

Z

 w1
 c11

 c12 …
 :

 c1,u

=

 w2
 c21

 c22

 :

 c2,u

 wn

 cv1

 cv2

 :

 cv,u

:

σ1n

σ11

:

σ2n

σ21

Party j computes jth row

R
=

:

zn

z1

 m
r1

r2

:

ru’

MPC from Shamir Secret-Sharing

Locally multiplying degree d shares of M1 and M2 gives a degree
2d share of M1⋅M2 . Then switch back to a degree d share

(involves communicating deg. d shares of deg. 2d shares)

A function f given as a program with linear steps and
multiplications: arithmetic circuit (over a finite field)

Share

Linear
steps

Reconstruct

Clients with inputs

Client with output

Servers

Mult. Mult.Mult.

Need n > 2d parties.
Security against d
colluding parties

MPC Protocols
For every function, if there is an honest majority (or #honest
parties > n/3, when colluding parties can be actively corrupt)

Based on Secret-Sharing and broadcast (e.g., BGW scheme)

No computational hardness required

Not applicable in the 2-party setting

Also possible for every function when there is no honest majority
(e.g., in the 2-party setting), using Oblivious Transfer

e.g., scheme based on Yao’s Garbled Circuit (a special case of
“Randomized Encoding”) or “MPC in the head” techniques

Oblivious Transfer requires computational hardness

Also possible for a few functions without honest majority and
without computational hardness

Or similar

Exactly which ones
remains open!

An OT Protocol
(passive corruption)

Using a (special) encryption

PKE in which one can sample
a public-key without knowing
secret-key

c1-b inscrutable to a
passive corrupt receiver

Sender learns nothing
about b

F

Additional Aspects
Efficiency/Scalability

What is OK to compute

cf. Differential Privacy

Effect of “leakages”?

Network model

Incomplete network

Variable set of participants

Not everyone online at once

Asynchronous communication vs. need for good throughput

…

Securing Cloud Storage
Private Information Retrieval

Retrieve D[i] from a server without revealing i

Oblivious RAM

Allow read and write operations on data stored on the
server, and do not reveal access pattern

Searchable Encryption

Allow search operations on data stored encrypted on
the server (OK to reveal the access pattern)

Homomorphic Encryption
Group Homomorphism: Two groups G and G’ are homomorphic if
there exists a function (homomorphism) f:G→G’ such that for all
x,y ∈ G, f(x) +G’ f(y) = f(x +G y)

Homomorphic Encryption: A CPA secure (public-key) encryption
s.t. Dec(C) +M Dec(D) = Dec (C +C D) for ciphertexts C, D

i.e. Enc(x) +C Enc(y) is like Enc(x +M y)

Interesting when +C doesn’t require the decryption key

e.g. El Gamal Encryption:
Given PK, Y=gy, EncY(m;x) = (gx,mYx) (x being random).
So, (gx1,m1Yx1) × (gx2,m2Yx2) = (gx3,m1m2Yx3)

Homomorphic Encryption:
Examples

Group structure of the message space determined by the
construction of the encryption scheme

ElGamal: Message space is a group where the Decisional Diffie-
Hellman assumption is made (e.g., quadratic residues modulo a
“safe prime,” with group operation being modular multiplication)

Goldwasser-Micali: Message space is Z2 (i.e., bits with XOR as

the group operation)

Paillier: Message space is Zn for specially chosen n (group

operation is modular addition)

Damgård-Jurik: Message space Zns yields ciphertext space within

Zns+1. Enables encrypt-compute-encrypt-compute-…

In the following: database values are integers in [0,m), and we can
use any homomorphic encryption scheme with a message space
isomorphic with Zn with n ≥ m

e.g., Paillier encryption with message space Zn (n ≥ m)

For integer a and ciphertext c, can define a*c recursively:
0*c = E(0); 1*c = c; (a+b)*c = a*c [+] b*c.

Computational PIR from HE

ya ay
*

[+]
yx x+y

0

0

:

1

:

0

0

0

:

1

:

0

Private Information Retrieval

x1

x2

:

xi

:

xN

0

0

:

xi

:

0

xi xixi

*

[+]

Dec

i

Server communication
is very short. But

client communication
is larger than the db!

Full-Fledged PIR protocol

0 1

xi

0 1

0

1 0

:

0

Uses Damgård-Jurik to
treat ciphertext at one
level as plaintext at the
next level

Total communication
from server
= O(log N log m)

0

*

+

Learning With Errors

A consequence of LWE: Can generate a pseudorandom matrix

M ∈ Zq
m×n’ and z ∈ Zq

n’ s.t. entries of Mz are all “small”

=z eM

1

-s
A b

FHE from LWE

A scheme to encrypt bits, supporting homomorphic NAND

Enc(μ) = MTR + μG where R ← {0,1}m×km and G ∈ Zq
n×km to be defined

Decz(C) : zTC = δT + μzTG where δT =eTR. Check if it is “small.”

NAND(C1,C2) : G - C1⋅B(C2), where B carries out “bit decomposition”

G is a ciphertext of 1, and C1⋅B(C2) works as AND(C1,C2)

=z eM

FHE from LWE

G is the matrix that inverts bit decomposition: G⋅B(X) = X

zTC1⋅B(C2) = zTC1⋅B(C2) = (δ1T + μ1zTG) B(C2)

 = δ1TB(C2) + μ1zTC2 = δT + μ1μ2zTG
where δT = δ1TB(C2) + μ1δ2T has “small” entries

In general, error gets multiplied by km. Allows depth ≈ logkm q

A scheme to encrypt bits, supporting homomorphic NAND

Enc(μ) = MTR + μG where R ← {0,1}m×km and G ∈ Zq
n×km to be defined

Decz(C) : zTC = δT + μzTG where δT =eTR. Check if it is “small.”

NAND(C1,C2) : G - C1⋅B(C2), where B carries out “bit decomposition”

G is a ciphertext of 1, and C1⋅B(C2) works as AND(C1,C2)

Keywords
Secure multi-party computation

Linear Secret-Sharing

Passive secure BGW protocol

Omitted: Yao’s Garbled Circuit, Randomized Encoding, Conditional
Disclosure of Secrets, Composition (e.g., UC security), …

Private Information Retrieval, Oblivious RAM, Searchable Encryption

Homomorphic Encryption & Fully Homomorphic Encryption

More tools in the horizon

Obfuscation, Functional Encryption, …

